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Today, computer vision systems are tested by their accuracy in de-
tecting and localizing instances of objects. As an alternative, and
motivated by the ability of humans to provide far richer descriptions,
even tell a story about an image, we construct a ”visual Turing test”:
an operator-assisted device that produces a stochastic sequence of
binary questions from a given test image. The query engine pro-
poses a question; the operator either provides the correct answer
or rejects the question as ambiguous; the engine proposes the next
question (“just-in-time truthing”). The test is then administered
to the computer-vision system, one question at a time. After the
system’s answer is recorded, the system is provided the correct an-
swer and the next question. Parsing is trivial and deterministic; the
system being tested requires no natural language processing. The
query engine employs statistical constraints, learned from a training
set, to produce questions with essentially unpredictable answers—
the answer to a question, given the history of questions and their
correct answers, is nearly equally likely to be positive or negative.
In this sense, the test is only about vision. The system is designed
to produce streams of questions that follow natural story lines, from
the instantiation of a unique object, through an exploration of its
properties, and onto its relationships with other uniquely instanti-
ated objects.

scene interpretation | computer vision | Turing test | binary questions | un-

predictable answers | sparse learning

Going back at least to the mid-twentieth century there has been an
active debate about the state of progress in artificial intelligence and
how to measure it. Alan Turing [1] proposed that the ultimate test of
whether or not a machine could “think,” or think at least as well as a
person, was for a human judge to be unable to tell which was which
based on natural language conversations in an appropriately cloaked
scenario. In a much-discussed variation (sometimes called the “stan-
dard interpretation”), the objective is to measure how well a com-
puter can imitate a human [2] in some circumscribed task normally
associated with intelligent behavior, although the practical utility of
“imitation” as a criterion for performance has also been questioned
[3]. In fact, the overwhelming focus of the modern AI community
has been to assess machine performance more directly by dedicated
tests for specific tasks rather than debating about general “thinking”
or Turing-like competitions between people and machines.

In this paper we implement a new, query-based test for computer
vision, one of the most vibrant areas of modern AI research. Through-
out this paper we use “computer vision” more or less synonymously
with semantic image interpretation - “images to words.” But of course
computer vision encompasses a great many other activities; it in-
cludes the theory and practice of image formation (“sensors to im-
ages”); image processing (“images to images”); mathematical rep-
resentations; video processing; metric scene reconstruction; and so
forth. In fact, it may not be possible to interpret scenes at a semantic
level without taking at least some of these areas into account, espe-
cially the geometric relationship between an image and the underly-
ing 3D scene. But our focus is how to evaluate a system, not how to
build one.

Besides successful commercial and industrial applications, such as
face detectors in digital cameras and flaw detection in manufactur-
ing, there has also been considerable progress in more generic tasks,
such as detecting and localizing instances from multiple generic ob-
ject classes in ordinary indoor and outdoor scenes, in “fine-grained”
classification such as identifying plant and animal species, and in rec-
ognizing attributes of objects and activities of people. The results

of challenges and competitions (see [4, 5]) suggest that progress has
been spurred by major advances in designing more computationally
efficient and invariant image representations [6, 7, 8]; in stochastic
and hierarchical modeling [9, 10, 11, 12]; in discovering latent struc-
ture by training multi-layer networks with large amounts of unsuper-
vised data [13]; and in parts-based statistical learning and modeling
techniques [14, 15, 16], especially combining discriminative part de-
tectors with simple models of arrangements of parts [17]. Quite re-
cently, sharp improvements in detecting objects and related tasks have
been made by training convolutional neural networks with very large
amounts of annotated data [18, 19, 20, 21, 22].

More generally, however, machines lag very far behind humans in
“understanding images” in the sense of generating rich semantic an-
notation. For example, systems that attempt to deal with occlusion,
context and unanticipated arrangements, all of which are easily han-
dled by people, typically encounter problems. Consequently, there is
no point in designing a “competition” between computer vision and
human vision: interpreting real scenes (such as the ones in Figure 1)
is virtually “trivial” (at least effortless and nearly instantaneous) for
people whereas building a “description machine” that annotates raw
image data remains a fundamental challenge.

We seek a quantitative measure of how well a computer vision sys-
tem can interpret ordinary images of natural scenes. Whereas we
focus on urban street scenes, our implementation could easily be ex-
tended to other image populations and the basic logic and motivations
remain the same. The “score” of our test is based on the responses of
a system under evaluation to a series of binary questions about the
existence of people and objects, their activities and attributes, and
relationships among them, all relative to an image. We have chosen
image-based rather than scene-based queries (see Scenes vs. images).

