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Abstract

This work is about scene interpretation in the sense
of detecting and localizing instances from multiple object
classes. We concentrate on object indexing: generate an
over-complete interpretation – a list with extra detections
but none missed. Pruning such an index to a final interpre-
tation involves a global, often intensive, contextual analysis.
We propose a tree-structured hierarchy as a framework for
indexing; each node represents a subset of interpretations.
This unifies object representation, scene parsing, and se-
quential learning (modifying the hierarchy as new samples,
poses and classes are encountered). Then we specialize to
learning - designing and refining a binary classifier at each
node of the hierarchy dedicated to the corresponding sub-
set of interpretations. The whole procedure is illustrated by
experiments in reading license plates.

1. Introduction

Our objective is to detect and localize instances from
multiple object classes in cluttered grey level images. The
literature is dominated by special cases, for example de-
tecting instances from one object class such as faces, cars,
pedestrians and characters. For multiple object classes, a
common strategy is to collect evidence from a series of
two-class decisions, for instance via “one-vs-all” [6, 10],
pairwise comparisons [7] and error correcting output code
[2]; see also [4] and [5]. Such methods, which execute a
fixed number of binary classifiers for each image region,
are often computationally inefficient, especially in rejecting
background regions, and there is no obvious way to accom-
modate sequential learning.

Here, indexing in the sense of non-contextual detection
primes global interpretation. First compile a list – an in-
dex – of candidate instances (object identities and poses)
under a zero false negative constraint, but at the expense of
numerous false positives. Then exploit contextual informa-

tion, e.g., a priori constraints among poses, to resolve am-
biguities and extract a final interpretation from the index.

This paper focuses on a unified framework for index-
ing – one data structure, a labeled tree, which accommo-
dates how objects are represented by a nested decomposi-
tion of all possible instances; how individual binary clas-
sifiers, dedicated to corresponding sub-interpretations, are
induced from data; and how scene parsing with these clas-
sifiers is organized in an efficient coarse-to-fine manner in
order to detect object instances. Moreover, this structure
can be updated indefinitely in order to refine existing clas-
sifiers as well as incorporate new poses or classes.

We start with a formulation of scene interpretation and
object indexing in§2. Then, in§3, we present an abstract
description of the hierarchical exploration of a space of hy-
potheses; this provides a unified framework for representa-
tion, learning and search. Related work and open issues are
summarized in section§4. Designing the individual clas-
sifiers, as well as parameter learning and updating, is de-
scribed in§5. Finally, experiments on reading license plates
and conclusions are given in sections§6 and§7, respec-
tively.

2. Scene Interpretation

The goal of multiple-class object detection is to compile
a list of object instances(c, θ), wherec ∈ C indicates the
classor categoryof the object andθ ∈ Θ represents its
poseor presentationin the scene, an inclusive “nuisance
parameter” which might convey more than merely the po-
sition, scale, etc. (e.g., the font of a character). Interpret-
ing a scene will typically involve more information, more
structure, than a simple list can provide, such as occlusion
patterns and other relationships among object instances; for
instance, subsets of instances may themselves form “parts”
of more general semantic entities. Moreover, even if the fi-
nal output is a mere list – as in recognizing license plates
– a priori information about global geometry, such as con-
straints among the poses, will certainly impinge upon the



process of reducing an over-complete representation to a fi-
nal interpretation.

LetZ = C ×Θ be the set of all possible object instances
and letY ⊂ Z denote the true list of instances. Indexing
means identifying a subsetD = D(I) ⊂ Z whereI is
the image. The fundamental constraint is thatY belongs to
D. In our stochastic framework (see below),D is in fact a
random subsetand we requireP (Y ⊂ D) = 1. Pruning the
indexD simply means reducing it toY .

Besides no missed detections, we want efficient index-
ing. This will be achieved by searchingZ in a coarse-to-
fine manner based on a tree hierarchy introduced in follow-
ing section§3. In fact, as will be seen, the tree-structured
framework is entirely general and could accommodate other
scenarios and search problems.

