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Abstract

We propose merging face detection and face tracking into a
single probabilistic framework. The motivation stems from
a broader project in algorithmic modeling, centered on the
design and analysis of the online computational process
in visual recognition. Detection is represented as a tree-
structured graphical network in which likelihoods are as-
signed to each history or “trace” of processing, thereby in-
troducing a new probabilistic component into coarse-to-fine
search strategies. When embedded into a temporal Markov
framework, the resulting tracking system yields encourag-
ing results.

1. Introduction
Detecting objects in an image and tracking them through
a video sequence has been a fundamental problem in com-
puter vision and has led to a significant amount of research
in the last few decades. The particular problem of detect-
ing and tracking a human face continues to attract interest
due to applications in human-computer interaction, visual
surveillance and vision-based control. At present, there ex-
ists no solution comparable to human performance in either
precision or speed.

The main challenge is achieving invariance to facial ap-
pearance and motion. Variations result from many fac-
tors, including environmental conditions (lighting, clutter),
imaging sensors (frame rate, quantization, noise) and in-
herent non-rigid variations in the pose, shape, structure and
motion of a face. In view of the diversity and magnitude of
such variations, most existing approaches are designed to
operate most effectively within a restricted domain in terms
of the types of variability which are accommodated.

Face detection refers to determining the presence and the
location of a face in an image by distinguishing the face
from all other patterns in the scene. Standard methods apply
a face vs. background classifier at every image location and
at several scales (and perhaps rotations). Base classifiers
such as neural networks [13], support vector machines [11],
Gaussian models [17] and naive Bayesian models [14] have

all been used. Recent work has focused on serially com-
bining multiple classifiers to yield faster and more powerful
detectors [5, 16, 19].

The purpose of face tracking is used to follow one or
more faces through a video sequence. Most approaches ex-
ploit the temporal correlation between successive frames in
order to refine the localization of the target. Whereas man-
ual initialization is common, in some cases an independent
face detector is used to automatically initialize the process.
Tracking methods can broadly be classified as region-based
[6], color-based [15], shape-based [3] or model-based [4].
Fairly exhaustive surveys on face detection and tracking can
be found in [8, 20]. Traditionally, work in face detection and
face tracking have progressed independently of one another
and only a few approaches have attempted to merge them
into a single framework.

The work in this paper stems from a broader project on
algorithmicor computationalmodeling for semantic scene
interpretation, motivated in part by the limitations of pure
predictive learning and based on explicit modeling of the
computational process. Single-frame detection is based on
the coarse-to-fine (CTF) framework proposed in [5], where
a series of linear classifiers is used to gradually reject non-
face patterns and focus computation on ambiguous regions.
The resulting distribution of processing is highly skewed
and face detection is rapid at the expense of a few false
alarms. Here, we expand this approach by introducing the
concept of thetraceof processing in the sense of encoding
the computational history – the family of performed tests,
together with their outcomes, during coarse-to-fine search.
When the set of traces is endowed with a probability distri-
bution, the resulting stochastic network induces a likelihood
on each candidate detection.

These frame-based probability measures are naturally in-
tegrated into a spatial-temporal model for the joint distri-
bution of time-varying pose parameters and the trace of
processing within each individual frame. A very primi-
tive model for frame-to-frame pose transition probabilities
leads to coherent tracking over the entire video sequence.
Unlike existing approaches, the motion model is not used
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Figure 1: Hierarchical pose decomposition. EachΛl,k rep-
resents a subset of geometric poses. An alarm is identified
with a fine (leaf) cellΛ if the classifiers for every coarser
cell (i.e containingΛ) responds positively.

to restrict the search domain of the tracker but rather only
to link detections from differing frames. The resulting al-
gorithm unites detection and tracking in one probabilistic
framework.

The rest of the paper is organized as follows: Section 2
provides an overview of the CTF face detection algorithm.
In Section 3, the mathematical formulation of the trace
model is introduced as well as how the model is learned
from training data. The construction of the model and a
discussion on a few learning aspects is outlined. The track-
ing framework is presented in Section 4 and experimental
results are presented in Section 5, followed by a brief dis-
cussion in Section 6.

2. Coarse-to-Fine Face Detection
Algorithmic modeling offers a new approach to pattern clas-
sification. The object of analysis is the computational pro-
cess itself rather than probability distributions (Bayesian in-
ference) or decision boundaries (predictive learning). The
formulation is motivated by attempting to unite stored rep-
resentations and online processing, and by applications to
scene interpretation in which there are many possible ex-
planations for the data, and one of them, “background,” is
statistically dominant. Computation should then by concen-
trated only on ambiguous regions of the image.

