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Abstract

Traditional image retrieval methods require a “query im-
age” to initiate a search for members of an image cate-
gory. However, when the image database is unstructured,
and when the category is semantic and resides only in the
mind of the user, there is no obvious way to begin (the “page
zero” problem). We propose a new mathematical frame-
work for relevance feedback based on mental matching and
starting from a random sample of images. At each iteration
the user declares which of several displayed images is clos-
est to his category; performance is measured by the num-
ber of iterations necessary to display an instance. Our core
contribution is a Bayesian formulation which scales to large
databases with no semantic annotation. The two key com-
ponents are a response model which accounts for the user’s
subjective perception of similarity and a display algorithm
which seeks to maximize the flow of information. Experi-
ments with real users and a database with 20,000 images
demonstrate the efficiency of the search process.

1. Introduction

As the number of available multimedia documents
steadily increases, so too does the need for efficient organi-
zation and retrieval of their content, which spurs research in
content-based image retrieval [11]. The most popular meth-
ods today for searching for images residing in large unstruc-
tured repositories are query-by-example and interactive re-
trieval by relevance feedback. In the former case, the re-
trieved images express an overall visual similarity to a spec-
ified member of the database, the “query” image. Therefore,
if the user’s concept of similarity is largely thematic, then
efficiency is adversely affected by the infamous “semantic
gap”– the discrepancy between the representation of images
in the database in terms of low-level features and the high-
level, semantic descriptions meaningful to most users [8].

One strategy that has proven partially successful in prac-
tice for dealing with these differing representations is rel-
evance feedback: solicit information from the user incre-
mentally by dividing the search into consecutive rounds and
allow the user to provide feedback at each step [16], for ex-
ample by declaring some displayed images to be “relevant”
or “similar” to a desired image category. In this way, the
system can progressively refine a model of the user’s target
for the current search session.

Nonetheless, in order to begin a query session involv-
ing either query-by-example or relevance feedback, a start-
ing example is needed; this is the “page zero problem.”
Traditionally, one simply displays randomly sampled pages
from the image database until the user identifies an image
of interest or a suitable starting point for directed search.
Whereas this may be satisfactory for small databases, it
rapidly becomes impractical for larger ones.

Various methods have been explored directly for the
page zero problem, such as database categorization [14] and
query construction [6]. Other methods, initially directed
towards other objectives, such as mental matching for tar-
get search [3, 5] and automatic semantic annotation [2, 12],
could be adapted to the initialization problem. In §2 we
summarize the connections between these, and other arti-
cles, with our work.

Our main contribution is a new, iterative approach for
discovering an instance from a semantic image category re-
siding in the mind of the user. The search is terminated
upon displaying one of these images and performance is
measured by the expected number of iterations necessary
to achieve this. No semantic annotation is assumed. Also,
unlike previous approaches to mental matching, ours ex-
tends to category search and large, unstructured databases.
It could serve either as a standalone function in a retrieval
system or as a method for initializing another session, such
as query-by-example, to obtain additional examples.

The core of our framework is a new statistical model



for relevance feedback by mental matching. A binary ran-
dom variable is assigned to every image in the database; the
value is one if that image belongs belongs to the target class
and zero if it does not. Hence, taken together, these vari-
ables determine the category. The relevance feedback ses-
sion starts with a random screen. At each iteration, the user
is asked to choose from among the displayed images the
one that is closest to his target category using whatever cri-
teria he desires. These decisions are inevitably subjective;
indeed, the challenge is to design an answer model (i.e., a
probability distribution for the user’s response conditional
on the membership status of any given image) which ac-
counts for the nature of human decision-making, hopefully
capturing the gap between the user’s “metric” and the one
used by the system.

The system maintains a separate, iteration-dependent
posterior distribution for each image. Probabilities are
updated based on the evidence gathered from the search,
i.e., the responses of the user. Theoretically, the optimal
new display would minimize the conditional entropy on the
whole family of membership variables conditional on the
search history and the new response. As this is compu-
tationally intractable, we use an extension of the heuristic
proposed in [5], which is shown to work very well in prac-
tice. Moreover, in order to overcome certain problems in-
troduced by the redundancy among images with very sim-
ilar low-level descriptors, we use an unsupervised catego-
rization of the database into small clusters that are visually
highly coherent. The efficiency of the search is illustrated
by experiments with real users in which fewer than ten it-
erations are usually sufficient to locate an instance from the
category of order 100 in a database of size 20,000.

