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ABSTRACT

Motivation: DNA microarray data analysis has been used previously

to identify marker genes which discriminate cancer from normal

samples. However, due to the limited sample size of each study,

there are few common markers among different studies of the same

cancer. With the rapid accumulation of microarray data, it is of great

interest to integrate inter-studymicroarraydata to increasesamplesize,

which could lead to the discovery of more reliable markers.

Results: We present a novel, simple method of integrating different

microarray datasets to identify marker genes and apply the method to

prostate cancer datasets. In this study, by applying a new statistical

method, referred to as the top-scoring pair (TSP) classifier, we have

identifiedapair of robustmarker genes (HPNandSTAT6) by integrating

microarraydatasets fromthreedifferentprostatecancerstudies.Cross-

platform validation shows that the TSP classifier built from the marker

gene pair, which simply compares relative expression values, achieves

high accuracy, sensitivity and specificity on independent datasets gen-

erated using various array platforms.Our findings suggest a newmodel

for the discovery of marker genes from accumulated microarray data

and demonstrate how the great wealth of microarray data can be

exploited to increase the power of statistical analysis.

Contact: leixu@jhu.edu

INTRODUCTION

The advent of DNA microarrays provides a powerful tool in cancer

research and several studies have used this technology to identify

genes that could be used as candidate markers to discriminate cancer

conditions from normal conditions (Alizadeh et al., 2000; Bittner
et al., 2000; Dhanasekaran et al., 2001; Golub et al., 1999;

Takahashi et al., 2001). It is quite interesting, but perhaps not

surprising, that the marker genes from different investigations

involving patients with the same cancer (e.g. prostate cancer) are

study-specific, that is, there are few common marker genes among

different studies (Nelson, 2004). These diverse results make it dif-

ficult to identify the most important marker genes, and the corres-

ponding decision rules, for detecting cancer. Differences in results

potentially result from the relatively small sample sizes used in each

study. Indeed, in a recent study performed by Mukherjee et al.

(2003) concerning the influence of the size of the microarray data-

set, it was concluded that increased sample size improves both the

accuracy and significance of classification results.

The rapid accumulation of microarray gene expression data sug-

gests that combining microarray data obtained from different stud-

ies may be a useful way to increase sample size. This could in turn

lead to the discovery of more robust markers of cancer. However,

several issues arise when attempting to integrate microarray data

generated by disparate groups using different array technologies.

Results obtained using microarray data generated from different

technologies, such as spotted cDNA and Affymetrix arrays, may

show poor correlation and cannot be compared directly (Kuo et al.,
2002). Even when using the same microarray technology, different

generations of microarrays have different probe sets and duplicate

spots, making direct integration difficult. In addition, variation

among datasets, resulting from alternative experimental protocols

and parameters as well as sampling of different patient populations,

poses further challenges to the integration of microarray data from

independent studies.

Recently, several methods have been proposed to combine inter-

study microarray data at different levels in cancer research (Choi

et al., 2003; Jiang et al., 2004; Rhodes et al., 2002; Shen et al.,
2004). Instead of integrating microarray gene expression values,

some methods, referred to as meta-analysis, combine results (e.g.

t-statistic) of individual studies to increase the power of identifying

genes differentially expressed between normal and cancer samples

(Choi et al., 2003; Rhodes et al., 2002). One limitation of these

methods is that the small sample sizes typical of individual studies,

coupled with variations due to differences in study protocols, will

inevitably degrade the results of meta-analysis. In addition, a recent

study (Mah et al., 2004) has demonstrated that there is only

moderate overlap in gene detection on different array platforms.

By applying specific data transformation and normalization proced-

ures, other methods translate gene expression values of independent

studies into a common scale and then combine inter-study data onto

that scale to develop methods for building prognostic signatures or

identifying marker genes (Jiang et al., 2004; Shen et al., 2004).
However, there is still no consensus on how best to perform data

normalization.

