
A Design Principle for Coarse-to-Fine Classification

Sachin Gangaputra
Johns Hopkins University

Baltimore, MD 21218
sachin@jhu.edu

Donald Geman
Johns Hopkins University

Baltimore, MD 21218
geman@jhu.edu

Abstract

Coarse-to-fine classification is an efficient way of orga-
nizing object recognition in order to accommodate a large
number of possible hypotheses and to systematically exploit
shared attributes and the hierarchical nature of the visual
world. The basic structure is a nested representation of
the space of hypotheses and a corresponding hierarchy of
(binary) classifiers. In existing work, the representation is
manually crafted. Here we introduce a design principle for
recursively learning the representation and the classifiers
together. This also unifies previous work on cascades and
tree-structured search. The criterion for deciding when a
group of hypotheses should be “retested” (a cascade) ver-
sus partitioned into smaller groups (“divide-and-conquer”)
is motivated by recent theoretical work on optimal search
strategies. The key concept is the cost-to-power ratio of
a classifier. The learned hierarchy consists of both linear
cascades and branching segments and outperforms manual
ones in experiments on face detection.

1. Introduction

Promising results have been obtained in recent work us-
ing hierarchical search and template-matching [3, 8, 10, 22]
and attentional cascades [6, 7, 23] to detect instances of
generic object classes in greyscale images. By examining
many hypotheses (e.g., object categories and poses) at the
same time, and by exploiting the simple observation that the
background is statistically dominant (i.e., the most likely
explanation in any given region), computation is focused on
ambiguous areas of the image, yielding small error rates as
well as rapid scene parsing.

The advantage of hierarchical representation is modular-
ity: the global problem is decomposed into more tractable
sub-components and one monolithic classifier is replaced
by a hierarchy of classifiers, each dedicated to a specific
subset of hypotheses sharing common properties. Indeed,
the construction of the hierarchy relies on the fact that there
exist natural groupings amongst object instances, i.e., com-

mon “attributes,” such as shape, color, scale and location.
(In related work, these attributes are actual “parts” of ob-
jects and recent work on spatial arrangements of parts [2, 5],
shared parts and features [15, 21], and compositional vision
[12] is also motivated by exploiting shared attributes for ef-
ficient learning and representation.) In work on coarse-to-
fine classification, the attributes are employed to recursively
partition the set of hypotheses into ever finer and more ho-
mogeneous subsets or “cells”. The final hierarchy is then a
sequence of nested partitions.

The construction is hardly unique; there are a great many
ways to recursively decompose a set of hypotheses. In prior
work (e.g., [8]), the hierarchy was manually designed, se-
lecting one attribute at a time as the basis for splitting. No-
tably absent is a principled construction. Moreover, it is
not clear that building the representation should be sepa-
rated from learning the classifiers and measuring their per-
formance, or, for that matter, from anticipating the order
in which they will be applied to the image data. Further-
more, an ad hoc construction may no longer be feasible in
extending this approach to accommodate many more object
categories, presentations and complex descriptions.

Automatically designing a hierarchy evokes a fundamen-
tal question: given several hypotheses, should they be ex-
plored simultaneously or separately? More specifically,
given a setA of active classes or hypotheses, and several
ways to breakA down into subsets (including keepingA
intact), what is the most efficient way to test if one of the hy-
potheses inA is true? Of course this depends on somehow
equalizing for cost and accuracy among the alternatives.

The design principle we adopt is motivated by recent the-
oretical work [4, 13] on optimal search strategies. In that
work, once a hierarchy of classifiers is given, a sufficient
condition for the optimality of coarse-to-fine search is ex-
pressed in terms of the ratio of cost-to-power of each clas-
sifier. Here, we use this criterion to iteratively construct
the hierarchy in the first place. That is, given a leaf cell
in the pending hierarchy, and given several candidate splits,
including the trivial partition which keeps the cell intact,
we choose the partition which minimizes the ratio of cost

1

Figure 1.Two of many possible hierarchical representations based on the attributes “shape”, “color” and “size”.

to power. In particular, since a classifier was constructed
for every current terminal cell at some previous iteration, at
every step we are deciding between retesting (“cascade”)
and splitting (“divide-and-conquer”). Retesting does not
produce the same classifier since the negative population
changes.