Theoretical work [1] has shown that under certain as-
sumptions about the tradeoffs among cost, power and in-
variance, a testing strategy which is coarse-to-fine (CTF) in
both the representation and exploration of hypothesis yields
an optimal computational design. The entire set of hypothe-
ses (e.g., class/pose pairings) is represented as a hierarchy
of nested partitions. Each cell of the hierarchy corresponds
to a subset of hypotheses and is included in exactly one of
the cells in the preceding, coarser partition (see Fig. 1). The
partitioning is recursive and provides a CTF representation
of the space of hypotheses. In order to explore the hierar-

chy, a test or classifier (binary random variable) is associ-
ated with each cell which should respond positively to all
hypotheses represented by the cell. CTF testing proceeds
from tests which accommodate many hypotheses near the
root to those that tests that are more dedicated and discrim-
inative near the leaves.

The result of processing a scene results is a list of alarms
(detections). More precisely, this set is the union of all fine
cellsΛL,k with the property that all the tests which corre-
spond to ancestor cellsΛ ⊇ ΛL,k respond positively. Here
L represents the last level of the hierarchy. This can be vi-
sualized as achain of positive responsesin the hierarchy of
cells (see Fig. 1). The computation of this list of (complete)
chains can be performed efficiently by evaluating a test at
cell Λ if and only if all the tests corresponding to cells con-
tainingΛ (hence more invariant) have already been evalu-
ated and respond positively. Areas of the scene rejected by
coarse tests are then rapidly processed, where as ambiguous
areas are not labeled until some fine tests have been evalu-
ated.

The face detector used in this work is based on this CTF
technique where the space of hypotheses is the set of poses
of a face; all the details can be found in [5]. Briefly, each
test is constructed from oriented edges and is trained on a
specific subset of face subimages which satisfy certain pose
restrictions. In principle, the test at the root of the hierar-
chy would apply toall possible face poses simultaneously
and could, for example, be based on color or motion. In
our experiments, however, this first test is only virtual, as-
sumed always positive, and the hierarchical search begins
with the second level at which the position of the face (say
the midpoint between the eyes) is partitioned into (non-
overlapping)8 × 8 blocks. More specifically, the coars-
est test is designed to detect faces with tilts in the range
−20 < θ < 20, scales (pixels between the eyes) in the
range8 < s < 16, and location restricted to an8 × 8 win-
dow. The finer cells localize faces to a2 × 2 region with
∆θ = 10 and∆s = 2. In order to find larger faces, the
hierarchy of classifiers is applied to every non-overlapping
8×8 image block at three different scales. The criterion for
detection at a given pose is the existence of a chain in the
hierarchy, from root to leaf, whose corresponding classifiers
all respond positively.

The result of the detection scheme is a binary decision
labeling each8 × 8 image patch (at several resolutions) as
face or background and providing an estimate of the pose.
Although this scheme yields low error rates, it does not
assign any numeric confidence measure to each detection
or account for resolving competing interpretations, i.e., for
spatial context. In this work the computational process de-
fined by CTF traversal of the hierarchy is modeled as a
tree-structured stochastic networkT . The nature of CTF
search imposes major restrictions on the possible configu-

2



Figure 2: (a) A tree structure with7 nodes representing a hierarchical set of classifiers used to detect an object at different
poses. (b) The result of coarse-to-fine search is a labeled subtree where dark circles indicate a positive test and light circles a
negative test. Eight of the possible27 “traces” are depicted together with the outcomes of the tests performed.

rations (realizations of this stochastic process) that can be
observed, which in turn leads to a simple model that char-
acterizes possible search histories or “traces.” This in turn
provides a likelihood-ratio test for weeding out false detec-
tions.

3. Trace-Based Image Representation
In order to facilitate the exposition, we first describe (§3.1-
§3.3) the trace model for a general hierarchy and probability
distribution on the set of traces; then, in§3.4, we specialize
to the case of a pose hierarchy and probability distributions
conditional on pose.