Suppose an image sub-population I has been specified (“urban
street scenes” in Figure 1), together with a “vocabulary” and a cor-
responding set of binary questions (see Vocabulary and Questions).
Our prototype “visual Turing test” (VTT) is illustrated in Figure 2.
Questions are posed sequentially to the computer vision system using

Significance

In computer vision, as in other fields of AI, the methods of eval-
uation largely define the scientific effort. Most current evalua-
tions measure detection accuracy, emphasizing the classification
of regions according to objects from a pre-defined library. But
detection is not the same as understanding. We present here a
different evaluation system, in which a query engine prepares a
written test (“visual Turing test”) that uses binary questions to
probe a system’s ability to identify attributes and relationships
in addition to recognizing objects.
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Fig. 1. Urban street scenes. First row: Athens, Baltimore, Busan, Delhi. Second row: Hong Kong, Miami, Rome, Shanghai.

a “query language” which is defined in terms of an allowable set of
predicates. The interpretation of the questions is unambiguous and
does not require any natural language processing. The core of the
VTT is an automatic “query generator” which is learned from an-
notated images and produces a sequence of binary questions for any
given “test” image I0 ∈ I whose answers are “unpredictable” (see
Statistical Formulation). In loose terms, this means that hearing the
first k − 1 questions and their true answers for I0 without actually
seeing I0 provides no information about the likely answer to the next
question. In order to prepare for the test, designers of the vision sys-
tems would be provided with the database used to train the query
generator as well as the full vocabulary and set of possible questions,
and would have to provide an interface for answering questions. One
simple measure of performance is the average number of correct re-
sponses over multiple runs with different test images.
Current Evaluation Practice
Numerous datasets have been created to benchmark performance,
each designed to assess some vision task (e.g., object detection) on
some image domain (e.g., street-scenes). Systems are evaluated by
comparing their output on these data to “ground-truth” provided by
humans. One well-studied task is classifying an entire image by a
general category, either at the object level (“car,” “bike,” “horse,”
etc.), where ImageNet [5] is a currently popular annotated dataset,
or at the scene-level (“beach,” “kitchen,” “forest,” etc.); see for exam-
ple the SUN dataset [23]. A natural extension of object-level image
categorization is detecting and localizing all instances from generic
classes in complex scenes containing multiple instances and events;
localization refers to providing either a “bounding box” per instance
or segmenting the object from the background. Popular datasets for
this task include the Pascal dataset [4], the LabelMe dataset [24], and
the Lotus Hill dataset [25], all populated by relatively unconstrained
natural images, but varying considerably in size and in the level of
annotation, ranging from a few keywords to hierarchical representa-
tions (Lotus Hill). Finally, a few other datasets have been assembled
and annotated to evaluate the quality of detected object attributes such
as color, orientation and activity; examples are the Core dataset [26],
with annotated object parts and attributes, and the Virat dataset [27]
for event detection in videos.

Why not continue to measure progress in more or less the same
way with common datasets dedicated to sub-tasks, but using a richer
vocabulary? First, as computer vision becomes more ambitious and
aims at richer interpretations, it would seem sensible to fold these sub-
tasks into a larger endeavor; a system which detects activities and re-
lationships must necessarily solve basic sub-tasks anyway. Then why
not simply require competing systems to submit much richer annota-
tion for a set of test images than in previous competitions and then
rank systems according to consistency with ground truth supplied by