Here we propose a novel, simple method to integrate inter-study

gene expression values in order to identify marker genes for cancer�To whom correspondence should be addressed.
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classification and apply it to prostate cancer microarray datasets. In

this method, there is no need to perform data normalization and

transformation before data integration. We choose to study prostate

cancer because of the public availability of a substantial pool of

prostate cancer microarray data. The method is generally applicable

to many other types of microarray data for marker gene identifica-

tion. In this work, we apply a new molecular classification method,

referred to as the top-scoring pair (TSP) classifier, to microarray

datasets integrated from three independent studies to identify a pair

of marker genes, called the marker TSP (Geman et al., 2004). This is
feasible since this classification method is invariant to standard

procedures for data normalization and transformation. Cross-

platform validation shows that the classifier built from the marker

TSP (HPN and STAT6), which declares prostate cancer if the

expression value of HPN is greater than that of STAT6, achieves

high accuracy, sensitivity and specificity on two independent

datasets generated from different microarray platforms. In addition,

the performance of the marker TSP is compared with that of the

TSPs from the three individual studies on the same cross-platform

testing datasets. Performance of the marker TSP classifier is better

than all of the TSP classifiers trained from individual data. Further-

more, by reviewing the prostate cancer literature, we note that HPN

has been identified as a marker gene of prostate cancer in recent

studies (Dhanasekaran et al., 2001; Klezovitch et al., 2004; Luo
et al., 2001; Nelson, 2004). STAT6 is also found to be closely

related to prostate cancer (Ni et al., 2002). These findings suggest

that we have identified robust prostate cancer marker genes by

directly integrating inter-study microarray data. Upon further val-

idation on additional independent datasets, the marker genes could

be used to develop a genomic-based, more accurate diagnostic test

for prostate cancer.

METHODS

Gene expression data

Five prostate microarray datasets are included in this study. Each dataset has

been downloaded from publicly available gene expression repositories or

supporting web sites (Lapointe et al., 2004; LaTulippe et al., 2002; Magee

et al., 2001; Rhodes et al., 2004; Singh et al., 2002; Stuart et al., 2004;Welsh

et al., 2001). The three datasets used as training samples are generated from

the same Affymetrix HG_U95Av2 platform by different labs and the remain-

ing two datasets used as testing samples are from cross-platform independent

studies (Table 1). In this study, we focus on identifying marker genes which

can distinguish primary prostate cancer from normal samples. Therefore,

metastatic prostate cancer samples are not included in the study. The

summaries of the training and testing datasets are provided in Table 1.

Here, the names of the first authors of individual studies are used as the

names of the datasets. Details about each dataset have been described in the

corresponding literature.

TSP classifier

Recently, our group has developed a statistical molecular classification

method, referred to as the TSP classifier, based on pairwise comparisons

of gene expression values within each microarray (Geman et al., 2004). This
classifier discriminates between two classes by finding pairs of genes that

achieve the largest ‘score’ defined by a simple measure of discrimination

(see below). This approach only uses the ranks (orderings) of gene expres-

sion values within each profile. Whereas information is lost using a rank-

based method, the results obtained by the TSP classifier on several different

microarray datasets show that rank information within each microarray is

sufficient to perform molecular classification reliably. In fact, despite its

simplicity with respect to other methods, the TSP classifier achieves clas-

sification rates comparable to or exceeding the best results reported in the

literature (Geman et al., 2004). An important feature of rank-based methods

is that they are invariant to monotonic transformations of the expression data,

such as most data normalization methods. This property makes these meth-

ods useful for combining inter-study microarray data without the need to

perform data normalization and transformation.

Detailed information about the TSP classifier can be found in (Geman

et al., 2004). Here we give a brief and intuitive description of this rank-based
approach. Assume the training microarray dataset is a G·N matrix

X ¼ [Xgn], g ¼ 1, 2, . . . ,G and n¼ 1,2, . . . ,N, where G is the number of

genes in each profile and N is the number of samples (i.e. profiles). Each

column represents a gene expression profile of G genes and each row rep-

resents observations of a particular gene over N samples. Each sample has a

class label of either 1 or 2. For simplicity, we assume that samples 1 to N1

(N1 < N) are labeled as class 1 (e.g. normal) and samples (N1 + 1) to N are

labeled as class 2 (e.g. cancer). For each pair of genes (i, j), i, j ¼1, 2, . . . ,G,