3.1 Tree-Structured Networks

Let T denote the tree graph underlying the type of hierarchy
described in§2 and let{Xη, η ∈ T} be the corresponding
set of binary tests or classifiers. We writeXη = 1 to indi-
cate a positive test andXη = −1 to indicate a negative test.
Of course a (rooted) tree is a special case of adirected acylic
graph (DAG) in which the nodes have an implicit ordering
and the edges have natural orientations, towards or away
from the root. The set of parent nodes ofη is denotedAη.
A joint distributionP on configurations{−1, 1}T is deter-
mined by imposing the splitting property of DAGs [12] and
well-know conditional independence assumptions. Specifi-
cally, the distribution of{Xη, η ∈ T} is given by

P (X) = P (Xη, η ∈ T ) =
∏

η∈T

P (Xη|Xξ, ξ ∈ Aη). (1)

We refer to equation (1) as the “full-tree model” as there are
no restrictions onwhich particular tests are actually per-
formed in any given realization.Learning the full model,

and computing realizations at many image locations and
resolutions, can be difficult for largeT since the number
of nodes, as well as the number of parameters determining
each conditional probability, increases exponentially with
|T |.

The situation is illustrated in Fig. 2(a) for a simplified
hierarchyT with seven nodes and corresponding binary
classifiersX1, ..., X7. We can imagine the four leaf cells
represent four possible fine pose cells. Clearly there are
27 = 128 possible test realizations. However, the nature
of CTF search results in certain restrictions on the subset
of classifiers which are actually performed and the values
they may obtain; some examples are illustrated in (b) (as
explained below in .2).

3.2 Trace Configurations

The result of CTF search is a labeled subtree which en-
codes the set of tests performed and the values observed.
As the hierarchy is traversed breadth-first CTF, certain
nodesη ∈ T are visited and their corresponding classi-
fiers Xη ∈ {−1, 1} are evaluated. The setT ∗ ⊂ T of
visited nodes is actually arandom subtreeas it depends on
the values of the tests performed. By definition, thetrace is
X∗ = {Xη, η ∈ T ∗}. For any traceX∗, certain constraints
result from the fact that a testXη is performed if and only
if all ancestor tests{Xξ, ξ ∈ Aη} are performedandeach
one is positive. In particular, with∂T ∗ and∂T denoting the
leaf nodes of the subtree and the full-tree respectively, we
have

η /∈ ∂T ∗ ⇒ Xη = 1
η ∈ ∂T ∗ \ ∂T ⇒ Xη = −1
η ∈ ∂T ∗ ∩ ∂T ⇒ Xη = ±1
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Figure 3: (a) A CTF hierarchy with3 classifiers. (b) A
decision tree representation of CTF search.

For instance, for the hierarchy in Fig. 2(a), there are27 dis-
tinct traces (labeled subtrees), eight of which are depicted
in Fig. 2(b).

The set of all possible traces partitions the full configu-
ration space{−1, 1}T . By taking into account theorder in
which the tests in the hierarchy are performed, there is a nat-
ural identification with a decision tree in which each node
corresponds to a particular test and each edge to one of the
two possible answers. There is then a one-to-one correspon-
dence between traces and complete paths in the decision
tree. The example in Figure 3 illustrates a CTF hierarchy
with three classifiers and the decision tree representation of
CTF search; the leave nodes are labeledU1, ..., U5. Since
every test realizationX lands in exactly one leaf, the deci-
sion tree representation results in a mappingX → {Ui}. Of
course theUi’s are disjoint and span all configurations. For
any probability distribution onX it then follows that

∑
x∗

P (X∗ = x∗) =
∑

Ui

P (Ui) = 1.

where{x∗} is the set of possible traces.

3.3 Learning Trace Models

A Bayesian network model of the form (1) then induces a
very simple probability distribution on traces. As above,
let X∗ be the random trace (labeled subtree) and letx∗ =
{xη, η ∈ T ∗} denote possible value. Then:

P (X∗ = x∗) =
∏

η∈T∗
P (Xη = xη|Xξ = xξ, ξ ∈ Aη)

=
∏

η∈T∗
P (Xη = xη|Xξ = 1, ξ ∈ Aη)

=
∏

η∈T∗
Pη(xη) (2)

wherePη(xη) = P (Xη = xη|Xξ = 1, ξ ∈ Aη). The con-
ditional probabilities in the full-model are reduced to bino-
mial termsPη(xη) since all the conditional events are “posi-
tive histories.”Consequently, specifying a single parameter
Pη(1) for every nodeη ∈ T yields a global and consistent
probability model on traces.In contrast, in the full model,
there are2k parameters required to specify each conditional
probability for a history of lengthk.

3.4 Pose Hierarchy

We now return to the case outlined in§2, namely a recur-
sive partitioning of the set of positions, tilts and scales of a
face. (As before, we fix the scale in the range8 − 16 and
detect larger faces by repeating the search on progressively
downsampled images. This could easily be accommodated
within the existing framework by adding another level at the
top of the hierarchy.)