This paper is organized as follows. Related and moti-
vating work is discussed in §2. In §3.1 we formulate in-
teractive search in terms of Bayesian relevance feedback.
The answer and display models are introduced in §3.2 and
§3.3 respectively. The low-level image descriptors and the
clustering algorithm are then described in §4.2 and §4.3. In
§4.4, we present the experiments. Finally, we conclude with
a summary of our findings and remarks on plausible contin-
uations.

2. Related Work

With the page zero problem in mind, Lesaux et al. [14]
create a summary of the image database from unsuper-
vised categorization followed by a user-guided refinement
of the resulting clusters. Cluster prototypes then provide an
overview of the database that can be consulted to find a suit-
able query point. Fauqueur et al. [6] fabricate a query ex-
ample by composing image patches (regions), utilizing a vi-
sual thesaurus composed of many region categories (“sky”,
“building”, “grass”, etc.) and logical connectors. However,
neither of these works involves relevance feedback.

Li and Wang [12] represent semantic concepts by
feature-based probability distributions, allowing for mod-
els to be updated as the database grows without massive re-
training. Carneiro et al. [2] model images as bags of local-
ized feature vectors, estimating a mixture density for each
image; the mixtures associated with images with shared an-
notations are pooled into a density estimate for the corre-
sponding semantic class. Once images are associated with
semantic concepts, by whatever method, new queries can be
seeded by using natural language or keywords. Even if the
annotations are not completely reliable, the user is likely to
find a suitable starting point among the retrieved results.

In the area of category search, but assuming a starting
point, Caenen and Pauwels [1] assign to each image in the
database a probability that reflects its relevance to the user’s
intentions. The systems is based on a quadratic logistic re-
gression model, used to select the next sample of images
that will be presented to the user for individual annota-
tion. There is no mental matching, The shared feature with
our work is the image-specific distribution and a statistical
framework.

Mental matching seems to have first appeared in the
work of Cox et al. [3] on iterative search for a specific im-
age in the database (target search). We extend the Bayesian
framework introduced in that seminal work. At every round,
the user is asked to choose which of two images displayed
by the search engine is “closest” to the target image resid-
ing in his mind. However, the formulation in [3] does not
extend to category search because the mechanism gathering
information ceases to be computationally feasible. Indeed,
one cannot maintain a probability distribution on arbitrary
subsets of images, even for small databases. Also, the an-
swer model does not accommodate more complex user be-
havior inherent in multiple displays.

Still in the context of target search, and a Bayesian
model, Fang and Geman [5] proposed an efficient display
algorithm and applied it to mental face retrieval. We shall
adapt their display mechanism to our purposes in §3.3.
Also, unlike in [3], the answer model is explicitly designed
to capture human decision-making (through learned param-
eters). Still, the approach in [5] does not scale well to
large generic (heterogeneous) databases, both computation-
ally and in terms of number of feedback rounds necessary
to reach the target. Indeed, the user’s notion of similarity
is more complex for generic images than for faces, and his
choices are less likely to cohere with the feature-based met-
ric employed by the system. Nor does the method in [5]
extend to category search.

3. Feedback Framework

Suppose Ω denotes a database of N images, labeled
{1, 2, . . . , N} for simplicity. The objective is to identify
an image that matches the semantic and visual impressions



in the mind of the user. Let S ⊂ Ω denote that subset of
the database, i.e., the user’s category or target class. The
subset S is unknown to the system. We assume that if a
member of S is displayed, the user will recognize it as an
instance of the target class, terminating the search. At that
point, other members of S could be retrieved by standard
query-by-visual-example.