This method is then entirely different from bottom-up
procedures based on agglomerative clustering and similarity
measures. We build the hierarchy of subsets and classifiers
at the same time, top-down and recursively. The resulting
architecture differs significantly from those manually con-
structed, especially in dedicating resources to difficult sub-
sets of hypotheses (e.g., small faces). It also unifies previ-
ous work on cascades and coarse-to-fine search.

In Section 2, we outline the statistical framework for a
hierarchical representation and search. The motivation for
our design principle and the algorithm for constructing the
hierarchy are presented in Section 3, still in a general con-
text. Then, in Section 4, we illustrate these ideas with ex-
periments in face detection based on Adaboost learning and
finally draw some conclusions in Section 5.

2. Statistical Framework

Let Y denote the set of “hypotheses” of interest. For
example, each hypothesis might be an object category and
geometric pose. The objective is to determine the true ex-
planation, sayY , of the observed data, e.g., a subimage.
The alternative toY ∈ Y is Y = 0, denoting “other” or
“background” which is typicallya priori the most likely
explanation. Given a subimageI corresponding to an un-
labeled shape, the goal is to efficiently determine whether
or not Y (I) ∈ Y. Rather than build a single classifier to
testY ∈ Y vs. Y = 0, which is likely to be inaccurate
whenY is heterogeneous, or build only individual classi-
fiers to check the elements ofY one at a time (“template-
matching”), which is likely to be expensive, the search
is accomplished by a dynamical “coarse-to-fine” process.
This is based on grouping hypotheses with common proper-

ties and checking entire subsets simultaneously, proceeding
systematically from coarse-grained to fine-grained explana-
tions. When properly designed, the fine classifiers are rarely
implemented.

2.1. Efficient Representation

The main assumption is that there are natural groupings
A ⊂ Y among the hypotheses and that testing for these
groupings – or “attributes” – is far more efficient than test-
ing for arbitrary subsets or testing for many hypotheses indi-
vidually. For example, the attributes might represent certain
physical properties of the objects, such as “color”, “shape”
and “size,” as illustrated in Fig.1, an idealized example
with eight elements inY.

The natural data structure to representY based on these
attributes is then tree-structured and multi-resolutional, with
subsets of hypotheses corresponding to varying levels of
precision. We denote this by

Hattr = {Aξ, ξ ∈ T} (1)

whereT is a tree graph. Fig.1 shows two such representa-
tions. In the applications to object detection in [1, 8, 19] and
elsewhere, the setsAξ for nodes near the root are quite het-
erogeneous with respect to both category and pose, whereas
near the leaves they represent homogeneous subsets, for in-
stance a single category or even sub-category over a small
range of poses (e.g., position, scale and orientation), or sev-
eral sub-categories at poses which render the shapes nearly
identical.

2.2. Efficient Search

There is a binary classifierXξ = XAξ
for every cellAξ,

ξ ∈ T . The family is denoted by

Htest = {Xξ, ξ ∈ T}.

The classifierXξ represents a “test” for the hypothesis
Hξ : {Y ∈ Aξ} against a suitable alternative hypothesis

Figure 2.(a) The first 26 classifiers of the learned hierarchy; (b) A manually designed hierarchy. The numbers indicate the order in which
the nodes are added to the evolving structure. The labelss andφ refer to splits based on scale and tilt, respectively. The quaternary splits
are on location.

Halt(ξ) : Balt(ξ) ⊂ {Y /∈ Aξ}. In practice, these classifiers
are induced from positive and negative training examples
using some learning algorithm, for example, naive Bayes
[8], Adaboost [9] or support vector machines [19]. How-
ever, the framework is largely algorithm-independent. The
sole restriction is that the corresponding decision surface
can be adjusted in order to accommodate a (nearly) null
false negative constraint, i.e.,α(XA) = P (XA = 0|Y ∈
A) = 0 for every classifier inHtest. This can generally
be accomplishedat the expense of low selectivity (i.e., low
power)by adjusting some bias or threshold.