human annotators? The reason, and the justification for the VTT, is
that the current method does not scale with respect to the richness of
the representation. Even for the sub-tasks in the competitions men-
tioned earlier, the evaluation of performance, i.e., comparing the out-
put of the system (e.g., estimated bounding boxes) to the ground-truth
is not always straightforward and the quality of matches must be as-
sessed [28]. Moreover, annotating every image submitted for testing
at massive levels of detail is not feasible. Hence, objectively scoring
the veracity of annotations is not straightforward. As in school, an-
swering specific questions is usually more objective and efficient in
measuring “understanding.” Finally, some selection procedure seems
unavoidable; indeed, the number of possible binary questions which
are both probing and meaningful is virtually infinite. However, select-
ing a subset of questions (i.e., preparing a test) is not straightforward.
We would argue that the only way to ask very detailed questions with-
out having their answers be almost certainly “no” is sequential and
adaptive querying—questions which build on each other to uncover
semantic structure. In summary, the VTT is one way to “scale up”
evaluation.
Proposed Test: Overview
Images of scenes. Our questions are image-centered, but images cap-
ture 3D scenes. Whereas we pose our questions succinctly in the
form “Is there a red car?”, this is understood to mean “Is there an
instance of a red car in the scene partially visible in the image?”.
Similarly, given a designated rectangle of image pixels (see Figure 2
for some examples), the query “Is there a person in the designated
region?” is understood to mean “Is there an instance of a person in
the scene partially visible in the designated image region?”. The uni-
versal qualifier “partially visible in the image” (or in the designated
region) avoids the issue of the scope of the scene and leads naturally
to instantiation and story lines.
Estimating uncertainty. The justification for counting all questions
the same is the property of unpredictability: at each step k, the like-
lihood that the true answer for question k is “yes” given the true an-
swers to the previous k−1 questions is approximately one-half. How-
ever, generating long strings of “interesting” questions and “story
lines” is not straightforward due to “data-fragmentation”: a purely
empirical solution based entirely on collecting relative frequencies
from an annotated training subset of size n from I is only feasible
if the number of questions posed is approximately log2 n. Our pro-
posed solution is presented as part of the Statistical Formulation, and
in more detail in the Supplemental Information (SI) Appendix; it rests
on enlarging the number of images in the dataset which satisfy a given
history by making carefully chosen invariance and independence as-
sumptions about objects and their attributes and relationships.
Human in the loop. The operator serves two crucial functions: re-
moving ambiguous questions and providing correct answers. Given

2 www.pnas.org/cgi/doi/10.1073/pnas.0709640104 Footline Author
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a rich family of questions, some will surely be ambiguous for any
specific test image. The solution is “just-in-time truthing”: any ques-
tion posed by the query generator can be rejected by the operator, in
which case the generator supplies another nearly unpredictable one,
of which there are generally many. The correct answers may or may
not be provided to the system under evaluation at run time. Need-
less to say, given the state of progress in computer vision, neither of
these roles can be served by an automated system. The test can be
constructed either offline or “online” (during the evaluation). In ei-
ther case, the VTT is “written” rather than “oral” since the choice of
questions does not depend on the responses from the system under
evaluation.
Instantiation. A key mechanism for arriving at semantically interest-
ing questions is instance “instantiation.” A series of positive answers
to inquiries about attributes of an object will often imply a single
instance, which can then be labeled as “instance k”. Hence, ques-
tions which explicitly address uniqueness are also included, which
usually become viable, that is close to unpredictable, after one or two
attributes have been established. Once this happens, there is no am-
biguity in asking whether “person 1” and “person 2” are talking or
whether “person 1” is occluding “vehicle 2”; see Figure 2. We regard

1. Q: Is there a person in the blue region? A: yes
2. Q: Is there a unique person in the blue region? A: yes

(Label this person 1)
3. Q: Is person 1 carrying something? A: yes
4. Q: Is person 1 female? A: yes
5. Q: Is person 1 walking on a sidewalk? A: yes
6. Q: Is person 1 interacting with any other object? A: no

9. Q: Is there a unique vehicle in the yellow region? A: yes
( Label this vehicle 1)

10. Q: Is vehicle 1 light-colored? A: yes
11. Q: Is vehicle 1 moving? A: no
12. Q: Is vehicle 1 parked and a car? A: yes

14. Q: Does vehicle 1 have exactly one visible tire? A: no
15. Q: Is vehicle 1 interacting with any other object? A: no
17. Q: Is there a unique person in the red region? A: no
18. Q: Is there a unique person that is female in the red region? A: no
19. Q: Is there a person that is standing still in the red region? A: yes
20. Q: Is there a unique person standing still in the red region? A: yes

(Label this person 2)

23. Q: Is person 2 interacting with any other object? A: yes
24. Q: Is person 1 taller than person 2? A: amb.
25. Q: Is person 1 closer (to the camera) than person 2? A: no
26. Q: Is there a person in the red region? A: yes
27. Q: Is there a unique person in the red region? A: yes

(Label this person 3)

36. Q: Is there an interaction between person 2 and person 3? A: yes
37. Q: Are person 2 and person 3 talking? A: yes

1

Fig. 2. A selection of questions extracted from a much longer sequence (one of

three shown in §5 of the SI Appendix). Answers, including identifying Q24 as ambigu-

ous, are provided by the operator (see paragraph on “Human in the loop”). Localizing

questions include, implicitly, the qualifier “partially visible in the designated region”

and instantiation (existence and uniqueness) questions implicitly include “not previ-

ously instantiated.” The localizing windows used for each of the four instantiations