i 6¼ j, we calculate a score based on the training set X,

Dij ¼ jpij 1ð Þ� pij 2ð Þj: ð1Þ

Here pij(1) and pij(2) are defined as

pij 1ð Þ ¼ 1

N1

XN1

n¼1

IðXin<XjnÞ‚ pij 2ð Þ ¼ 1

N�N1

XN
n¼N1þ1

IðXin <XjnÞ: ð2Þ

And IðXin <XjnÞ is the indicator function defined as

I Xin <Xjnð Þ ¼
(
1‚ if Xin <Xjn

0‚ if Xin � Xjn,
n ¼ 1‚2‚ . . . ,N: ð3Þ

Table 1. Training and testing datasets

Dataset Microarray platform Number of probe sets Number of normal

samples

Number of cancer

samples

Training set

Singh (Singh et al., 2002) Affymetrix (HG_U95Av2) 12 600 50 52

Stuart (Stuart et al., 2004) Affymetrix (HG_U95Av2) 12 625 50 38

Welsh (Welsh et al., 2001) Affymetrix (HG_U95Av2) 12 626 9 24

Testing set

LaTulippe (LaTulippe et al., 2002) Affymetrix (HG_U95Av2) 12 626 3 23

Lapointea (Lapointe et al., 2004) Spotted cDNA 44 160/43 008 41 62

a22 samples (9 normal/13 cancer) have 44 160 probes and 81 samples (32 normal/49 cancer) have 43 008 probes.
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In other words, pij(1) (respectively, pij(2)) is the estimated probability of

observing Xi less than Xj in class 1 (respectively, class 2). Consequently, it is

sufficient to know the ranks of gene expression values within each profile to

obtain all the scores Dij, i, j ¼ 1, 2, . . .,G, i 6¼ j. The next step is to select all

pairs achieving the largest score. If there is only one pair achieving the

top score, we take this pair to be the final TSP of the training set. Otherwise

(i.e. if multiple pairs achieve the top score) we use a more sensitive score,

called the rank-score, in order to find a unique pair. The rank-score takes into

account the rank differences for each TSP and each sample, i.e. the extent to

which a gene pair inverts from one class to the other. For each TSP (i, j), the

rank-score, denoted by dij, is defined as

dij ¼
����� 1

N1

XN1

n¼1

Rin �Rjn

� �
� 1

N�N1

XN
n¼N1þ1

Rin �Rjn

� ������: ð4Þ

Here Rin is the rank of the expression value of gene i within the n-th profile.

Finally, we select the TSP with the highest rank-score.

The classification decision will be made by comparing the expression

values of the two genes in the TSP(i,j) on a test sample. Suppose

pij(1) � pij(2). In this case, given a test sample with expression values

X1,X2, . . .,XG, if we observe that Xi < Xj, then the TSP votes for class 1;

otherwise, i.e. if Xi � Xj, the TSP votes for class 2. On the other hand,

suppose pij(1) < pij(2). Then, if we observe that Xi < Xj, the TSP votes

for class 2; otherwise, i.e. if Xi � Xj, it votes for class 1.

It is noteworthy that for classification based on a single gene pair (i, j), the
sum of sensitivity and specificity can be expressed as 1+Dij, which provides

a natural justification for score maximization. Another method for scoring

gene pairs, based on estimating means and covariances under a bivariate

normality assumption, has been presented (Lai et al., 2004). Note, however,
that in this previous work, the objective was not classification, but rather to

find significantly ‘co-expressed’ pairs of genes.

Error estimation

In estimating the error rate of a classifier based on cross-validation, gene pair

selection and the corresponding classification are performed within the

cross-validation loop. With n samples and leave-one-out cross-validation,

this means choosing n separate top-scoring pairs, one for each sample left out

during training, then classifying the left-out sample. In particular, both the

actual top score, as well as the gene pair which achieves it, may vary with the

left-out sample. The estimated classification accuracy is then 1� e/nwhere e
is the number of errors observed in the cross-validation. This is the way the

classification accuracies reported in Table 2, as well as the cross-validation

results given in Table 5, were calculated. However, in order to associate a

single TSP with each training set (as in Table 2), and a corresponding

decision rule for evaluation on an independent test set (as in Tables 3

and 4), the ‘final TSP’ is computed using the entire training set. As a result,

all error estimates are unbiased.