A relevance feedback session is composed of several
rounds (iterations) during each of which a set D ⊂ Ω of
n images is displayed. If D ∩ S �= ∅, the user identifies
an element of his category; otherwise, the user chooses the
image in D which he deems to be “closest” to S. Naturally
this concept of similarity will only partially cohere with the
one employed by the system, which is based on standard
color, texture and shape image features (see §3.2).

The most straightforward generalization of the Bayesian
framework for target search [3, 5] would be centered on a
probability distribution for S and an answer model condi-
tional on S. This distribution would then be updated after
each iteration and would drive the display algorithm. Need-
less to say, this is computationally impossible because, in
practice, S is of order 10 to 102 and N is of order 104.
Hence the number of possible subsets is gigantic.

Instead, we associate a binary random variable Yk to
each image k ∈ Ω: Yk = 1 if k ∈ S and Yk = 0 if k /∈ S.
Of course, S = {k ∈ Ω : Yk = 1}, so S and {Yk} carry the
same information. We maintain N parallel Bayesian sys-
tems, one for each image. Consequently, there is a response
model for each k separately, and after each feedback iter-
ation, and for each k, we update the posterior distribution
on Yk given the search history. More specifically, if Bt de-
notes the responses of the user to the first t displays (see
§3.1), then the distribution of Yk given Bt is represented by
the single parameter pt(k) = P (Yk = 1|Bt). (We take the
starting distributions p0(k) = 0.5 for simplicity.) Notice
that

∑
k∈Ω pt(k) represents E(|S||Bt), the expected size of

S after t queries. In particular, pt is not a distribution over
Ω.

Our framework has three key components:

• Update Model: Computes pt+1(k) in terms of pt(k)
and the user’s answer at step t + 1;

• Answer Model: Specifies the probability the user
chooses image x ∈ D given Yk = 1 and given Yk = 0
for each k;

• Display Model: Determines which images to display
at step t based on {pt(k)} and the search history.

3.1. Update Model

Let XD denote the user’s response to display D, a ran-
dom variable (see §3.2). The feedback up to iteration t is

then

Bt =
t⋂

s=1

{XDs
= xs} (1)

where Ds is the display at step s and xs is the user’s re-
sponse.

The basic statistical assumption is that the random vari-
ables XDs

, s = 1, 2, ..., are conditionally independent
given Yk for each k. (Note: this is different from assuming
conditional independence given S, a more natural assump-
tion but not sufficient for our purposes.) Updating each
pt(k) depends on both the “positive” and “negative” re-
sponse models. These are assumed to be time-independent
and denoted by P (XD = x|Yk = 1) and P (XD = x|Yk =
0) respectively. Since Bt+1 = Bt∩{XDt+1 = x} and since
XDt+1 is independent of Bt given Yk, we have

pt+1(k) = P (Yk = 1|Bt+1) (2)

= P (XDt+1 = x|Yk = 1)pt(k)/Ct+1 (3)

where the normalizing constant Ct+1 is P (XDt+1 =
x|Yk = 1)pt(k) + P (XDt+1 = x|Yk = 0)(1 − pt(k)).

3.2. Answer Model

Let Dt = {x1, . . . , xn} ⊂ Ω be the set of images dis-
played at iteration t. We can suppress t since the response
model is time-invariant. Moreover, we can assume that no
element of S appears in D since otherwise the search termi-
nates. Consequently, the response XD assumes values in D
itself: XD = xi signifies that image xi is the closest image
to S in the opinion of the user.

Let d denote the metric in the signature space. We adopt
answer models of the form:

P (XD = xi|Yk = 1) =
φ+(d(xi, k))∑

xj∈D

φ+(d(xj , k))
(4)

P (XD = xi|Yk = 0) =
φ−(d(xi, k))∑

xj∈D

φ−(d(xj , k))
(5)

The design of the functions φ+ and φ− is motivated by
the intuitive expectation that the perceived similarity be-
tween two images will be roughly inversely proportional
to their distance apart in the metric d. Of course the situ-
ation is very complex as it involves human decision-making
and the efficiency of the model will depend on the extent to
which the system metric captures semantic similarity. We
take φ+(d) (the positive model) to be monotonically de-
creasing in d and φ−(d) (the negative model) to be mono-
tonically increasing in d. As a result, if k ∈ S, the closer
the image xi ∈ D is to k in the stored metric, the more
likely the user is to choose it in the positive model; that
is, if xi, xj ∈ D and d(xi, k) < d(xj , k) then we expect



P (XD = xi|Yk = 1) > P (XD = xj |Yk = 1). Similarly
for the negative model with the inequality on probabilities
reversed since we are assuming k /∈ S.

