
BioMed CentralBMC Genomics

ss
Open AcceResearch article
Two-transcript gene expression classifiers in the diagnosis and 
prognosis of human diseases
Lucas B Edelman1,2,6, Giuseppe Toia1,2, Donald Geman4, Wei Zhang5 and 
Nathan D Price*1,2,3

Address: 1Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA, 2Department of 
Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA, 3Department of Chemical and Biomolecular 
Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA, 4Department of Applied Mathematics and Statistics & 
Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland 21218, USA, 5Department of Pathology, University of Texas 
MD Anderson Cancer Center, Houston, Texas 77030, USA and 6Babraham Institute, Cambridge, CB22 3AT, UK

Email: Lucas B Edelman - le253@cam.ac.uk; Giuseppe Toia - gtoia2@illinois.edu; Donald Geman - geman@cis.jhu.edu; 
Wei Zhang - wzhang@mdanderson.org; Nathan D Price* - ndprice@illinois.edu

* Corresponding author    

Abstract
Background: Identification of molecular classifiers from genome-wide gene expression analysis is
an important practice for the investigation of biological systems in the post-genomic era - and one
with great potential for near-term clinical impact. The 'Top-Scoring Pair' (TSP) classification
method identifies pairs of genes whose relative expression correlates strongly with phenotype. In
this study, we sought to assess the effectiveness of the TSP approach in the identification of
diagnostic classifiers for a number of human diseases including bacterial and viral infection,
cardiomyopathy, diabetes, Crohn's disease, and transformed ulcerative colitis. We examined
transcriptional profiles from both solid tissues and blood-borne leukocytes.

Results: The algorithm identified multiple predictive gene pairs for each phenotype, with cross-
validation accuracy ranging from 70 to nearly 100 percent, and high sensitivity and specificity
observed in most classification tasks. Performance compared favourably with that of pre-existing
transcription-based classifiers, and in some cases was comparable to the accuracy of current clinical
diagnostic procedures. Several diseases of solid tissues could be reliably diagnosed through
classifiers based on the blood-borne leukocyte transcriptome. The TSP classifier thus represents a
simple yet robust method to differentiate between diverse phenotypic states based on gene
expression profiles.

Conclusion: Two-transcript classifiers have the potential to reliably classify diverse human
diseases, through analysis of both local diseased tissue and the immunological response assayed
through blood-borne leukocytes. The experimental simplicity of this method results in
measurements that can be easily translated to clinical practice.
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Background
The development of gene expression microarray technol-
ogy has enabled genome-wide transcriptional profiling of
human and other cells in diverse tissues and phenotypic
contexts [1-5]. Among the most significant applications of
global transcriptional profiling is the identification of
molecular markers that provide accurate diagnosis, prog-
nosis, and selection of treatment regimens for human dis-
ease [6-10]. Other important applications include
elucidating biomolecular pathways that participate in
pathogenic processes in order to identify potential targets
for therapeutic intervention [11-13].

Recent investigations have generated quantitative classifi-
ers that typically consider tens to hundreds of relevant
genetic transcripts in the classification of different disease
states or the analysis of pathogenic processes [14,15]. In
particular, machine learning techniques such as support
vector machines [16] and neural networks [17] have been
applied to analyze transcriptional phenomena associated
with disease progression, as well as with the prediction of
patient prognoses and clinical response to therapy [18-
21]. These methods are able to identify genes and gene
networks associated with specific disease phenotypes, and
thus provide a multivariate model for genetic perturba-
tions involved in the generation and progression of dis-
ease.