3. The Tree Hierarchy

Consider searching among a large set of patterns or hy-
pothesesZ in order to identify a distinguished subset. Sup-
poseZ is far too large to check individually for every
pattern, in other words to perform brute-force template-
matching. Instead, organize the search coarse-to-fine based
on a recursive partitioning ofZ; see Figure 1. Hence, start-
ing fromZ itself (the root node), there is one partition ofZ
for each level in a tree hierarchy and these levels are nested
– the partition of levell+1 is a refinement of the one at level
l. The subset or “cell” ofZ at internal nodet is denotedZt.
The final level may not correspond to the individual patterns
but rather to some desired level of pattern resolution. (In the
case of object instances, the cells at the leaves are pure in
class but may contain geometric poses within some range.)

There is a binary classifierXt ∈ {−1, 1} at every node
t which represents a hypothesis test forHt : Y ∩ Zt 6=
∅ against an appropriate alternative hypothesisHalt

t con-
tained inY ∩ Zt = ∅ (see§5). One important requirement
is thatXt can be continually refined as new training data ar-
rives. In our setup, eachXt is a likelihood ratio test, actually
linear in certain features; the coefficients of the features are
defined directly in terms of observed feature statistics under
Ht andHalt

t , thereby allowing for sequential learning.
Another requirement is thatP (Xt = 1|Ht) = 1. Nat-

urally, this can only be enforced by allowingP (Xt =
−1|Halt

t ) À 0, especially for coarse cells. We then define

D =
⋃

t∈∂T {Zt|Xs = 1 ∀s ∈ At}

whereAt is the set of ancestors oft, includingt itself. The
elements ofD are precisely the hypotheses inz ∈ Z which
survive every testXt which “covers” z in the sense that
z ∈ Zt. EvidentlyY ⊂ D with probability one.

There are many possible online, computational strategies
for actually determining the setD from I. One of them is

breadth-first coarse-to-fine search. Start with the root test;
if it is negative stop becauseD = ∅; if it is positive, execute
the test at each child. In general, proceed recursively: exe-
cute the tests at the children of nodet if and only ifXs = 1
for everys ∈ At (see Figure 1). For each surviving leaf
nodet whose test is positive, addZt toD.

This strategy is especially efficient when the eventY ∩
Zt = ∅ has high probability for all leavest. This is certainly
the case for object indexing since the explanation “back-
ground” statistically dominates any given hypothesis about
certain objects at certain poses. Hence the search terminates
quickly along most paths with high probability. But some
paths survive due to false positive error – the price we pay
for no missed detections.

Figure 1. The tree hierarchy.

4. Related Work and Open Issues

Our online indexing strategy is coarse-to-fine in “scope”
(referring to the size ofZt). Hierarchical search in
class/pose space also appears in [4]. Another design, a “cas-
cade,” can be found in work on face detection [9, 11].

Inducing decision trees from data [1] is different. It cor-
responds to recursively partitioning thefeature spacerather
than the hypothesis space; moreover, each search terminates
at a single leaf. Most importantly, the procedure here isde-
signedrather than learned.

The proposal outlined in§§2,3 is not complete. Still, an
experiment illustrating a preliminary version of the entire
system, including contextual disambiguation, will be given
in §6. Some issues to be explored here and elsewhere in-
clude:

• Automatic Partitioning: Starting withZ, how is the
hierarchy{Zt} of nested partitions defined? In [3],
there is only one object class and the “pose decompo-
sition” is done manually, as in [4]. This will be ad-
dressed elsewhere based on hierarchical clustering.

• Contextual Disambiguation: How isD pruned to a
final interpretation? The experiments here are based



on utilizing a Viterbi algorithm and prior knowledge
about the geometric layout.