The decomposition in (2) still holds for an observed trace
conditional on the poseθ. The probability of observing a
tracex∗ given the true poseθ is

P (X∗ = x∗|θ) =
∏

η∈T∗
Pη(xη|θ). (3)

The entire trace model is used to make inferences about
the poseθ. Given an image and its corresponding trace
X∗, likelihoods of individual poses are based on thepos-
terior probabilityP (θ|X∗). As usual, analyzingP (θ|X∗)
depends only on the “data model”P (X∗|θ) and the “prior”
model P (θ), which, for a single frame, can be taken as
uniform and henceforth disregarded. (This of course will
change when time is incorporated.)

Recall that the test a the root is virtual and the first level
of the hierarchy corresponds to partitioning the image pix-
els into non-overlapping8 × 8 blocks, say[W1, ..., Wn],
wheren is the total number of blocks. LetX∗(i) denotes
the trace corresponding to blocki. Given a poseθ, we will
write i(θ) for the (unique) block containing the position in
θ. Writing X∗ = [X∗(1), ...,X∗(n)], we make several sim-
plifying assumptions about the conditional joint distribution
of these components: 1) The trace segments are condition-
ally independent givenθ; 2) The trace segments areidenti-
cally distributed in the sense thatP (X∗(i(θ))|θ) does not
depend on the blocki(θ); 3) For i 6= i(θ), the distribution
of X∗(i) givenθ follows a universal “background law”, de-
notedP (X∗(i)|B). Consequently, the overall likelihood is
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decomposed as follows:

P (X∗|θ) =
n∏

i=1

P (X∗(i)|θ)

= P (X∗(i(θ))|θ)
∏

i6=i(θ)

P (X∗(i)|θ)

= P (X∗(i(θ))|θ)
∏

i6=i(θ)

P (X∗(i)|B)

=
P (X∗(i(θ))|θ)
P (X∗(i(θ))|B)

n∏

i=1

P (X∗(i)|B)

=
P (X∗(i(θ))|θ)
P (X∗(i(θ))|B)

× C(X∗) (4)

whereC = C(X∗) does not depend onθ and hence can be
disregarded when making inferences about the pose. Given
θ, the full likelihood requires an evaluation of the likeli-
hood of one8 × 8 block under both the “object model”
and the background model. These assumptions simplify the
modeling process as we only consider learning responses
of classifiers for all poses contained within a single, refer-
ence, block. The parametersPη(1) are then learned for the
object model by accumulating the results of classification
tests over a standard face database and for the background
model from subimages randomly sampled from the web.

4. Markov Tracking Model
The trace model provides a likelihood function
P (observation|state) and hence could be used in
conjunction with various probabilistic- based tracking
approaches, e.g., the Kalman filter and the condensation
filter [9]. In this section a simple Markov-based setting is
chosen. We writeI0:t−1 and θ0:t−1 to denote the set of
observed image frames and the set of observed poses from
time 0 to t − 1. The trace of frameIt is denoted byX∗

t .
The tracking problem is formulated by estimating the pose
of a face at timet given

• The new traceX∗
t ;

• The previously recorded set of tracesX∗
0:t−1;

• The previously estimated posesθ0:t−1.

The estimate of the posêθt is given by the MAP estimator

θ̂t = arg max
θt∈Θ

P (θt|X∗
0:t, θ0:t−1)

= arg max
θt∈Θ

P (X∗
0:t, θ0:t)

P (X∗
0:t, θ0:t−1)

= arg max
θt∈Θ

P (X∗
0:t, θ0:t)

= arg max
θt∈Θ

P (X∗
t , θt|X∗

0:t−1, θ0:t−1)

Figure 4: Tracking results from different video sequences.

where at every step we have dropped the terms which are
independent ofθt and we have assumed that the trace/pose
process(X∗

t , θt), t ≥ 0 is jointly Markov. To further sim-
plify the computations, we assume that i) Given the current
poseθt, the current traceX∗

t is independent of the previous
trace/pose pair and ii) Given the previous poseθt−1, the cur-
rent poseθt is independent of the previous traceX∗

t−1. This
results in the following baseline tracker:

θ̂t = arg max
θt∈Θ

P (X∗
t , θt|X∗

t−1, θt−1)

= arg max
θt∈Θ

P (X∗
t |X∗

t−1, θt, θt−1)P (θt|X∗
t−1, θt−1)

= arg max
θt∈Θ

P (X∗
t |θt)P (θt|θt−1). (5)

The likelihoodP (X∗
t |θt) is evaluated according to (4) in

the previous section withX∗(i) replaced byX∗
t (i) andθ

replaced byθt. The transition probabilityP (θt|θt−1) is as-
sumed stationary and captures our prior knowledge about
how the pose moves from one frame to another. This model
is learned from data.