The top-scoring pair (TSP) algorithm discriminates
between binary phenotypic states using just two transcrip-
tional measurements. First described by Geman and col-
leagues in 2004 [22], the TSP algorithm evaluates the
relative expression of all possible pairs of genes in a
microarray probe set, and selects those gene pairs for
which the ordering of expression is most likely to reverse
from one phenotype to the other. No numerical coeffi-
cients or parameters need be established through regres-
sion techniques. Exhibiting fewer degrees of freedom to
be 'tuned' with experimental data, this method can conse-
quently generate statistically significant classifiers with a
comparatively smaller amount of microarray training data
while generally avoiding problems of overfitting. Addi-
tionally, the algorithm is intrinsically invariant to monot-
onic data normalization, and can thus be more readily
applied to different microarray platforms and probe sets.
To discriminate between complex or closely-related phe-
notypes, 'k' different top-scoring pairs can be aggregated
using a voting procedure to form a combinatoric 'k-TSP'
classifier. Due to requirements for only a very small
number of transcriptional measurements, the TSP and k-
TSP methods embody a promising approach for identifi-
cation of molecular markers that could be applied in the
clinic.

TSP classifiers have been previously shown to accurately
classify a number of human cancers, including tumors of

the colon, prostate, and lung [23,24]; a transcriptional sig-
nature common to many cancers was also developed [25].
Notably, a robust two- gene classifier composed of
OBSCN and PRUNE2 was found to differentiate between
gastrointestinal stromal tumor (GIST) and leiomyosar-
coma (LMS) with near-perfect accuracy in close to 100
patients tested [26]. Additionally, a two-transcript classi-
fier was recently found to predict the response of acute
myeloid leukemias to the small molecule therapeutic tip-
ifarnib with high accuracy [27]. In the present study, we
applied the TSP algorithm to construct accurate and statis-
tically significant two-transcript classifiers for diverse
diagnostic tasks, including the prediction of viral and bac-
terial infection, cardiomyopathies, metabolic disorders,
and gastrointestinal ailments. The biological samples
used in this study were obtained from both solid tissues
and blood-borne immune cells. We observed that the TSP
method not only compares favourably to pre-existing
transcription-based statistical classifiers, but in certain
phenotypes performs with similar accuracy to clinical
diagnostic methods.

Results
Implementation of the TSP and k-TSP Algorithm
We acquired publicly-available microarray gene expres-
sion data representing a diverse spectrum of human
pathologies from the Gene Expression Omnibus [28].
These studies were conducted on human clinical speci-
mens using commercially available microarray platforms,
and were selected to represent a diversity of human dis-
eases, tissue and organ systems, and experimental study
procedures. Each classification task compared one disease
phenotype against either a second disease condition or a
healthy control (Table 1). Patient specimens were taken
from tissue biopsies or isolated peripheral blood mono-
nuclear cells (PBMC); mRNA was extracted and assessed
with commercial microarray platforms. Additional infor-
mation regarding these datasets is available (Additional
File 1). We crafted a top-scoring pair algorithm, available
upon request, using the commercially available Matlab
programming environment (Mathworks Inc, Natick MA).
The input to this integrated program is a microarray gene
expression dataset representing a number of clinical spec-
imens, with annotations of phenotypic class for each sam-
ple. It then assesses all possible gene pairs in the
microarray platform, and ranks the gene pairs based upon
how well relative expression correlates with phenotype.
The program also assesses statistical significance by apply-
ing the algorithm to data for which the phenotype labels
have been randomly permuted across all samples, thereby
determining the likelihood of finding apparently accurate
classifiers due to chance using a false-discovery rate calcu-
lation. Additionally, the program performs leave-one-out
cross-validation (LOOCV) to estimate the performance of
the algorithm on novel data.
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Expression Data Yields Non-Overlapping TSP and k-TSP 
Classifiers
We sought to determine the degree to which TSP and k-
TSP classifiers are sensitive to the transcriptional measure-
ments available on microarray probe sets. In previous
studies, highly accurate single- and multi-pair classifiers
were generated in diverse cancer classification tasks. How-
ever, the extent to which other gene pairs are able to dis-
criminate between phenotypic states, beyond these top-
performing classifiers, has never been determined. We
iteratively generated TSP and k-TSP classifiers on the same
GIST/LMS microarray data originally used to derive the
OBSCN/PRUNE2 classifier [26]. This dataset contains 68
clinical tissue specimens, and was assessed using a micro-
array with 43,931 oligonucleotide probes. Following each
application of the search algorithm, we removed the top-
scoring pair of genes from the dataset, and then repeated
the algorithm to determine the accuracy of each classifier
derived from the reduced dataset without the original
best-scoring gene pairs. As seen in Figure 1, the TSP and k-
TSP algorithms retain appreciable cross-validation accu-
racy even after the removal of multiple top-scoring gene
pair classifiers, though there are reductions in perform-
ance. The presence of accurate non-overlapping transcrip-
tional classifiers was also observed in other datasets
examined using this process of iterative reduction of the
probe set. The combinatoric k-TSP classifier achieved
higher predictive accuracy upon removal of top-scoring
pairs than the single-pair TSP classifier.