(vehicle 1, person 1, person 2, and person 3) are indicated by the colored rectan-

gles (blue—thick border, red—thin border, yellow—broken border). The colors are

included in the questions for illustration. In the actual test, each question designates

a single rectangle through its coordinates, so that ”Is there a unique person in the

blue region” would actually read “Is there a unique person in the designated region.”

instantiation as identifying the “players” in the scene, allowing for
story lines to develop.
Evolving descriptions. The statistical constraints naturally impose
a “coarse-to-fine” flow of information, from gist to semantic detail.
Due to the unpredictability criterion, the early questions can only in-
quire about coarse scene properties, such as “Is there a person in the
lefthand side of the image?” or “Is there a person wearing a hat?”,
because only these have intermediate probabilities of occurrence in
the general population. It is only after objects have been instantiated,
i.e., specific instances identified, that the likelihoods of specific re-
lationships among these “players” become appreciably greater than
zero.
Vocabulary and Questions
Vocabulary. Our vocabulary V consists of three components: types
of objects, T , type-dependent attributes of objects, {At, t ∈ T }, and
type-dependent relationships between two objects, {Rt,t′}. For ex-
ample, for “urban street scenes,” some natural types (or categories)
are people, vehicles, buildings, and “parts” such as windows and
doors of cars and buildings. Attributes refer to object properties such
as clothing and activities of people, or types and colors of vehicles.
There may also be attributes based on localizing an object instance
within an image, and these provide an efficient method of instanti-
ation (see below). Relationships between two types can be either
“ordered,” for instance a person entering a car or building, or “un-
ordered,” for instance two people walking or talking together. And
some relationship questions may depend on the position of the cam-
era in the underlying 3D scene, such as asking which person or vehi-
cle is closer to the camera. A complete list of objects, attributes, and
relationships used in our prototype is included with the SI Appendix.
Questions. Each question q ∈ Q belongs to one of four cate-
gories: existence questions, Qexist, uniqueness questions, Quniq, at-
tribute questions,Qatt, or relationship questions,Qrel. The goal of the
existence and uniqueness questions is to instantiate objects, which are
then labeled (“person 1,” “vehicle 3,” ...) and subsequently available,
by reference to the label, in attribute and relationship questions (“Is
person 1 partially occluding vehicle 3?”). Consequently, questions in
Qatt and Qrel refer only to previously instantiated objects. See Figure
2 for examples drawn from Qexist (e.g., 1, 19, 26), Quniq (e.g., 2, 9,
17), Qatt (e.g., 3, 10, 23), and Qrel (e.g., 25, 36, 37). (Summarizing,
the full set of questions isQ = Qexist ∪Quniq ∪Qatt ∪Qrel.)

As already mentioned, we use “in the designated region” as short-
hand for “in the scene that is partially visible in the designated region
of the image.” Similarly, so as to avoid repeated discovery of the same
objects, all existence and uniqueness questions include the additional
qualifier “not previously instantiated,” which is always implied rather
than explicit. So “Is there a person in the designated region wearing a
hat?” actually means “Is there a person in the scene partially visible in
the designated region of the image, wearing a hat and not previously
instantiated?”

We assume the answers are unambiguous for humans in nearly all
cases. However, there is no need to identify all ambiguous questions
for any image. Filtering is “as needed”: given I0 ∈ I, any question q
which is elicited by the query generator but is in fact ambiguous for
I0 will be rejected by the human operator during the construction of
the VTT. (Examples include question 24 in the partial stream shown
in Figure 1 and two others in the complete streams shown in §5 of the
SI Appendix.)
Statistical Formulation
Selecting questions whose answers are unpredictable is only mean-
ingful in a statistical framework in which answers are random vari-
ables relative to an image population I, which serves as the underly-
ing sample space, together with a probability distribution P on I.
Query generator. Given an image I ∈ I, the query generator inter-
acts with an oracle (human being) to produce a sequence of questions
and correct answers. The human either rejects a question as ambigu-

Footline Author PNAS Issue Date Volume Issue Number 3
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ous or provides an answer, in which case the answer is assumed to be a
(deterministic) function of I . The process is recursive: given a history
of binary questions and their answers,H =

(
(q1, x1), . . . , (qk, xk)

)
,

qi ∈ Q and xi ∈ {0, 1}, the query generator either stops, for lack
of additional unpredictable questions, or proposes a next question q,
which is either rejected as ambiguous or added to the history along
with its correct answer x:

H → [H, (q, x)] ,
(
(q1, x1), . . . (qk, xk), (q, x)