Data integration

By applying the TSP method, no data transformation and normalization are

required before integration. Among the three individual training datasets

used in this study, there are 12 600 common probe sets. We directly merge

Table 2. TSPs from training datasets with increased sample sizes

Training dataset Sample size Probe set ID of TSP (HG_U95Av2) Gene symbol of TSP Score of TSP Classification accuracy (%)b

Welsh 33 39 608_at, 32 526_at SIM2, JAM3 1.00 97.0

Stuart 88 41732_at, 456_at CTNNB1, SMARCD3 0.74 69.3

Singh 102 40282_s_at, 2035_s_at DF, ENO1 0.90 95.1

Welsh_Stuarta 121 31971_at, 34213_at TP73L, KIBRA 0.79 77.7

Welsh_Singh 135 37639_at, 32198_at HPN, COMMD4 0.88 83.7

Stuart_Singh 190 37639_at, 41222_at HPN, STAT6 0.75 86.8

Welsh_Stuart_Singh 223 37639_at, 41222_at HPN, STAT6 0.78 88.8

aWelsh_Stuart is the integrated dataset of Welsh and Stuart datasets. Other integrated datasets use similar symbols.
bClassification rates were estimated by leave-one-out cross-validation on the individual training sets.

Table 3. Classification accuracy of the marker TSP classifier on cross-platform testing sets

Testing dataset Microarray platform Number of normal sample Number of cancer sample Accuracy (%) Sensitivity (%) Specificity (%)

LaTulippe Affymetrix (HG_U95Av2) 3 23 96.2 95.7 100.0

Lapointea,b,c Spotted cDNA 41 61 93.1 90.2 97.6

Overall Cross-platform 44 84 93.8 91.7 97.7

a‘Log2 of R/G normalized ratio (Mean)’ values are used as gene expression values.
bThe corresponding clone IDs for the gene pair (HPN, STAT6) is (IMAGE:208413, IMAGE:85541).
cOne of the cancer samples has missing value for HPN and is removed from the testing set.

Table 4. Comparisons of the marker TSP with the TSPs from

individual datasets

Testing dataset TSP Accuracy

(%)

Sensitivity

(%)

Specificity

(%)

LaTulippe Welsh 69.2 69.6 66.7

(HG_U95Av2) Stuart 84.5 82.6 100.0

Singh 88.5 87.0 100.0

Welsh_Stuart_Singh 96.2 95.7 100.0

Lapointe

(cDNA)

Welsh 70.9 95.2 34.1

Stuart 43.6 6.7 97.6

Singh 43.7 6.4 100.0

Welsh_Stuart_Singh 93.1 90.2 97.6

Marker genes from integration of microarray data
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individual datasets, using the 12 600 common probe sets, to form integrated

datasets of increasing sample size.

Stability analysis

We have designed an experiment to analyze the stability of a TSP in response

to slight perturbations of the training set resulting from changing its size.

This is accomplished by randomly removing a small percentage (K%) of

samples from the original training set and generating a TSP from the reduced

training set. After repeating the experiment a large number of times with

different values ofK (e.g. 1, 2, . . .), we calculate the appearance frequency of

the TSP among all TSPs generated at each sample size, for instance, 99%

appearance frequency at sample size 220. If this frequency remains very high

(e.g. >95%) when the sample sizes are slightly (e.g. 5%) different from the

original training set size, we conclude that the TSP is stable for the original

training set.

RESULTS

Identification of marker genes by directly integrating

inter-study data

To investigate whether robust marker genes that distinguish primary

prostate cancer from normal samples can be identified, three

microarray datasets from different studies have been collected

and the TSP method has been applied to analyze the individual

and integrated datasets. To avoid loss of potential marker genes,

we first analyze inter-study microarray data obtained using the same

platform (the HG_U95Av2 array; see Table 1). Starting from indi-

vidual datasets, we gradually increase the sample size by sequen-

tially merging two and then three data sets (see Data integration in

Methods). Applying the TSP method to the training sets, individual

and integrated, generates a TSP for each of the training sets. The

TSPs are listed in Table 2 along with scores and classification

accuracy. The score refers to the absolute value of the difference

between two probabilities estimated from the training data—the

probability that the expression of the first gene in the pair exceeds

the expression of the second gene in the pair for the cancer class

and the same probability for the normal class (see ‘TSP classifier’

in ‘Methods’). Classification accuracy is estimated by leave-one-out

cross-validation on each training set. In Table 2, underscores are

used to join names of individual datasets to denote an integrated

dataset. For example, ‘Welsh_Stuart’ is the name of the integrated

data resulting from the merging of the Welsh and Stuart datasets.

Results show that when the sample size is small, different datasets

generate distinct TSPs. As the sample size reaches a certain level

(between 135 and 190) and continues to increase, the pair (HPN,

STAT6) is consistently selected as the TSP.