Two-Transcript Classifier Accuracies in Diverse Diagnostic 
Tasks
The top-scoring pair algorithm generated classifiers that
discriminate between diverse phenotypic states with vari-
ous degrees of apparent accuracy (Table 2). We also exam-
ined the performance of the combinatoric k-TSP method
on these datasets, and found that it outperformed the sin-
gle-pair TSP method on some of the datasets using classi-
fiers involving three to seven gene pairs (Table 3). Cross-
validation accuracies, an estimation of algorithm per-
formance on novel data, compared well with apparent top
accuracy, with most LOOCV accuracies observed to be
above 85% (Table 4). A lower classifier performance in
cross-validation when the apparent accuracy is high does
not necessarily imply that the functional accuracy of the
algorithm for a particular phenotype separation is limited,
but rather that the sample sizes obtained in these micro-
array studies may not be sufficient to determine the most
accurate gene pairs for diagnosis. Of course, in instances
where the observed cross validation accuracy is low, there
is low confidence in the ability of the selected TSP to accu-
rately classify future samples.

Sensitivity and specificity were found to vary with the
dataset. Two cases exhibit markedly low sensitivity - cardi-
omyopathy and transformed colitis. This was likely due to
the comparatively smaller number of "positive" than
"negative" tissue samples present in these microarray
datasets, which serves as an implicit 'weight' for the algo-
rithm to selectively choose classifiers exhibiting correct

Table 1: Diagnostic Classification Tasks

Classification Task Tissue Source Samples
(Positive/Negative)

GEO ID # Probes

GI Stromal Tumor vs Leiomyosarcoma GI Biopsy 68 (37/31) N/A 43,931

Crohn's Disease vs Healthy Controls PBMC 101 (59/42) GDS1615 22,283

Ischemic vs Idiopathic Cardiomyopathy Cardiac Biopsy 194 (86/108) GSE5406 22,283

Type I Diabetes vs Healthy Controls PBMC 105 (81/24) GSE9006 22,283

Type II Diabetes vs Healthy Controls PBMC 35 (12/23) GSE9006 22,645

Ulcerative Colitis W/WO Transformation Colon Biopsy 54 (11/43) GSE3629 54,681

Gram-Negative vs Gram-Positive Infection PBMC 73 (29/44) GSE6269 22,283

Gram-Negative vs Viral Infection PBMC 62 (18/44) GSE6269 22,283

HIV Infection vs Healthy Controls PBMC 86 (74/12) GDS1449 8793

Microarray gene expression datasets obtained from the Gene Expression Omnibus. Transcriptional analysis was performed on either local tissue 
biopsies or peripheral blood mononuclear cells using commercially available oligonucleotide probe arrays. For sensitivity and specificity analysis, 
gastrointestinal stromal tumor (GIST), ischemic cardiomyopathy, transformed ulcerative colitis, and viral infection were defined as 'positive' 
diagnoses.
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'negative' diagnoses over correct 'positive' diagnoses. Var-
iability in cross-validation accuracy was observed as a
function of the disease being examined, with limited cor-
relation observed between sample size and classifier accu-
racy. Extremely low false-discovery rates were witnessed
for all datasets as derived from comparing the distribu-
tions of classifier accuracies in unmodified and randomly
permuted data, indicating high statistical significance of
each classifier. Every classifier except the prediction of
ulcerative colitis transformation had an estimated false
discovery rate of well below 0.01 from 10 independent
permutations; the lower performance in this dataset was
likely due to the smaller number of experimental samples
included therein.