The search strategy is breadth-first, coarse-to-fine. That
is, starting from the root, the classifiers are executed sequen-
tially and adaptively, withXξ performed if and only if all
ancestor tests are performed and are positive. More specifi-
cally, Xξ is performed if and only ifXη = 1 for every node
η ∈ A(ξ), whereA(ξ) is the set of nodes which are be-
tween the parent ofξ and the root, inclusively. In particular,
if the root classifier is negative, the procedure terminates
and “background” is declared. Similarly, the search termi-
nates if the test at the root is positive but all its child tests
are negative. This promotes extremely efficient computa-
tion since, generally, large subsets of hypotheses are simul-
taneously pruned. The natural alternate hypothesesBalt(ξ)

at nodeξ accounts for this: wheneverXξ is implemented,
the distribution of the image data should be conditioned on

the event

Balt(ξ) = {Y /∈ Aξ} ∩ {Xη = 1∀ η ∈ A(ξ)}. (2)

Notice that conditioning the null hypothesis{Y ∈ Aξ} on
the event that the testXξ is performed is superfluous due to
the null false negative constraint.

Coarse-to-fine search results in a set of detections:

D = {y ∈ Y : XAξ
= 1 for all ξ such that y ∈ Aξ}.

These are all the hypotheses not ruled out by any test per-
formed. Equivalently, the set of detections is the union of
the leaves ofHattr which represent the terminal point of a
complete chain of positive responses.

This strategy is highly efficient because most image ar-
eas attract little computation. It has been examined both
mathematically and in applications. It is theoretically op-
timal under certain assumptions about the cost and power
of the classifiers and their statistical dependency structure
under the background hypothesis. However, in all previous
implementations,Hattr is manually constructed, and made
independently ofHtest.

2.3. Alternative Hierarchies

Manual construction is based on more or less arbitrary
choices. In general, there is no unique way of ordering the
splitting process because the attributes often define inde-
pendent physical properties of the objects. Both hierarchies

Figure 3.Four possible decompositions of a group of hypotheses. Choosing the best one is based on the ratio of the cost to the power of
the resulting classifier.

in Fig. 1 might appear reasonable. The hierarchy used for
face detection in [8] is shown in Fig. 2(b): The attributes
are position (p), scale (s) and tilt (φ) and the splits are ei-
ther quaternary in position or binary in scale and tilt. More-
over, in previous work, a cellAξ is either never “retested”
or only retested, as in the cascades in [23]. We argue that
distinguishing between the two hierarchies in Fig.1 should
involve the performance of the classifiers that will be built,
especially in terms of the efficiencyper unit costin rejecting
the background hypothesis. In particular, given two hierar-
chies of equal computational complexity, we should favor
the one with fewer average false positives, i.e., a smaller
expected|D| under the background hypothesis.

3. Hierarchy Design

Our objective is to constructHattr andHtest simulta-
neously from data. We assume we have some learning al-
gorithm (A,L) → XA for constructing a binary classifier
XA for any subsetA ⊂ Y from a set of training examples
L = L+∪L−. Here,L+ ∼ {Y ∈ A} andL− ∼ Balt(A) ⊂
{Y /∈ A} denote the set of positive and negative training
examples, respectively. We also assume that eachXA can
be manipulated to have a very small missed detection rate,
i.e., α(XA) = P (XA = 0|Y ∈ A) ≈ 0, at the possible
expense of a considerable false detection rate. Each classi-
fier XA is then largely characterized by its costc(XA) and
powerβ(XA). The costc(XA) reflects the computational
or processing expense incurred in performing the test; this
can typically be measured in terms of dedicated CPU time.
The powerβ(XA) is the selectivity of the test in the stan-
dard sense:β(XA) = P (XA = 0|Balt(A)). Notice that
1− β represents the false positive rate.