Stability analysis of the marker TSP

We subsequently performed an analysis of the stability of the

marker TSP (HPN, STAT6) (see Stability analysis in Methods),

where ‘stability’ refers to the sensitivity of the selection procedure

to perturbations of the training set. To do this, small numbers of

samples are randomly removed from the integrated dataset of size

223. At each sample size, we repeat the experiment 100 times and

calculate the appearance frequency of the marker TSP. The results

of the analysis are shown in Figure 1.When 1–3% of the samples are

removed, the appearance frequency of the marker TSP is 100%. The

marker TSP appears with very high frequency when <10% of the

samples are randomly removed from the original training set. From

this analysis, we have shown that the marker TSP is stable for the

integrated training set. We carry out the same analysis on the TSP

selected from the Stuart dataset (size 88 samples). Results are shown

in Figure 1. When one sample (�1%) is removed from the training

set, the appearance frequency of the Stuart TSP declines by �30%.

With two or more samples removed from the training set, the

appearance frequency declines further. Therefore, we can conclude

that the Stuart TSP is not stable for the Stuart training set.

Validation of the marker genes and decision rule using

cross-platform independent datasets

In order to further validate the reliability and robustness of the

marker TSP, the marker TSP classifier is tested on independent

cross-platform microarray data (Table 3). The decision rule for

the maker TSP classifier is that if the expression value of HPN

is greater than that of STAT6, a test sample is classified as prostate

cancer; otherwise it is classified as normal. The performance of the

classifier is measured by examining how well the classifier predicts

the normal and cancer samples in the testing sets. Accuracy is

defined as the ratio of the number of correctly predicted samples

to the total number of samples. Sensitivity (respectively, specificity)

is the ratio of the number of correctly predicted cancer (respectively,

normal) samples to the total number of cancer (respectively,

normal) samples. The marker TSP classifier consistently achieves

high accuracy, sensitivity and specificity on the testing sets

across different platforms (Table 3). The overall accuracy, sensit-

ivity and specificity of the marker TSP are 93.8%, 91.7% and

97.7%, respectively.

As a comparison, the TSPs trained from individual microarray

datasets are tested on the same testing sets. For the remainder of this

paper, we use the name of a training dataset to represent the TSP

generated from that dataset. For example, ‘Welsh’ represents the

TSP from the Welsh dataset and ‘Welsh_Stuart_Singh’ is the mar-

ker TSP generated from the integrated dataset Welsh_Stuart_Singh.

In each case, the decision rule is based on comparing the expression

values in the marker pair for that training set (see TSP classifier in

Methods). The results of the comparison are summarized in Table 4.

The marker TSP outperforms all of the TSPs obtained from
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individual datasets on all testing sets. The results suggest that due to

the limited sample size and/or artifacts of the individual datasets, the

TSPs from individual datasets provide less reliable predictors of

prostate cancer than the marker TSP obtained from the integrated

data. Although the marker TSP is generated from integrated data

obtained using a single microarray platform (Affymetrix

HG_U95Av2), it can also be used for accurate classification of a

novel dataset obtained using spotted cDNA microarrays.

Consistency of cross-validation and independent test

results

In Table 2, we note that the classification accuracy of Welsh and

Singh (again, estimated by cross validation) is higher than that of the

marker TSP. However, when tested on independent testing sets, the

performance of the marker TSP is considerably better than those of

the TSPs from individual studies (Table 4). Table 5 summarizes the

results of cross-validation and independent testing of the marker

TSP and the TSPs from the three individual studies. The independ-

ent testing results reported here are the overall results on the two

cross-platform independent testing sets with a total of 128 samples.

For the three TSPs from individual studies, cross-validation results

are inconsistent with independent testing results. This implies that

the cross-validated estimates of error of individual studies have high

variation and that the corresponding TSPs are somewhat study-

specific and not as reliable as the marker TSP in classifying prostate

samples generated from other independent studies. On the other

hand, the marker TSP generates consistent results between cross-

validation and testing with independent data. By integrating inter-

study microarray data, the study-specific effect is reduced and

more stable features of the cancer are captured by the marker

TSP classifier.

DISCUSSION

The increasing availability of gene expression microarray data has

been calling for methods to effectively integrate multiple, independ-

ently generated datasets targeting the same biological question. This

paper presents a novel, simple method of integrating different

microarray datasets to identify marker genes and illustrates the

method using prostate cancer datasets. By applying a new statistical

method (the TSP classifier), we have successfully identified a pair of

robust prostate cancer marker genes (HPN and STAT6) from

direct integration of inter-study microarray data. The TSP classifier

built on the marker gene pair, which simply compares relative

expression values, achieves high accuracy (93.8%), sensitivity

(91.7%) and specificity (97.7%) on independent cross-platform

microarray datasets.