In our experiments, we adopt parametric forms for φ+

and φ− (see Fig. 1) and learn the parameters from real data
(collected user responses) by maximum likelihood estima-
tion.

1

1

θ2

θ1 d

φ+(d)

1

1

θ2

θ1 d

φ−(d)

Figure 1. Parametric forms for φ+ and φ−.

The parameter θ1 can be viewed as a “saturation” thresh-
old: for the positive model (resp., negative model), an im-
age θ1 units away from a target is no more likely (resp.,
less likely) to be chosen than one still farther away. The
parameter θ2 controls the degree of coherence between the
subjective decisions and the system metric. Take for ex-
ample the positive model and suppose one displayed image
xi is very close to k and all the other n − 1 images are
farther than θ1 units from k; i.e., there is one overwhelm-
ingly best choice in terms of d. Then, according to Eq. 4,
P (XD = xi|Yk = 1) ∼= 1/(1 + (n − 1)θ2). Small values
of θ2 would then imbed high coherence, perhaps unrealisti-
cally. We shall return to this issue in §4.4.

3.3. Display Model

Perhaps the simplest procedure for choosing Dt+1 would
be to select the n images most likely to belong to S, as
measured by their masses under pt(k). Unfortunately, this
elementary strategy is far less effective (in terms of mean
search time) than others due to the fact that it does not take
into account visual similarity; for instance, two very similar
images, both with high masses, are probably either both in
S or both not in S. Put differently, the resulting display does
not adequately “sample” the database. Instead, we borrow
the line of reasoning in [5], but adapted to category search,
and seek a more powerful strategy. We attempt to minimize
the uncertainty about S given the search history and the new
evidence provided by XDt+1 :

Dt+1 = arg min
D⊂Ω

H(S|Bt,XD) (6)

This combinatorial optimization problem is evidently in-
tractable because it involves looping over all subsets of Ω.
But an equivalent reformulation leads to a practical algo-
rithm.

3.3.1 Heuristic Solution

Using elementary properties of conditional entropy,

Dt+1 = arg min
D⊂Ω

(H(XD|S,Bt) − H(XD|Bt)) (7)

Now imagine an “ideal user” who always chooses the im-
age x ∈ D which is closest to S in the system met-
ric. That is, this user chooses the image xi ∈ D such
that d(xi, S) ≤ d(xj , S) for all xj ∈ D, i �= j; here
d(x, S) = 1

|S|
∑

j∈S d(x, j), the average distance to S. In
particular, the response XD of this ideal user is a function of
S, and hence H(XD|Bt, S) = 0. As a result, for this user,
the optimal display is the one for which H(XD|Bt) is max-
imized. Since entropy is maximized at the uniform distribu-
tion, there is a natural, sequential procedure for construct-
ing a display D which yields approximately equally-likely
answers. The basic idea is as follows. Still assuming our
ideal user, we seek n images, call them again {x1, ..., xn},
such that P (XD = xi|Bt) ≈ 1

n . Equivalently, we want the
Voronoi partition based on these points and on the metric
d to have cells of almost equal mass under an appropriate
distribution over Ω (see Fig. 2). Since this distribution is
inaccessible (because it involves the posterior over subsets
S), we replace it by the distribution over Ω whose masses
are proportional to pt(k) and then we use the algorithm de-
scribed in [5].

Figure 2. Voronoi partition into 8 cells of equal mass. The size of
the images is proportional to their mass. Prototypes are numbered.