)
, x ∈ {0, 1}

Not all sequences of questions and answers make sense. In partic-
ular, attribute and relationship questions (Qatt andQrel) always refer
to previously instantiated objects, restricting the set of meaningful
histories, which we shall denote by H. A key property of histories
H =

(
(q1, x1), . . . (qk, xk)

)
∈ H produced by the query generator

is that each question qi, given the history
(
(q1, x1), . . . (qi−1, xi−1)

)
,

is “unpredictable,” a concept which we will now make precise.
Given a historyH , only some of the questions q ∈ Q are good can-

didates for followup. As already noted, references to labeled objects
cannot precede the corresponding instantiation questions, and further-
more there is a general ordering to the questions designed to promote
natural story lines. For a given query generator, we will write QH to
indicate the set of possible followup questions defined by these non-
statistical constraints. Typically,QH contains many candidates, most
of which are highly predictable given the historyH , and therefore un-
suitable.

The set of histories, H, can be viewed as a set of binary random
variables: H = H(I) = 1 if H =

(
(q1, x1), . . . (qk, xk)

)
∈ H and

if the sequence of questions (q1, . . . , qk) produces the sequence of
unambiguous answers (x1, . . . , xk) for the image I , and H = 0 oth-
erwise. We will write PH for the conditional probability on I given
that H(I) = 1.

Consider now the probability under PH that a question q ∈ QH

elicits the (unambiguous) response Xq = Xq(I) ∈ {0, 1}, for a
given history H ∈ H:

PH(Xq = x) ,
P{I : H(I) = 1, Xq(I) = x}

P{I : H(I) = 1} [1]

For simplicity, we have represented the set {I : [H, (q, x)](I) = 1}
in the numerator of [1] with the more intuitive expression {I :
H(I) = 1, Xq(I) = x}, though this is decidedly an abuse of no-
tation since the function Xq(I) is not defined in the absence of the
history H . Still, under PH , Xq is a binary random variable which
may or may not be “unpredictable.” To make this precise, we de-
fine the predictability of q ∈ QH , given the history H ∈ H, by
ρH(q) = |PH(Xq = 1) − 0.5|. Evidently, ρ = 0 indicates q is
totally unpredictable and ρ = 0.5 indicates q is totally predictable.
Randomization. In general, many questions have answers with low
predictability at each step k. Rather than select the most unpre-
dictable question at step k, we make a random selection from the
set of almost unpredictable questions, defined as those for which
ρH(q) ≤ ε, where H is the history preceding the k’th question.
(In practice we choose ε = 0.15, and we designate all such ques-
tions “unpredictable.”) In this way, we can generate many query
streams for a given test image I , and develop multiple story lines
within a query stream. In doing so, a path to instantiation might be
{Xta = 1, Xtb = 1, Xut{a,b} = 1}, meaning that once there are
instances of object type t with attribute a and also instances with at-
tribute b, then the likelihood of having a unique (‘u’) instance with
both attributes may rise to approximately one-half. Commonly, a des-
ignated region serves as an important instantiating attribute, as in the
chain {Xta = 1, Xuta = 0, Xt{a,b} = 1, Xut{a,b} = 1}, where a
is the designated region. Here, for example, t might refer to a person,
of which several are partially visible in region a, but only one pos-

sesses the additional attribute b (e.g., “sitting”, “female”, or “wearing
a hat”). There are more examples in Figure 2, and two complete se-
quences of questions in §5 of the SI Appendix.
Story lines and the simplicity preference. We impose constraints
on the set of questions allowed at each step—the set of available fol-
lowup questions given the historyH , which we have denoted byQH ,
is a small subset of the set of all possible questions, Q. The main
purpose is to encourage natural sequences, but these constraints also
serve to limit the number of conditional likelihoods that must be esti-
mated.

The loop structure of the query engine enforces a general ques-
tion flow that begins with existence and uniqueness questions (Qexist,
Quniq), with the goal of instantiating objects. As objects are instanti-
ated, the vision system is interrogated about their properties, meaning
their attributes, and then their relationships to the already-instantiated
objects. After these “story lines” are exhausted, the outer loops are re-
visited in search of new instantiations. The query engine halts when
there are no more unpredictable existence or uniqueness questions.
As already mentioned, all loops include randomization, meaning that
the next query is randomly selected from the questions inQH that are
found to be unpredictable.