3.1. The Cost-to-Power Ratio

In order to rank candidate splits we would like to have a
single parameter which captures the overall efficiency of a
classifier in the context of the hierarchy. For this purpose,
we borrow a performance metric from [4] and [13]. In that
work the objective is to determine conditions under which

coarse-to-fine strategies minimize total computation in de-
termining D [4] or determining ifD = ∅ [13]. In both
cases, the hierarchy of subsets ofY and the hierarchy of
classifiers are assumed to be given and there is no analysis
of how they might have been constructed. The basic idea,
as originally set forth in [13], is that the cost-to-power ratio
is the right way to normalize the immediate processing cost
in order to account for additional processing due to false
positives. In [4] it is shown that, under certain assumptions
about the probability distribution under which mean total
computation is measured, a sufficient condition for the opti-
mality of coarse-to-fine search (as opposed to any other way
of visiting some or all the nodes ofξ ∈ T and performing
Xξ) is that

∀ξ ∈ T,
c(Xξ)
β(Xξ)

≤
∑

η∈C(ξ)

c(Xη)
β(Xη)

(3)

whereC(ξ) denotes the direct children ofξ in T . In this
work, our objective is essentially reversed: we assume from
the outset that the hierarchy will be processed coarse-to-
fine and we wish to find a principled way of constructing it.
Extending the cost-to-power ratio to a candidate partition
provides a natural metric.

3.2. Ranking Candidate Splits

The construction is recursive. Suppose, at stepk, we
have constructedH(k)

attr andH(k)
test. Let A = Aξ be the

subset of hypotheses at a leafξ of T (k). The particu-
lar leaf chosen for expansion is the one with the currently
highest estimated false positive rate (see§3.3). Suppose
there are several candidate partitions ofA. We will write
Λ(A) = {A1, A2, ..An} to denote such a partition: theA′is
are pairwise disjoint and∪Ai = A. One of these candi-
dates is the trivial partitionΛ(A) = {A}. Notice that at
least one classifier, namelyXξ, has already been built for
deciding between{Y ∈ A} against the appropriate alterna-
tive. Consequently one choice is to build another classifier
for this sub-problem, corresponding to a (partial) cascade.

The learning algorithm will not yield the same classifier be-
cause the alternative hypothesis has changed and hence the
set of negative examples is different.

Fig. 3 illustrates four different partitions for a cell in our
fictional example; from left to right, the four splits corre-
spond to “retesting”, splitting on color and shape, and test-
ing individual hypotheses (a form of “template-matching”).

In order to choose among these, and anticipating the pro-
cessing strategy, we define the cost and power of a partition
Λ as follows. For eachAi ∈ Λ a classifierXAi is built us-
ing our learning algorithm. Now define a single classifier
for the partitionΛ:

XΛ =
{

1 if XAi = 1 for some i
0 otherwise

(4)

HenceXΛ responds positively ifany of its components is
positive, i.e., if processing continues. The cost of the com-
posite test is clearlyc(XΛ) =

∑
i c(XAi) sinceeachof the

classifiersXAi
will be performed whenever the parentXξ

is positive. The power of the composite test is

β(XΛ) = P (XΛ = 0|Balt(ξ))
= P (XAi = 0, i = 1, ..., n|Balt(ξ))

whereBalt(ξ) was defined in (2). Hence the composite
power is the probability under the alternative hypothesis
that all the tests fail, which is the desired outcome in that
case.

One of the conditions in [4] leading to the criterion (3)
is that the classifiers represent independent random vari-
ables under the alternative hypothesis (taken there as the
background distribution). We do not want to make this as-
sumption, i.e., we do not assume thatP (XAi = 0, i =
1, ..., n|Balt(ξ)) =

∏n
i=1 P (XAi = 0|Balt(ξ)). In practice,

we simply estimate the composite power from training data.
Finally, we choose the partitionΛ that minimizes the

cost-to-power ratioc(XΛ)/β(XΛ). Specifically, given par-
titionsΛ1, Λ2, ..., Λm of A, choose:

i∗ = arg min
1≤i≤m

c(XΛi)
β(XΛi)

. (5)

The subsetA is then decomposed into|Λi∗ | children and
the elements ofΛi∗ are adjoined toH(k)

attr to formH(k+1)
attr .