Selected classification tasks are shown in Figure 2, includ-
ing the distribution of gene-pair accuracy, and a graphical
representation of top-scoring classifiers. As would be
expected, the vast majority of gene pairs have low predic-
tive accuracy in the given classification tasks, with only a
small fraction exhibiting strong correlation with pheno-
type. Importantly, the random permutation of class labels
sharply reduces the apparent accuracy of the classification
algorithm for most datasets, indicating that the classifiers
derived on original, unmodified data are statistically sig-
nificant, corresponding to true molecular separation of
the two phenotypes rather than being a product of chance.
These results compare favourably with classifiers reported
for these datasets using other statistical classification
methods.

Non-Overlapping TSP and k-TSP Classifiers for GIST and LMS DiagnosisFigure 1
Non-Overlapping TSP and k-TSP Classifiers for GIST and LMS Diagnosis. Cross-validation accuracy of the k-TSP 
classifier as a function of top-scoring pairs being removed from microarray gene expression data of clinical GIST and LMS spec-
imens. For k-TSP classification, k is held to a maximum of 11 pairs.
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Discussion
We have shown that simple two-transcript gene expres-
sion classifiers can accurately classify a wide spectrum of
human diseases. This algorithm is invariant to data nor-
malization and generates robust, statistically significant
biological classifiers even in the context of low sample

sizes. Our results reveal that many pathological processes,
even those not traditionally considered genetic in nature
such as infections and inflammatory disorders, can be
diagnosed through just two transcriptional measure-
ments. Whereas previous work has shown the diagnostic
value of gene expression perturbations, this study demon-

Table 2: Accuracy of Two-Transcript Classifiers on Diverse Phenotypes

Classification Task Accuracy
(Sens./Spec.)

Classifier Gene Pair and Annotated Functions False Discovery

GIST/LMS 100%
(100.0/100.0)

PRUNE2 (Regulation of Apoptosis)
OBSCN (Muscle Differentiation & Signaling)

< 10 E-5

Crohn's Disease 96.04%
(96.6/95.2)

TBX21 (Immune Modulation)
APOLD1 (Angiogenesis; Lipid Metabolism)

< 10 E-5

Cardiomyopathy 74.23%
(58.1/87.0)

PDE8B (Phosphodiesterase; cAMP Metabolism)
ZNF263 (Zinc-Finger Transcription Factor)

< 0.002

Type I Diabetes 91.43%
(96.3/75.0)

CD1D (Antigen Processing and Presentation)
PSD (ARF/RAS Signal Transduction)

< 0.002

Type II Diabetes 100%
(100.0/100.0)

UNC5A (Regulation of Apoptosis)
ATG16L2 (Protein Transport; Autophagy)

< 0.005

UC Transformation 96.3%
(81.8/100.0)

PAK2 (Kinase Signaling; Cell Cycle Regulation)
FLT3LG (Immune Activation)

0.05910

Gram-Negative/Viral 100%
(100.0/100.0)

CD40 (Immune Response; B Cell Proliferation)
SETD6 (Histone Methyltransferase Activity)

< 10 E-4

HIV Infection 100%
(100.0/100.0)

GAD1 (Glutamic Acid Metabolism)
RHD (Erythrocyte Function)

< 10 E-4

Top apparent accuracy, sensitivity, and specificity, and false-discovery rate for each dataset using a two-gene TSP classifier. False discovery rate was 
based on the distribution of classifier accuracies following ten-fold random permutation of class labels.