The pose attribute is especially useful to an efficient search for
uniquely characterized objects, i.e. instantiation. Once the existence
of an object that is partially visible within a region w is established,
ensuing existence and uniqueness queries are restricted to w or its
sub-regions. As these regions are explored, the unpredictability con-
straint then favors questions about the same object type, but annotated
with additional attributes. Eventually, either an object partially visible
in a sub-region of w is instantiated or the collection of unpredictable
questions about such an object is exhausted. In the latter case the
query engine returns to the outer loop and begins a new line of ques-
tions; in the former, it explores the attributes and relationships of the
newly instantiated object. (All regions are rectangular and the full set,
W , is specified in the SI Appendix.)

Finally, there is a simplicity constraint that further promotes a nat-
ural line of questions. This can be summarized, roughly, as “one new
thing at a time.” An existence, uniqueness, or attribute question, q, is
considered simpler than an alternative question of the same type, q′,
if q contains fewer attributes than q′. Given the unpredictable subset
of QH , simpler questions are favored over more complex questions,
and questions of equal complexity are chosen from with equal likeli-
hood. Further detail and pseudocode—see Algorithm—can be found
in the SI Appendix.
Estimating predictability. The conditional likelihoods, PH(Xq =
1), are estimated from a training setT in which all answers (or equiv-
alent information—see Figure 3) are provided for each of n images
from I. The methods used to gather and annotate the training images
are discussed in the next section, on the prototype VTT. The objects,
people and vehicles, are located with bounding boxes and labelled
with their attributes, and pairs of objects are labelled with their rela-
tionships.

The task of estimating conditional likelihoods, and therefore pre-
dictability, is guided in part by the ordering of questions built into the
query engine, which, as already noted, begins with a search for an in-
stantiated object, immediately followed by questions to determine its
attributes, and then finally by an exploration of its relationships with
any previously instantiated objects.

For instantiation questions, q ∈ Qinst , Qexist ∪Quniq , the natu-
ral estimator P̂H(Xq = 1) is the relative frequency (maximum like-
lihood) estimator

#{I ∈ T : H(I) = 1, Xq(I) = x}
#{I ∈ T : H(I) = 1} [2]

Observe, though, that the number of images in the training set which
satisfy the history H (i.e., for which H(I) = 1) is cut approximately
in half at each step, and hence after about log2 n steps direct estima-

4 www.pnas.org/cgi/doi/10.1073/pnas.0709640104 Footline Author
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tion is no longer possible. Consequently, to generate tests with more
than ten or so questions, we are obliged to make “invariance” assump-
tions to allow for data pooling so as to expand the number of images
from which these relative frequencies are computed. Specifically, if
we assume that Xq , q ∈ Qinst, given the history H ∈ H, depends
only on a subsequence, H ′q of H , then the distribution on Xq is in-
variant to the questions and answers in H that were dropped, and the
estimator [2] can be modified by substituting the conditionH(I) = 1
by H ′q(I) = 1.

Let w ∈ W be the localizing region, possibly the entire image,
referenced in the instantiation question q. H ′q is derived from H by
assuming that the event Xq = x is independent of all attribute and
relationship questions in H , and all existence and uniqueness ques-
tions which involve localizations w′ ∈ W which are disjoint from w,
with the important exception of uniqueness questions that answered
positive (q′ ∈ Quniq , Xq′ = 1) and therefore instantiated a new ob-
ject. In other words, the approximation is that, conditioned on the
history, the distribution of an instantiation question depends only on
the uniqueness questions that instantiated objects, and the existence
and uniqueness questions that are localized to regions intersecting w.
By preserving the instantiating questions in H , which addresses the
potential complications introduced by the implied qualifier “not pre-
viously instantiated,” we guarantee that H(I) = 1 ⇒ H ′q(I) = 1
for all I ∈ T, so that the population of images used to estimate
PH(Xq = 1) with H ′q(I) is no smaller than the one with H(I) and
typically far larger. More discussion, and a further invariance assump-
tion leading to further improvement in population size, are included
with the SI Appendix.

As for attribute questions, q ∈ Qatt, which are always about the
most recently instantiated object and always precede any relational in-
formation, the natural (relative frequency) estimator for PH(Xq = 1)
is in terms of the population of labelled objects found in the training
images, rather than the images themselves. Given a history H , con-
sider a question of the form q = ota: “Does object ot have attribute
a?” where ot is an object of type t ∈ {person, vehicle} and a ∈ At.
The history, H , defines a (possibly empty) set of attributes, denoted
A, that are already known to belong to ot. Let OT be the set of all
annotated objects in the training set, and, for each o ∈ OT, let TT(o)
be the type of o and AT(o) be the set of attributes belonging to o,
e.g., TT(o) ={person} and AT(o) ={female, adult, standing} for
the right-most object in Figure 3. The relative frequency estimator
for PH(Xq = 1), using the population of annotated objects, is