• Bootstrapping: What is the right alternative hypoth-
esisHalt

t ? In previous work only nonspecific alterna-
tives were considered. Presumably more discriminat-
ing classifiers can be obtained by taking advantage of
the order of testing in order to anticipate the likely con-
fusions, as in [9, 11]. This is addressed in§5.

• Sequential Updating: How is the hierarchy updated
to accommodate previously unseen poses or classes?
How are the tests then updated? The second question is
addressed in§5, whereXt is given by alikelihood ratio
testwhose coefficients are defined directly in terms of
observed frequencies under the both hypotheses, and
hence can be refined indefinitely.

5. Learning

Throughout this section we fix a nodet of the hierarchy
and concentrate on constructing and updatingXt. We also
assume the imageI is represented by a fixed family ofbi-
nary features{xj}, usually local operators, but unspecified
for the moment; an example is given in§6. Much of what
follows extends to scalar-valued features with probabilities
replaced by means. Finally, there is a training setLt for
nodet (see below), divided into positive examples,L+

t , and
negative examples,L−t .

Alternative Hypothesis: We formulateXt as a likelihood
ratio test ofHt vs. Halt

t . As in [8], the alternative is not
Y ∩ Zt = ∅, but ratherHalt

t = Bt̄ ∩ (Y ∩ Zt = ∅). Here,
t̄ is the parent node oft andBt̄ = {Xs = 1 ∀s ∈ At̄}, the
event that every classifier “above”t is positive. In effect, we
are “boosting”Xt by training against those object instances
we anticipate to be especially confusing for the current task.

The setsL+
t andL−t represent training samples belong-

ing toZt andBt̄ ∩ Zc
t , respectively. Notice we arenot us-

ing clutter - samples from the background which resemble
objects of interest. This would likely bring further improve-
ments.

Likelihood Ratio Test: Of course we cannot estimate the
(conditional)joint distribution{xj} (givenHt andHalt

t ), at
least not for any reasonably large set of features. No training
set would be large enough. Instead, we simply use a linear
test relative to a distinguished subsetJt of features. The
one we usewouldbe the LRT (at null type I error) under a
naive Bayes model, i.e.,werethe featuresx = {xj , j ∈ Jt}
to be independent under the two hypotheses.

The test is then

Xt = sign
(∑

j∈Jt
λt(j)xj − τt

)
(1)

where

λt(j) = log
pt(j)(1− qt(j))
qt(j)(1− pt(j))

(2)

and the frequenciespt(j) = P (xj = 1|Ht) andqt(j) =
P (xj = 1|Halt

t ) are estimated fromL+
t andL−t respec-

tively. (We convertxj to 1 − xj for features withpt(j) <
qt(j), thus forcingλt(j) > 0.) Using equation (2) directly
often over-estimatesλt(j) whenpt(j) or qt(j) is very close
to 0 or 1; hence we approximate (2) bypt(j)−qt(j) instead.
The coefficientλt(j) reflects the discrimination power of
featurexj at nodet in the hierarchy. The thresholdτt (now
necessarily positive) is chosen to enforce the null false neg-
ative constraint:P (Xt = 1|Ht) = P (

∑
j∈Jt

λt(j)xj >

τt|Ht) = 1 where this probability is estimated fromL+
t .

Henceτt = τ(Jt).
The learning problem is then to induceJt fromLt. (De-

termining τ and {pt(j), qt(j)} are relatively straightfor-
ward.) Of course we want discriminating features. More di-
rectly, we want to control the type II errorδ(Jt) = P (Xt =
1|Halt

t ). By the Markov inequality:

δ(Jt) = P (
∑

j∈Jt
λt(j)xj > τ(Jt)|Halt

t )

≤
∑

j∈Jt
λt(j)qt(j)

τ(Jt)

We propose a greedy, recursive algorithm: add featuresxj

toJt one at a time based on minimizing the bound forδ(Jt)
with |Jt| fixed. At each iteration we re-estimateτt and
choose the feature which minimizes the ratio bound. The
features are examined in order of individual discriminating
power.