Similarly, the corresponding classifiers are added toH(k)
test.

3.3. Special Case: Recursive False Positive Mini-
mization

The above formulation is very general. It accommodates
constructing classifiers of variable cost and power. Alterna-
tively, one can compare candidate splits by equalizing for
one of these quantities and optimizing over the other. In
particular, we can normalize for cost by arranging to have

c(XΛi
) ≡ c for each candidate partitionΛi. This would

occur, for example, if the cost of a classifier were propor-
tional to the size of the underlying setA of hypotheses, i.e.,
if c(XA) ∝ |A| for everyA ⊂ Y , in which case we obvi-
ously havec(XΛi) ∝ |A| for every partition. In practice,
this can be arranged by controlling some parameter in the
learning algorithm, for instance the number of features em-
ployed. Once the cost is normalized, the chosen partition is
the one that maximizes power (equivalently, results in the
smallest false positive rate).

As noted above, the construction is iterative and the hi-
erarchy is expanded one node at a time. GivenH(k)

attr, we
start by identifying the leaf node with the highest overall
false positive rate. That is, for each current leafξ, we esti-
mateP (Xξ = 1, Xη = 1, η ∈ A(ξ)|background), where
“background” denotes the eventY /∈ Y. This is very easy
in practice as it only requires sending background samples
down the existing hierarchy and counting the number reach-
ing each leaf.

4. Application to Face Detection

To measure the efficacy of our design principle we
choose one of the problems in object detection which has
previously been investigated using hierarchies of classi-
fiers. This includes work on detecting printed characters
[1, 10, 11], buildings [14] and faces [7, 8, 19, 23]. We fo-
cus on face detection, which has been widely studied in the
computer vision literature. The problem is to find all in-
stances of frontal, upright faces in greyscale scenes. (More
recently, this has been extended to include profile detec-
tion.) In addition to the work cited above, existing methods
include neural networks [16, 18], support vector machines
[17] and Gaussian models [20]. The best ROC curves gen-
erated on the CMU+MIT test set are remarkably similar.
For instance, the current state-of-the-art is order one false
positive per image at approximately ninety percent detec-
tion rate. In addition, detection is sometimes very rapid, in
fact essentially real-time [23]. However, most methods re-
quire very large training sets, e.g., thousands or even tens of
thousands of sample faces, in order to achieve this perfor-
mance.

4.1. Representation

Since we are searching for instances from a single ob-
ject class, the set of hypotheses corresponds to possible ge-
ometric poses. (Other instantiation parameters could be in-
cluded.) Specifically, the pose will refer to the position, tilt
and scale of a face, denotedθ = (p, s, φ), wherep is the
midpoint between the eyes,s is the distance between the
eyes andφ is the angle between the vertical and the seg-
ment orthogonal to the segment joining the eyes. Relative
to a subimageI, the setY of hypotheses is the set of poses

Figure 4.The first two steps in learning the hierarchy. Top panel: Four possible decompositions of the root node, whose false positive
rate is0.05. The conditional false positive rates of both the individual classifiers (in circles) and the aggregate classifier (denotedfpe) are
given. Bottom panel: Choices for the next level given the quaternary split is chosen for the root.

of a single face withinI such that the position is restricted to
an8× 8 window centered inI and the scale and tilt are ap-
propriately restricted. More specifically,Y = {(p, s, φ) ∈
<4 : p ∈ [−4, 4]2, s ∈ [8, 16], φ ∈ [−20o, 20o]}. The back-
ground hypothesis is that there is no face centered in the
given image at these scales and tilts.