3.3.2 Acceleration by Clustering

Although fast and easy to implement, and highly effective
for target search, the heuristic solution lacks efficiency for
category search with large databases in which many im-
ages are visually very similar. In fact, many semantic cat-
egories can be very roughly decomposed into a union of
clusters of highly similar images. For example, “red flow-
ers” likely have very similar low-level descriptors. Apply-
ing the heuristic described in §3.3.1 at the image level can



then result in search sessions in which the probability mass
gets highly concentrated on images in the complement of S
at the beginning of the search session.

For this reason, and in order to keep a distance matrix in
memory, we reduce this redundancy by unsupervised clus-
tering of the image database into small but highly coherent
cells. Let C = {Ci}p

i=1 be a partition of Ω. For each clus-
ter C ∈ C we compute the expected size of C ∩ S given
the session history, namely ηt(C) =

∑
k∈C pt(k), and then

normalize these to a probability distribution pt(C) over C.
We then compute the next display screen Dt+1 just as pre-
viously described, but at the cluster level, i.e. feeding the
algorithm with the list of clusters C and the corresponding
probabilities {pt(C)|C ∈ C} (in place of the pt(k)). The
distance between two clusters is the average link distance:

d(Cn, Cm) =
1

|Cm||Cn|
∑

i∈Cm

∑

j∈Cn

d(i, j).

The output of the algorithm is then a list of clusters D ⊂ C.
For each element C ∈ D we choose the image that has the
highest posterior pt(k) for k ∈ C to be displayed.

Moreover, after the user has chosen an image in x ∈ D,
we display the whole cluster containing x, providing the
user an opportunity to check the cluster for elements of S.
If an element from S is identified, the search session ends.
Otherwise, this cluster is eliminated from further consider-
ation; equivalently, pt+1(k) = 0 for k ∈ C. The interface
is still quite simple: each feedback iteration consists of two
steps: (I) the system presents a list D of candidates and the
user clicks on the one thought to be most similar to his cate-
gory; (II) the system presents the cluster associated with the
user’s choice and the user inspects the cluster for a member
of S. Neither step burdens the user, and average search time
is somewhat lowered by inclusion of step (II).

4. Experiments

4.1. Image Database and Ground Truth

To test our search engine we use a subset of 20,000 im-
ages from the Corel database covering a broad range of se-
mantic themes: agriculture, architecture, cities, closeups,
cuisine, landscapes, museum, space, sports, textures, etc.
For groundtruth, we selected by hand ten semantically co-
herent image classes of medium size (100 images per class),
ensuring that the interpretation is unambiguous; see Fig. 3.

4.2. Image Descriptors

To describe the low-level visual content of the images,
we employ the weighted histograms described in [15], us-
ing the Laplacian and the local probability of colour as pixel
weighting functions. Weighting functions bring additional
information into the histograms (e.g. local shape or tex-
ture), which is an important principle in building reliable

Figure 3. Samples from three semantic groundtruth classes:
“Monument Valley” (left), “pedigree dogs” (middle), ‘water-
falls” (right). The other groundtruth classes are: “African ante-
lope”, “butterfly”, “doors of Paris”, “fireworks”, “deep forest”,
“molecule” and “owl”.

image descriptors. The resulting integrated image descrip-
tors generally perform better than a combination of classi-
cal, single-aspect features. Moreover, weighted histograms
work equally well for color images and for gray level im-
ages.

To describe the shape content of an image we use a his-
togram based on the Hough transform, which captures the
behavior along straight lines of varying directions and per-
forms better that the classic edge orientation histogram [10].
Texture feature vectors are based on the Fourier transform;
we use the distribution of the spectral power density along
the frequency axes [13]. Finally, the metric in the combined
feature space is the L1 distance, normalized to values in
[0, 1]; results with L2 are similar, but slower.

4.3. Clustering

Recall that our display model is based on clustering the
database. Since the database is generic, and since no prior
information about semantic content is available, smaller
clusters are expected to be more coherent than larger ones.
Needless to say, the elements of even a small cluster may
belong to different semantic classes. However, this is not a
problem since we maintain a list of probabilities pt(k) at the
image level. Since whole clusters are presented to the user
after responding to a display screen, the clusters should be
small enough to be rapidly inspected, even if several clus-
ters are visually similar.