Integration of microarray data across platforms can be achieved

by using the subset of gene probes that are common to all platforms.

However, the large number of genes which are not in the common

set may include potential marker genes. Therefore, in this study, we

use inter-study data from the same platform (Affymetrix

HG_U95Av2) to identify prostate marker genes. The reason that

the Affymetrix HG_U95Av2 is chosen is that there is a large amount

of prostate microarray data generated on this platform among pub-

lished microarray datasets. This makes it possible to increase the

sample size of the integrated data to a level necessary to identify

robust marker genes.

A unique pair of genes, the marker TSP (HPN and STAT6), is

consistently selected as the TSP with the increase of sample sizes.

However, when the TSP is computed for individual datasets, each of

the datasets generates a different TSP and none of the TSPs are the

same as the marker TSP. This observation implies that the depend-

ence of the TSP on the individual dataset can be significantly dimin-

ished, and the information provided about prostate cancer can be

significantly increased, by data integration. An advantage of inter-

study microarray data integration is then that it increases the stat-

istical power to capture consistent features which might be masked

by the small sample size and experimental artifacts in an individual

dataset. In this sense, the marker TSP is more reliable and more

robust to variations in individual datasets.

In a separate paper, we present a generalization of the original

TSP algorithm, referred to as k-TSP, which uses k disjoint TSPs

of genes for classifying gene expression data; we also extend the

k-TSP classifier from binary classification to a multi-class setting.

The parameter k is determined by an inner loop of cross-validation

and prediction is made by unweighted majority voting of the k TSPs.
In principle, the k-TSP method can provide more reliable and repro-

ducible results; however, the performance of the k-TSP classifier is

no better than that of the TSP classifier on the prostate datasets

(results reported elsewhere).

To provide a comparison with a common approach to classifying

gene expression profiles, we applied the software for a popular

variation of diagonal linear discriminant analysis called prediction

analysis of microarrays (PAM) (Tibshirani et al., 2002) which auto-
matically selects an optimal number of genes ranked by a modi-

fication of the t-statistic. (The normalization of the standard

deviation involved in ‘shrunken centroids’ is first performed on

the three datasets separately.) We ran PAM on the integrated

Welsh_Stuart_Singh dataset. This resulted in a classifier based

on 135 genes (with HPN at the top of the list) and a classification

accuracy of 86.1% as estimated by cross-validation (similar to the

88.8% accuracy of the TSP classifier; see Table 2). Since one of the

independent test sets, LaTulippe, is generated from the same

microarray platform, i.e. HG_U95Av2, we could also test the

Table 5. Comparison between cross-validation and independent testing results

TSP Cross-validation results (%) Independent testing results (%)

Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

Welsh 97.0 95.8 100.0 70.5 88.2 36.4

Stuart 69.3 81.6 60.0 52.0 27.7 97.7

Singh 95.1 96.2 94.0 52.7 28.2 100.0

Welsh_Stuart_Singh 88.8 90.4 87.2 93.8 91.7 97.7

Marker genes from integration of microarray data
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classifier learned from PAM. The accuracy of PAM and TSP are the

same as on LaTulippe. However, it was not possible to evaluate

PAM on the Lapointe test set, which is generated from a spotted

cDNA microarray, because some of the 135 genes are not present in

that dataset. Moreover, even were all these genes present in the

cDNA dataset, the issue would remain of how to normalize the

cDNA data to make them comparable to the HG_U95Av2 data.

This comparison demonstrates the advantage of our method in the

integration of inter-study microarray data.

We did not include all publicly available prostate datasets in the

testing sets. For some older platforms, such as the Affymetrix

Hu35kA array, there is no probe set corresponding to either of

the marker genes HPN or STAT6. For cDNA microarray datasets,

those which only provide the ratio of the gene expression values of

normal and cancer samples cannot be used as testing sets since our

analysis requires the gene expression values of both normal and

cancer samples. In addition, in some cDNAmicroarray datasets, one

of the marker genes is missing. Even with these limitations, we still

obtain a reasonable number of independent testing sets (total sample

size 128) on differing platforms.