A scene is processed by visiting non-overlapping8 × 8
blocks, processing the surrounding image data to extract
features (e.g., edges) and classifying this subimage accord-
ing to the coarse-to-fine search strategy described in§2.2.
Faces at larger scales are detected by downsampling the im-
age and repeating the search process. With four levels of
downsampling, faces of size8 ≤ s ≤ 128 are detected.

In existing work a hierarchyHattr is constructed by
choosing some decomposition ofY into nested partitions
based on splits involving the three pose parameters. For
example, one such hierarchy results from two quaternary
splits in location (from8× 8 to 4× 4 to 2× 2) and then two
alternating binary splits on tilt and scale, yielding a pose hi-
erarchy with seven levels. One section is illustrated in Fig.
2(b). For this section ofT ,Htest would consist of33 binary
classifiers including the root classifier, which is dedicated to
detecting faces invariantly overY.

4.2. Baseline Learning Algorithm

Our positive training samples are synthesized from the
standard ORL database which contains ten pictures for each
of forty individuals for a total of400 images. For each cell
Aξ in Hattr, we synthesize1600 faces with poses more
or less uniformly sampled fromAξ. The negative (non-
face) training examples for constructingXξ are obtained

by processing a large set of “background” images and col-
lecting the false positives which arrive atξ, up to a maxi-
mum of6000. This ensures that the non-face instances used
for training at every node represent a sample of images re-
sponding positively to all the preceding classifiersXη for
η ∈ A(ξ). In this way, we are training against those partic-
ular non-faces that increasingly resemble faces.

The same learning algorithm is applied to each cell; only
the training set changes. We use binary Adaboost [9] to
build each test. Our features are binary, oriented edge frag-
ments, as in [1, 8]. Other features and learning algorithms
could have been used in place of edges and Adaboost, as,
for example, in [19], where eachXξ is a support vector
machine based on wavelet coefficients. Finally, the null
false negative constraint is enforced by adjusting parame-
ters based on a held-out validation set; this promotes better
generalization (less over-fitting) than using the whole train-
ing set for learning everything aboutHattr andHtest.

4.3. Learned Construction

We use the procedure outlined in§3.3. The hierarchy
Hattr is recursively built starting from the root node and
comparing candidate partitions based on equalizing the to-
tal cost and estimating the conditional false positive rate.
Specifically, we consider four possible decompositions of
Aξ at each current leaf nodeξ: (i) no decomposition (i.e.,
retesting); (ii) a binary split in scale; (iii) a binary split in
orientation; and (iv) a quaternary split in position. Every
time option (i) has the best cost-to-power ratio, we are ef-
fectively building a linear “cascade” segment. The other
options lead to binary and quaternary forks. Sometimes it

Figure 5.ROC curves on the CMU+MIT testset

is more efficient to retest and sometimes it is more efficient
to decompose the problem into simpler pieces.

The costc(XA) of classifierXA is assumed proportional
to the number of features; overhead charges are ignored. In
order to equalizec(XΛ) the same for every partitionΛ, we
use400 features for option (i),200 features for options (ii)
and (iii), and100 features for option (iv). The (local) false
positive rates ofXΛ and the (global) false positive rates
of each pending leaf in the hierarchy are empirically de-
termined from the training data.

The first twenty-seven classifiers in the learned hierarchy
are shown in Fig.2(a). Recall that at each step, the algo-
rithm visits the leaf node that currently performs the worst
in terms of filtering the background. The ordering in Fig.
2(a) reflects this process.

The first two steps in the process are illustrated in Fig.4.
We start by building a classifier forA = Y, the whole pose
set. Its false positive rate is0.05 and this test is represented
by the top circle in the upper half of Fig.4. The four de-
compositions correspond to (i)-(iv). The valuefpe denotes
the false positive rate of the partition. The individual false
positive rates of the classifiers are also shown; notice that
the classifiers within a partition are not independent. (For
instance, in (iv),1 − 0.27 6= (1 − 0.08)4.) But they are
surprisingly close.