In practice, we do not search over all possible poses at
each timet. Instead, the search space is restricted to a lim-
ited set of poses constructed from the union of two sets. One
is the set of poses which are consistent with the estimated
pose in the previous frame (in the sense that the transition
probability is above some threshold). The other set con-
sists of the full set of alarms (complete chains in the hierar-
chy) which are produced by the CTF detection scheme. Of
course these alarms include both true detections and false
positives, but evaluating these poses allows for correcting
mistakes and accommodating the appearance of new faces
or the re-appearance of occluded faces. The poses in the
union of these two sets are then sorted by the likelihood
function in (5). Tracking can be further accelerated by lim-
iting the search space to regions that satisfy certain color
and motion constraints.

5



Figure 5: Top row: The result of our tracker in four different frames. Bottom row: The raw results of pure detection in the
same four frames.

5. Experimental Results

Video sequences provided by [2], which are available
athttp://www.cs.bu.edu/groups/ivc/HeadTracking/, are used
in the initial experiments. The sequences contain 200
frames with a resolution of320×240 and contain free head
motion of several subjects under varying conditions of illu-
mination. The pose transition model is learned from a set
of similar pre-recorded video sequences. In Fig. 4 we show
some of the results obtained with the face tracker. With
a standard desktop PC and with no MMX optimizations,
faces are tracked at around 10 frames per second. Since the
evaluation of trace likelihoods is restricted to regions of in-
terest, the speed of the tracker is mainly determined by the
efficiency of detection. Real-time performance can be ob-
tained by only executing the full-image detector every few
frames or by incorporating global temporal information.

In Fig. 5, we illustrate the difference in the quality of
single-frame detection between the dynamic tracking model
and the static, frame-by-frame face detector (i.e., without
the trace model, as implemented in the cited references).
Tracking yields both a higher detection rate and a lower
false positive rate. A higher detection rate is achieved be-
cause the tracker exploits the temporal information to oc-
casionally estimate a pose which does not correspond to a
detected alarm. This phenomenon is mainly observed in
cases in which the pose of the subject temporarily violates
the a priori constraints (e.g., on the range of tilts) or in cases
of temporary occlusion. In addition, the tracker filters out
false positives resulting from high frequency noise (since
the tests are based on the presence of edges).

In Fig. 6 we show two consecutive frames from a video
sequence with multiple faces. As the current framework is

based on MAP estimation of a single track, multiple faces
cannot be tracked simultaneously. Extending the formula-
tion multiple faces is a subject of current research. Finally,
in Fig. 7 we depict the result of tracking one individual
(the singer) in a very challenging video sequence. The face
of the subject is successfully tracked despite heavy cam-
era panning and unsteady focus. Unlike most tracking al-
gorithms, the search is global and the influence of the de-
tection model reduces the dependence on accurate motion
estimation.

6. Summary and Conclusions

We have presented a new method to unite face detection
and face tracking in a probabilistic framework. The online
computational process of a CTF face detection algorithm is
analyzed in the context of a graphical model for the history
or “trace” of processing, thereby introducing a probabilistic
component into the CTF face detection strategy. The re-
sulting trace model can then be merged with pose dynamics
within a single, coherent Bayesian framework to base track-
ing on both frame-by-frame detection and temporal conti-
nuity, embedding detection in a filtering framework. Since
the temporal model is extremely elementary, the encour-
aging experimental results can be seen to demonstrate the
power of the trace model.

Unlike traditional tracking algorithms, there are no re-
strictions on the motion of a face. This is possible because
CTF search makes detection very rapid, thereby allowing
for a search for faces over each entire video frame. Con-
versely, this also renders detection more efficient by elim-
inating a significant number of hypotheses. Extending the
formulation to tracking multiple faces is currently being in-
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Figure 6: Tracking results in two consecutive frames on a sequence with two faces. Since the current tracking model assumes
a single face, it occasionally jumps from one face to another when the (normalized) likelihood of a detection dominates in
the MAP estimation of the pose.

Figure 7: Tracking results on a difficult sequence with high camera instability.

vestigated.
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