An interesting and important finding of the study is that although

the marker TSP is generated from integrating data obtained using a

single type of microarray (the Affymetrix HG_U95Av2 short-oligo

microarray), it can be used to classify microarray data obtained

using a different technology (cDNA microarrays) with high accur-

acy. This suggests that as long as the sample size reaches a certain

‘statistically significant’ level, valid conclusions can be drawn from

single-platform inter-study microarray data. Upon further confirma-

tion from other studies, this finding might provide an alternative

approach for microarray data analysis. Because cross-platform data

integration is much more complex than single-platform data integ-

ration, this finding, as reported in our study, will greatly facilitate

microarray data integration.

One of the TSP marker genes, HPN, has been identified as a

marker gene of prostate cancer in recent studies (Dhanasekaran

et al., 2001; Klezovitch et al., 2004; Luo et al., 2001; Nelson,
2004). HPN encodes hepsin, a cell surface transmembrane serine

protease which plays an essential role in cell growth and mainten-

ance of cell morphology. Using both cDNA and oligonucleotide

microarray technologies, hepsin was shown to be significantly over-

expressed in prostate cancer samples versus normal samples, and it

has been identified as a potential biomarker for screening prostate

cancer (Dhanasekaran et al., 2001; Luo et al., 2001; Magee et al.,
2001; Stamey et al., 2001). mRNA over-expression has also been

validated using RT–PCR (Luo et al., 2001) and protein over-

expression has been verified using tissue microarrays

(Dhanasekaran et al., 2001). Magee et al. (2001) also confirmed

the over-expression of hepsin in prostate tumor by using the in situ
hybridization technique on an independent panel of prostate speci-

mens. Furthermore, the expression of hepsin has been shown to have

positive correlation with prostate cancer staging (Stamey et al.,
2001), and to promote prostate cancer progression and metastasis

(Klezovitch et al., 2004). Thus, hepsin may be used as a diagnostic

as well as prognostic marker for prostate cancer.

STAT6 encodes the signal transducer and activation of transcrip-

tion 6 (Stat6), a member of the STAT transcription factors located in

the cytoplasm that is involved in the Jak-Stat signaling pathway.

The Jak-Stat pathway is an important signaling pathway in cellular

development/survival (Calo et al., 2003; O’Shea et al., 2002). It is

activated by a small number of cytokines (e.g. interleukin-4) and

plays a distinct role in the development of T-cells (e.g. T-helper cell

type 2) and in IFNg signaling. The expression of STAT6 has been

shown to be down-regulated in gastric cancer (Sakakura et al.,
2002). From our study, we observe that STAT6 is slightly

down-regulated in prostate cancer compared to normal samples.

This down-regulation of STAT6 is necessary for the cancer cell

to escape from the tumor immunosurveillance mechanism, where

the tumor protects itself from being killed by the natural killer T-

cells (Dunn et al., 2002). It has been shown that T-helper cell type 2
cytokines down-regulate anti-tumor immunity (Terabe et al., 2000).
At the protein expression level, Ni et al. (2002) showed that Stat6

was selectively activated in prostate cancer using western blot

analysis.

One of the goals of cancer marker gene identification is to trans-

late inter-study microarray data analysis into clinically useful can-

cer markers. Prostate specific antigen (PSA), as a prostate tumor

marker currently used in clinical practice has, as its major limita-

tion, low specificity. When normal serum PSA levels are defined as

4.0 ng/mL or less, PSA testing has a sensitivity of�67.5–80% and a

specificity of �60–70% (Brawer, 1999; Catalona et al., 1997). Our
study has discovered robust marker genes that are sufficient to

distinguish prostate cancer from normal in both training and testing

sets. The high sensitivity (91.7%) and specificity (97.7%) of the

marker gene pair achieved on a large number (128) of independent

testing samples are encouraging, suggesting its potential clinical

applicability. A possible application would be to make a simple

diagnostic chip using the marker genes. A testing sample will be

predicted as cancer or normal simply by comparing the expression

values of the marker genes. Clearly, validation on a larger set of

independent data will be required before the idea can be translated

into clinical practice. Nevertheless, this study provides evidence for

promising potential prostate cancer markers to improve the dia-

gnostic accuracy of prostate cancer.

In conclusion, this work has not only established a new model for

the discovery of marker genes from accumulated microarray data,

but also demonstrated how the great wealth of microarray data can

be exploited to increase the power of statistical analyses.
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