From Fig. 4, we deduce that the best strategy for de-
composing the root is the quaternary split on location. The
bottom half of Fig.4 depicts what happens when the new
leaves are examined; these correspond to restricting the po-
sition to a4 × 4 region and leaving scale and orientation
unrestricted. In this case, the best decomposition is (i); only
26% of the background images which survive the classifier
at the root, denoted “0” in Fig.2(a), also survive the re-
stricted location test, which is denoted by “1” in Fig.2(a).

4.4. Analysis

The resulting hierarchy contains both linear cascades and
branching forks. Unlike the ones manually designed, the

Figure 6.Estimated false positive rate vs. average computational
time (to execute the hierarchy) for varying numbers of classifiers
added to the hierarchy; the order is given in Fig.2(a).

learned hierarchy is asymmetric and non-uniform with re-
spect to the pose space. We notice longer chains for small
scales, corresponding to a more concentrated effort to detect
smaller faces. This is natural, as a small face is more diffi-
cult to discern in a cluttered background. In some cases, no
decomposition “significantly” reduces the number of false
positives. The maximum level reached (i.e., number of clas-
sifiers in the branch from root to leaf) is23. For example,
the resolution in location stops at2 × 2 whereas scales are
finely resolved.

4.5. Experimental Results

The system is implemented in C++ on a standard Pen-
tium 4 1.8GHz PC. Performance is estimated using the
CMU+MIT [18, 20] test set. As elsewhere, images with
faces displaying out-of-plane rotations are excluded. There
are then164 images with556 faces exhibiting tilts in the
range−20o to 20o range. Some are sketches, which are ex-
ceedingly difficult to detect. As in cited work on cascades,
processing a320× 240 image takes only a small fraction of
a second.

Detection FP / image
Learned hierarchy 89.1% 0.67
Manual hierarchy 89.1% 1.11
Viola-Jones [23] 90.8% 0.73
Rowley-Baluja-Kanade [18] 89.2% 0.73

Table 1.Performance measures for various face detection systems.

In order to properly compare the learned hierarchy (Fig.
2(a)) to the manual hierarchy (Fig.2(b)), the classifiers
in both are constructed with the same protocol – the same
training database, feature set, learning algorithm, and so
forth. The performance of the two systems are depicted in
Fig. 5 with ROC curves. During construction, both the cur-
rent overall false positive rate and average computational

time are estimated at each iteration (i.e., expansion of a
node). Error is plotted against computation for each method
(manual vs. learned) in Fig.6; each point on the curve cor-
responds to expanding the corresponding hierarchy. For the
same average computation, the learned hierarchy has a sub-
stantially lower false positive rate.

We also compare the new method with other face de-
tection systems in Table 1. The results are also compara-
ble to other well-known systems. It should be noted that
different systems are tested on slightly different subsets of
the MIT+CMU dataset, but the results are nonetheless very
similar. The test subset we use is more general because it
contains faces with varying tilts.

5. Conclusion

We have taken a step in rendering coarse-to-fine clas-
sification a more data-driven procedure. In so doing, we
have proposed a general principle for deciding among sev-
eral ways of examining a group of hypotheses; in our ap-
plications, these represent possible explanations of image
data. The alternatives include holistic examination (search-
ing for everything at once) and versions of “divide-and-
conquer” (conducting multiple searches for coherent sub-
sets). The basic principle is to assign a numeric measure
to each candidate decomposition, namely the cost of the
corresponding aggregate classifier divided by its statistical
power. This quantity plays a pivotal role in recent work on
optimal search strategies; further reconciling that work with
our work is a subject of ongoing research.

Experiments in face detection show a significant im-
provement over manually-constructed hierarchies after ad-
justing for all other factors. Although high-performance
face detection was not our primary objective, additional
improvements, notably fewer false positives at any given
detection rate, might be obtained in several ways. Two
promising avenues are the use of more powerful features
than the simple binary edge variables utilized here and train-
ing the classifiers in the hierarchy with a much larger set of
faces.