For sequential learning, we do not re-estimateJt from
scratch; for one thing, this would require keeping all the
data. Instead, we updateJt by adding a few features se-
lected in the same way as above but based on the refined
probability estimates and new training samples. Moreover,
all the coefficientsλt(j) are updated, which is computation-
ally trivial.

6. Reading License Plates

The objective is to identify the characters on the license
plate from the photograph of the rear of a car, as shown in
Figure 2. We omit the process of detecting and extracting
the plates from the photograph as this is not the bottleneck
in applications. The plates displayed in Figure 2 demon-
strate the challenges due to variations in stroke widths, vari-
able illumination, background clutters and other effects.

ClassesC: There are 37 object classes – 26 letters, 10 digits
and one special symbol, a vertical bar.

PosesΘ: The poseθ has three components: locationz(θ),
scaleσ(θ) and tiltρ(θ). Since the variation in tilt is usually



Figure 2. A typical photograph and samples
of extracted plates.

relatively small we can assume|ρ(θ)| ≤ 5◦. Similarly, we
assume:1 ≤ σ(θ) ≤ 1.4 (relative to a reference size). (Big-
ger characters can easily be accommodated; see below.)

Hierarchy: The first levels of the hierarchy are purely pose-
based. The top level partitions the positionz(θ) in the plate
lattice into non-overlapping5 × 5 regions. (Were widely
disparate scales encountered, the next level would partition
σ and larger characters found by downsampling and search-
ing again at the smallest range.) Since objects at widely
different positions (or scales) have very little if anything in
common, the testsXt for the root and the first level nodes
are virtual – always positive. Thus, each5 × 5 regionR is
visited in order to determine if there is a character whose
center lies inR. Therefore, the real recursive partitioning
starts withZ = C × {θ ∈ Θ : z(θ) ∈ R}. Obviously
the tests are translation-invariant, so anyR can serve as a
reference. We use an automated, clustering procedure to
generate a tree hierarchy with13 levels and1332 leaf nodes
(hence unbalanced).

Training samples: Each class prototype (template) is re-
sized and rotated to create training samples with various
poses. All nodes other than the (position-restricted) root
have both positive and negative training sets.

Initial learning: We use the same binary features as in [3]
based on oriented intensity edges. “Spreading” is used to el-
evate the probabilitiespt(j) and generate pose-invariance.
EachXt is constructed fromLt as in §5. As might be
expected, theconditional type-II error decreases exponen-
tially with the depth in the hierarchy, starting at0.38 for the
coarsest nontrivial test (low discrimination is the price for
essentially null type I error) and going down to less than
.001 at the leaves. These values were estimated from test
data, averagingP (Bt|Y ∩ Zt = ∅) over all nodest at each
level.

Indexing results: There are roughly400 false alarms per
plate (see Figure 3(a)). Simple post-processing by clus-
tering detections with the same class at nearby locations
(which explain the same image data) and filtering very low-
scoring detections (measured by proximity to the thresh-
olds) reduces the number to around40 per plate (see Figure
3(b)). The final result (see Figure 3(c)) is based on disam-
biguation by contextual analysis and will be presented in
forthcoming papers.

Sequential learning: We did a preliminary experiment in
refining all the testsXt by first inducing them from the full

training set subsampled in location by a factor of 2, and
then updating the feature sets and coefficients as in§5. The
average false positive rate of indexing increased somewhat,
but the increased offline efficiency is well worth the price.

(a) initial detections (b) after post-processing (c) final interpretation

Figure 3. Selected detections, represented by
the white dots.

7. Conclusion

We have filled in several components of a new frame-
work for visual indexing which unifies representing objects,
learning classifiers and scene parsing. In principle, this
framework – a tree-structured hierarchy – can accommo-
date a great many classes and still maintain efficiency, both
offline (by sequential learning) and online (by coarse-to-fine
search). Upcoming papers will describe how the hierarchy
is automatically generated from training samples and se-
quentially updated as new poses and classes are presented.
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