We tried several classical clustering algorithms, such as
K-Means, Fuzzy K-Means [4] and Competitive Agglom-
eration [7]. However, the results were inadequate for our
purposes because some quite large clusters (more than 100
images) were generated with highly diverse visual and se-
mantic structure.



To satisfy our requirements, we developed a modifica-
tion of Quality Theshold clustering [9], which provides con-
trol over the size of the clusters and is independent of ini-
tialization. Briefly, given a desired cluster size K, the algo-
rithm iteratively chooses new clusters from a list of candi-
dates based on computing the K nearest neighbors to each
unclustered image. The candidate with the smallest diame-
ter (englobing sphere) is chosen. Running time is no issue
since the computation is offline. In Fig. 4 we show some
example clusters of size eight. Most clusters are visually
consistent in terms of our signatures based on color, texture
and shape. Semantic diversity is tolerated since we only use
the clusters to simplify the display algorithm. Of course the
more homogeneous semantically the better, the ideal being
that every semantic category be a perfect union of clusters.
This however can never be guaranteed.

Figure 4. Some clusters of size 8: some are very coherent seman-
tically (top rows) whereas others are less so (bottom rows).

4.4. Experiments with Real Users

We tested our method for interactive search by collect-
ing responses from a group of 12 individuals not familiar
with the system. For each individual, and each of the ten
groundtruth classes, the user is presented with a visual sum-
mary of his target class and a new relevance feedback ses-
sion is started with a random display. The session ends
when an element of the target class is identified. Every
(non-terminal) click provides a “data item” in the sense of
a triple (S,D, x) corresponding to a target class, set of dis-
played images and user’s response. We set n = |D| = 8;
displaying many fewer or many more images has adverse
consequences with real users.

Parameter estimation. We collected 652 data items,
(Si,Di, xi), from 12 users and estimated the parameters θ1

and θ2 appearing in φ+ and φ− (see §3.2) by maximum
likelihood. For φ+(d; θ1, θ2) we maximize the likelihood

function:

L+(θ1, θ2) =
∏

i

Pi(Si,Di, xi)

where Pi is the probability of response xi to display Di

given the target class is Si:

Pi(Si,Di, xi) =
φ+(d(xi, Si))∑

xj∈Di
φ+(d(xj , Si))

Notice that we have used a simplified version of the stochas-
tic answer model in Eq. 4 which utilizes the entire tar-
get class S (but is not the deterministic “ideal user” from
§3.3.1). For the negative model φ−(d; θ1, θ2) we maxi-
mize a similar likelihood function, namely L−(θ1, θ2) =∏

i Pi(Si,Di, xi), where:

Pi(Si,Di, xi) =
φ−(d(xi,Ω \ Si))∑

xj∈Di
φ−(d(xj ,Ω \ Si))

φ θ1 θ2

φ+ 0.40 0.06
φ− 0.26 0.29

Table 1. Optimum values for the parameters θ1 and θ2

For our set of users and our database, we obtained the pa-
rameter estimates presented in Table 1. In particular, the es-
timated values for the positive model suggest that “distance
saturation” occurs at (relative) distance θ1 = 0.4 in the de-
scription space. For the situation of a unique, near-perfect
match (see §3.2) the estimated probability of selecting the
good match in signature space is 1/(1 + 7 · 0.06) = 0.70,
which, despite being based on real data, appears to us to
be an overly optimistic measure of the coherence between a
real user and the system metric. However, such displays are
quite rare in real search sessions (see the following experi-
ment).

Coherence analysis. To assess the influence of the size
of the clusters we performed experiments with sizes 8 and
20. Using larger clusters makes for an unpleasant display
and burdens the user. We collected data from a set of 12
users: 790 items (clicks) for size 8 and 667 items for size 20.
From this, we analyzed the coherence between the user’s
notion of similarity and the employed metric. Recall that
the cluster size influences the display algorithm as the met-
ric is computed at the cluster level. Fig. 5 depicts the prob-
ability that the user selects the image which ranked first,
second, etc. relative to the system metric, where the dis-
played images are ranked according to their distance to the
target class. As we can see, the metric induced by the image
descriptors is not highly coherent with mental matching; for
example, the probability the user selects the closest image
to the target class is only roughly 0.22. Nevertheless, the de-
parture from the uniform distribution is sufficiently large to
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convey enough information to yield very reasonable search
times.