References

[1] Y. Amit, D. Geman, and X. Fan. A coarse-to-fine strategy
for multi-class shape detection.IEEE Transactions PAMI,
28:1606–1621, 2004.2, 5, 6

[2] Y. Amit and A. Trouve. Pop: Patchwork of parts models for
object recognition. Technical report, University of Chicago,
2004.1

[3] S. Baker and S. Nayar. Pattern rejection.Proceedings IEEE
CVPR, pages 544–549, 1996.1

[4] G. Blanchard and D. Geman. Sequential testing designs for
pattern recognition.Annals of Statistics, 33:155–1202, 2005.
1, 4, 5

[5] M. Burl and P. Perona. Recognition of planar object classes.
Proceedings IEEE CVPR, pages 223–230, 1996.1

[6] M. Elad, Y. Hel-Or, and R. Keshet. Pattern detection using
a maximal rejection classifier.Pattern Recognition Letters,
23(12):1459–1471, 2002.1

[7] C. Eveland, D. Socolinsky, C. Priebe, and D. Marchette. A
hierarchical methodology for class detection problems with
skewed priors.Journal of classification, 2005.1, 5

[8] F. Fleuret and D. Geman. Coarse-to-fine face detection.In-
ternational Journal of Computer Vision, 41:85–107, 2001.1,
2, 3, 4, 5, 6

[9] Y. Freund and R. E. Schapire. A decision-theoretic general-
ization of on-line learning and an application to boosting. In
European Conference on Computational Learning Theory,
pages 23–37. Springer-Verlag, 1995.3, 6

[10] D. Gavrila. Multi-feature hierarchical template matching us-
ing distance transform.Proceedings IEEE ICPR, 1998. 1,
5

[11] S. Geman, K. Manbeck, and E. McClure. Coarse-to-fine
search and rank-sum statistics in object recognition. Tech-
nical report, Brown University, 1995.5

[12] S. Geman, D. Potter, and Z. Chi. Composition systems.
Quaterly of Applied Mathematics, LX:707–736, 2002.1

[13] F. Jung. Reconnaissance d’objects par focalisation et de-
tection de changements. PhD thesis, Ecole Polytechnique,
Paris, France, 2001.1, 4

[14] F. Jung. Detecting new buildings from time-varying aerial
stereo pairs. Technical report, IGN, 2002.5

[15] S. Krempp, D. Geman, and Y. Amit. Sequential learning with
reusable parts for object detection. Technical report, Johns
Hopkins University, 2002.1

[16] R. Osadchy, M. Miller, and Y. LeCun. Synergistic face de-
tection and pose estimation with energy-based model. In
Advances in Neural Information Processing Systems (NIPS
2004). MIT Press, 2005.5

[17] E. Osuna, R. Freund, and F. Girosi. Training support vec-
tor machines: an application to face detection.Proceedings
IEEE CVPR, pages 130–136, 1997.5

[18] H. Rowley, S. Baluja, and T. Kanade. Neural network-based
face detection.IEEE Transactions PAMI, 20:23–38, 1998.5,
7

[19] H. Sahbi. Coarse-to-fine support vector machines for hier-
archical face detection. PhD thesis, Versailles University,
2003.2, 3, 5, 6

[20] K. Sung and T. Poggio. Example-based learning for view-
based face detection.IEEE Transactions PAMI, 20:39–51,
1998.5, 7

[21] A. Torralba, K. Murphy, and W. Freeman. Sharing features:
efficient boosting procedures for multiclass object detection.
Proceedings IEEE CVPR, pages 762–769, 2004.1

[22] S. Ullman, M. Vidal-Naquet, and E. Sali. Visual features of
intermediate complexity and their use in classification.Na-
ture Neuroscience, pages 1–6, 2002.1

[23] P. Viola and M. Jones. Rapid object detection using a boosted
cascade of simple features.Proceedings IEEE CVPR, 2001.
1, 4, 5, 7