Table 3: Accuracy of k-TSP Classifiers

Classification Task Apparent Accuracy Cross-Validation Optimal K

GIST/LMS 100.00% 97.06% 3

Crohn's Disease 98.00% 91.10% 7

Cardiomyopathy 85.10% 65.00% 7

Type I Diabetes 90.50% 82.70% 3

Type II Diabetes 100.00% 82.70% 3

UC Transformation 98.20% 88.90% 3

Gram-Negative/Viral 100.00% 100.00% 3

HIV Infection 98.80% 94.20% 3

Top apparent accuracy, leave-one-out cross-validation performance, and optimal 'k' value for each dataset achieved by the combinatoric k-TSP 
algorithm.
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strates that as few as two transcriptional measurements
can reliably detect diverse human diseases.

Transcriptional networks themselves can thus be seen to
encode aspects of pathological phenotypes, with strong
correlation observed between gene expression status and
disease state. These transcriptional signatures were suffi-
ciently robust to be detected even in tissue samples of pos-
sibly heterogeneous cell populations. The accuracies
observed in these simple diagnostic modalities were com-
parable to pre-existing transcription-based classifiers that
rely on more complex, multivariate measurements. For
example, a 12-gene classifier generated against the same
Crohn's disease dataset using a weighted-voting scheme
exhibited a cross-validation accuracy of 94%, compared
with equivalent TSP cross-validation performance of 87%
[29]. Additionally, a 35-gene k-Nearest-Neighbor classi-
fier trained on the same viral and bacterial infection data-
set achieved a cross-validation accuracy of 91%, compared
with 96% for the TSP approach [30].

The TSP method compared favourably to the estimated
accuracy of standard clinical methods for the differentia-
tion of viral and bacterial infection, as well as cardiomy-
opathy classification- conditions that present ongoing
diagnostic challenges in the clinic. For example, a recently
developed clinical prediction rule to discriminate
between bacterial and viral pneumonia in children
achieved positive predictive value of under 80%, in con-
trast to a TSP classifier cross-validation accuracy of 96.7%
[31]. Additionally, a recent study of over 1200 patients
presenting with diverse cardiomyopathies found that no
pathologic etiology could be definitively elucidated in
over 50% of clinical cases, in comparison with a cross-val-
idation accuracy of over 70% achieved by the correspond-

ing TSP classifier [32]. These results do not imply that the
TSP method provides intrinsically superior diagnostic dis-
crimination to 'gold standard' clinical measures - the TSP
classifiers themselves are constrained by the fidelity of
clinical methods used to diagnose patient samples con-
tained within their respective training datasets. However,
these results do indicate that properly trained TSP classifi-
ers may exhibit higher accuracy in medical contexts where
high-fidelity diagnoses are difficult or impractical to regu-
larly obtain using other methods.

Interestingly, the ability of the classifier to obtain an accu-
rate diagnosis was significantly lower in the comparison
of ischemic and idiopathic cardiomyopathies than in any
other dataset we examined. This is likely due to the broad
cellular and metabolic heterogeneity observed in these
two closely related conditions. Both clinical and molecu-
lar differentiation of ischemic and idiopathic cardiomy-
opathies remains a significant challenge [33]. Ischemic
cardiomyopathy is diagnosed when oxygen delivery to the
myocardium is inhibited, most often due to coronary
artery disease. However, the presence of this condition is
not diagnosed with great precision in the clinic, and idio-
pathic cardiomyopathy is diagnosed when no etiological
factor for cardiovascular dysfunction can be explicitly iso-
lated [32]. The failure of the algorithm to accurately dis-
criminate between these two conditions may indicate that
they represent overlapping genetic and physiological
states, or that their respective diagnoses are not made with
high fidelity in clinic, or a combination of both factors.
This molecular heterogeneity has recently been confirmed
using alternative gene expression analysis methods [34]. It
is possible that other factors, such as consistency of tissue
collection and processing, may negatively impact the
quality of microarray data and thus the apparent perform-