#{o ∈ OT : TT(o) = t, A ∪ {a} ⊆ AT(o)}
#{o ∈ OT : TT(o) = t, A ⊆ AT(o)}

[3]

There is again the sparsity problem, which we address in the same
way—through invariance assumptions that effectively increase the
number of objects. The set of attributes for objects of type t can
be partitioned into subsets that can be reasonably approximated as
independent conditioned on belonging to a particular object ot. As
an example, if t =person then crossing a street is not independent
of standing still, but both are approximately independent of gender,
{male, female}, and of child versus adult, as well as whether or not
ot is carrying something or wearing a hat. These conditional inde-
pendence assumptions decrease the size of the set A in [3], thereby
increasing the set of o ∈ OT used to estimate PH(Xq = 1).

The approach to relationship questions, q ∈ Qrel, is essentially the
same as the approach to attribute questions, except that the training
population is the set of pairs of objects in the training images, rather
than the individual objects. The independence (invariance) assump-
tions include relationships that are independent of the attributes of
the related objects (e.g., the relationship driving/riding a vehicle is
assumed to be independent of both the gender of the person driving
or riding, as well as whether the vehicle is dark or light colored, or
whether or not its tires are visible) and relationships that are indepen-
dent of each other (e.g., whether one vehicle is closer to the camera

than another vehicle is assumed to be independent of which vehicle
is larger). A systematic accounting of the independence assumptions
used in our prototype VTT, for both attribute and relationship ques-
tions, can be found in the SI Appendix and its accompanying tables.
A Prototype VTT
The data collection and annotation was performed by undergradu-
ate workers at Johns Hopkins University. Unlike “crowd-sourcing”,
this allowed for more customized instructions. Our dataset has 2,591
images, collected online using search engines such as Google street
view and required to meet certain basic criteria: portray a standard
city street scene; be obtained during daytime; have a camera height
from roughly head-level to several feet above; contain clearly visible
objects, attributes, and relationships from our vocabulary. The images
are from large cities from many countries.

For annotation, we can rule out directly answering each binary
question q ∈ Q, since the questions only make sense in the con-
text of a history—Qatt and Qrel always refer to instantiated objects,
and Qexist and Quniq always include the not-previously-instantiated
qualification. As discussed, a history itself can be viewed as a binary
function of the image, but there are far too many for an exhaustive
annotation. Instead, an essentially equivalent, but more compact and
less redundant, representation was used. For example, once a “bound-
ing box” is provided for every object (see the examples in Figure
3), there is a high likelihood that the correct answer to a localiza-
tion question “Is x partially visible in region w?” is determined by
whether or not the bounding box of x intersects the region w. Thus
bounding boxes were drawn around every instance of an object for
which the annotator had no uncertainty about its category. For par-
tially occluded objects, the bounding box was placed over the region
of the image that the annotator expected the object would occupy had
the object not been partially occluded. Attributes were annotated only
for objects in which all the attributes were unambiguous, which alle-
viated the annotation of distant objects. Relationships were only an-
notated between pairs of objects with bounding boxes and for which
at least one relationship from the type-dependent list was present.

The complete vocabulary is given in first two tables of the SI
Appendix. The prototype includes only two types of objects:
T ={people, vehicles}. However, we also consider a few “parts”—
things carried by people, and tires of vehicles, folded into the attribute
categories. There is also an “attribute” for every element of a multi-
scale collectionW of rectangular subsets of pixels referred to as “re-
gions” (see SI Appendix for the complete collection); the “attribute”
corresponding to w ∈ W is that the object instance is partially vis-
ible within w. The set of attributes also includes properties which
are independent of positioning in the underlying scene, such as fe-
male, child, wearing a hat, carrying something for type people, and
car, truck, motorcycle, bicycle, light colored for type vehicle. Still
others refer to pose and context—e.g., sitting, crossing a street, walk-
ing on a sidewalk, entering/exiting a building for people, and moving,
stopped, parked, one tire visible, two tires visible for vehicles. Ad-

Fig. 3. Annotation provided by human workers.
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ditionally, for both people and vehicles, the attribute interacting with
something refers to any of a specific collection of relationships: for
a person, talking, walking together, holding hands with another per-
son, or driving/riding, exiting, entering a vehicle, and for a vehicle,
immediately behind, immediately in front of another vehicle.