Performance. The experimental interface is shown in
Fig. 6. The key quantity is T , the number of iterations
during a search (relevance feedback) session required to
locate an instance from the target class. We estimate E(T ),
the mean of T , and P (T ≤ t), the (cumulative) distribution
of T , by their empirical statistics collected over M search
sessions. The cluster size is n = 8. Evidently, the faster
P (T ≤ t) grows, the more efficient the system is operating.

Figure 6. The interface used for experiments.

As benchmarks, we also present the results of two
simulations under the same experimental settings (same
groundtruth classes, etc.) of two extreme cases: the “ideal
user” and the “random user.” Recall that the ideal user al-
ways chooses the image closest to the target class in the
system metric. This represents the optimal performance we
can hope to attain. The other extreme is a random response;
the user selects one of the eight displayed images at ran-
dom. Obviously, the proposed model far out-performs a

random response. More importantly, the absolute perfor-
mance is quite reasonable (Fig. 7), with a mean search time
E(T ) ≈ 8 and target recovery in fewer than four iterations
in approximately one-half the searches and in fewer than
ten iterations in more than seventy percent of the searches.
Fine-tuning the model might result in still better perfor-
mance. The results for cluster size n = 20 are similar:
E(T ) = 5.7, 6.75, 21.57 for the ideal user, real user and
random user, respectively.
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Returning to the page zero problem, the baseline is the
random display of images, without replacement, until a
member of the target class appears. Computing the average
number of screens necessary is then a relatively straight-
forward exercise in probability. If N,L, n are the sizes
of the database, target class and display, respectively, then
the mean E(T ) ∼= N/n(L + 1). In our experiments,
N = 20, 000, L = 100, n = 8; hence the average is around
25 iterations. Accounting for the display of the cluster con-
taining the user’s selection would lower this average, but
not nearly by half since the clusters are so visually coher-
ent, which works against rapid discovery. Indeed, a dis-
played cluster is not a random subset from the database,
and is not independent from the preceding display. In fact,
for a cluster size of 8 (Fig 7), the performance of the ran-
dom user, namely E(T ) = 26.41), which includes the clus-
ter display, does not improve at all relative to the baseline
mean of approximately 25 given above due to the coherence
of the clusters.

To test our algorithm on a professional, unstruc-
tured database, we performed experiments on a database
of 19500 art images, kindly provided by Alinari
(http://www.alinari.it). Although this database is more com-
plex than Corel (see Fig. 8), we obtain similar results to
those in Fig. 7, but with a smaller population of users and
search sessions.



Figure 8. Samples from two classes (Alinari database): “Madonna
and Child” (top rows), “Horse and Rider” (bottom rows).

5. Conclusion

We have presented a Bayesian framework for discover-
ing an instance of a semantic category residing in a large,
unstructured database using relevance feedback. Since the
category is known only to the user of the system, the feed-
back is based on mental matching. Our framework centers
on an evolving estimate of the probability that each member
of the database belongs to the user’s category. The update
mechanism take advantage of the conditional independence
assumptions on the sequence of responses provided by the
user. A central feature is the new Bayesian model, which in-
cludes a pair of positive and negative answer models which
are designed to account for subjectivity of the user’s choices
and their weak correlation with the system metric. The per-
formance of the system is validated on a database of 20,000
images; experiments with real users demonstrate the feasi-
bility of the proposed model.

Both the answer and display models could likely be im-
proved. In the former case, two parameters may not be
enough to capture the first-order effects in human decision-
making and variability among users. As for the display,
one issue we encountered during our tests was the diffi-
culty users have in deciding which image to select when
all the displayed images appear “semantically distant” from
the target category. In this case, the user’s choice is likely
to be highly random relative to the system metric. Higher
search time efficiency might then be achieved by allowing
the user to reject the whole screen when it is felt that there
is no natural choice. We are currently investigating this and
other extensions.
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