Relationships could be ordered or unordered. The unordered rela-
tionships between people are talking, walking together, holding hands
and the ordered ones are about which person is taller, closer to the
camera, and possibly occluding the other. The ordered relationships
for two vehicles are the same, with taller replaced by larger and the
addition of immediately behind, immediately in front; there are no
unordered relationships between vehicles. Finally, a person may be
driving/riding, exiting, entering, occluding, or occluded by a vehicle.
Level of difficulty. The vocabulary was selected to avoid query
streams that would be considered hopelessly difficult by today’s
computer-vision standards. Nevertheless, there are plenty of sub-
tleties to challenge, and likely defeat, the best existing systems, e.g.
the third stream in the SI Appendix (§5.3), which includes an example
of extreme occlusion, two examples which require inferring that bicy-
cles are moving, rather than stopped, and another occlusion that rests
on the interpretation of a small number of pixels. A few additions to
the vocabulary would dial up the difficulty, considerably, say adding
the relationship “playing catch” or other objects like windows, signs,
and tables and chairs, which are often nearly impossible to identify
without context, especially when partially occluded.
Discussion
In the decades following Alan Turing computer vision became one
of the most active areas of AI. The challenge of making computers
“see” has attracted researchers from across science and engineering
and resulted in a highly diverse set of proposals for formulating the
“vision problem” in mathematical terms, each with its ardent advo-
cates. The varying popularity of competing strategies can be traced
in the proceedings of conferences.

Debates persist about what actually works and how to measure
success. Until fairly recently, each new method was “validated”
on homegrown data and with homegrown metrics. Recently, the
computer vision community has accepted testing on large common
datasets, as reviewed above, and various well-organized “challenges”
have been accepted by many research groups. Many believe that
adopting uniform metrics has made it easier to sort out what works
appreciably better than before and accelerated progress.

But these metrics, such as false positive and false negative rates for
sub-tasks such as detecting and localizing people, do not yet apply
to the richer descriptions that human beings can provide, for exam-
ple in applying contextual reasoning to decide whether or not a car
is “parked” or is “larger” than another, or a person is “leaving” a
building or “observing” something, or two people are “walking and
talking together.” If annotating ordinary scenes with such precision is
accepted as a benchmark for vision, then we have argued for raising
the bar and proceeding directly to metrics for full-scale scene inter-
pretation. We have proposed a “written” VTT as a step in this direc-
tion.

Many design decisions were made, some more compelling than
others. “Story lines” approximate natural sequences of questions and
are well handled by the loop structure of the algorithm. On the other
hand, whereas conditional independence assumptions are probably a
necessary approach to the data sparsity problem, the prototype lacks
a unified implementation. Scaling to substantially larger vocabularies
and more complex relationships, and deeper part/whole hierarchies,
would be difficult to manage by simply enlarging the existing brute-
force tabulation of dependency relationships (see SI Appendix). Pos-
sibly, the right approach is to build full-blown generative scene mod-
els, at least for the placements of parts and objects, and object group-
ings, from which predictability could be estimated via sampling or
inferred by direct calculation.

Finally, coming back to a “conversation” with a machine, another
possibility is a more free-form, open-ended “oral test”: the operator
formulates and delivers a query to the system under evaluation, awaits
an answer, and then chooses the next query, presumably based on the
history of queries and system answers. As before, the operator may
or may not provide the correct answer. This has the advantage that
the operator can “probe” the system capacities with the singular ef-
ficiency of a human, for example detect and focus on liabilities and
ask “confirmatory” questions. But the oral test has the disadvantage
of being subjective and requiring rapid, basically real-time, responses
from the system. On balance, the written test seems to be more prac-
tical, at least for the time being.
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15. Amit Y, Trouvé A (2007) Pop: Patchwork of parts models for object recognition.

International Journal of Computer Vision 75:267–282.

16. Felzenszwalb PF, Huttenlocher DP (2005) Pictorial structures for object recognition.

International Journal of Computer Vision 61:55–79.

17. Felzenszwalb PF, Girshick RB, McAllester D, Ramanan D (2010) Object detection with

discriminatively trained part-based models. Pattern Analysis and Machine Intelligence,

IEEE Transactions on 32:1627–1645.

18. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep con-

volutional neural networks pp 1097–1105.

19. Girshick R, Donahue J, Darrell T, Malik J (2013) Rich feature hierarchies for accurate

object detection and semantic segmentation. arXiv preprint arXiv:1311.2524.

20. Oquab M, Bottou L, Laptev I, Sivic J, et al. (2014) Learning and transferring mid-level

image representations using convolutional neural networks.

21. Zhang N, Paluri M, Ranzato M, Darrell T, Bourdev L (2013) Panda: Pose aligned

networks for deep attribute modeling. arXiv preprint arXiv:1311.5591.
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