Table 4: Cross-Validation Accuracy of Two-Transcript Classifiers

Classification Task CV Accuracy CV Sensitivity CV Specificity

GIST/LMS 97.06% 93.55% 100.00%

Crohn's Disease 87.13% 88.14% 85.71%

Cardiomyopathy 74.23% 58.14% 87.04%

Type I Diabetes 91.43% 96.30% 75.00%

Type II Diabetes 94.29% 91.67% 95.56%

UC Transformation 83.33% 36.36% 95.35%

Gram-Negative/Viral 96.77% 88.89% 100.00%

HIV Infection 88.37% 90.54% 75.00%

Leave-one-out cross-validation accuracy, sensitivity, and specificity for each dataset using a two-gene TSP classifier.
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ance of the algorithm. It is also possible that the two-tran-
script classifier scheme does not capture pathological
information encoded by other molecular media - for
example, protein or metabolite levels - that may more
accurately predict pathological state. However, it is clear
that a chief factor constraining the performance of the TSP
cardiomyopathy classifier is the low fidelity of diagnostic
decisions upon which it was trained. In the phenotypes
studied where higher clinical diagnostic efficacy is
achieved, the TSP classifier exhibits likewise higher accu-
racy.

We observed that the genes present in highly accurate two-
transcript classifiers were often associated with disease

processes in previous literature reports. For example,
PRUNE2 has been shown to inhibit certain forms of onco-
genic transformation, which may correspond to its differ-
ential regulation in GIST and LMS as observed through
the TSP method [35]. The TSP prediction rule to diagnose
Type I Diabetes is based on the relative expression of the
genes CD1D and PSD. CD1D is a transmembrane protein
involved in the presentation of lipid antigens to T cells
and known to contribute to the generation of diabetes,
and PSD belongs to a family of intracellular signal trans-
duction proteins known to increase insulin sensitivity
[36-39]. The change in expression of these two genes
within the classifier thus recapitulates the underlying
molecular etiology of the disease. While not all genes in

Top-Scoring Classifiers and Distributions of Classifier AccuraciesFigure 2
Top-Scoring Classifiers and Distributions of Classifier Accuracies. A: The distribution of all possible gene pair classifi-
ers according to accuracy in the diagnosis of GIST and LMS, for both original data and randomly permuted data with rand-
omized class labels. Vertical axis represents the fraction of pairs achieving the indicated accuracy. B: Plot comparing the 
expression level of the two genes from the top-scoring classifier as measured through a microarray platform, with a line of 
slope one and intercept of zero separating the two phenotypes according to the more highly expressed transcript. (Figure 
adapted from data originally published in [26].) C and D: Classifier accuracy distribution and top-scoring classifier microarray 
gene expression values for the diagnosis Crohns's Disease from circulating leukocytes. E and F: Accuracy distribution and top-
scoring classifier in the diagnosis of ischemic and idiopathic cardiomyopathy.
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the classifiers found through this study were known a pri-
ori to be involved in pathological processes, the strong
association held by many such transcripts with their cog-
nate phenotypes demonstrates the biomolecular rele-
vance of these classifiers.

Intriguingly, in this study it was found that analysis of
transcription in circulating mononuclear cells provides a
robust diagnostic platform for both the detection of
invading cellular or viral pathogens, and the diagnosis of
somatic medical conditions such as diabetes and Crohn's
Disease. Of particular interest are the simplicity, robust-
ness and accuracy of two-transcript classifiers using a data
source that provides an easily accessed transcriptomic 'rea-
dout' from pathologies of disparate tissues. Recent studies
have examined the utility of serum-borne mRNA in the
prediction of diseases, with varying fidelity [40,41]. These
methods are constrained by the finite stability of RNA
transcripts in the circulation. In contrast, the metazoan
immune system exhibits an intrinsic and long-lasting
'memory' of cellular and other interactions that can persist
in circulating cells for long periods. The interrogation of
leukocyte gene expression would provide an easily
deployed method for clinical diagnosis which, as indi-
cated by these results, might present an informative dis-
criminative measure in the diagnosis of diverse human
diseases.

To implement the two-transcript classifiers, transcrip-
tional measurements can be readily obtained in the clinic
through routine PCR procedures [42]. The success of pre-
vious two-transcript diagnostics shows that, despite being
formulated using microarray platforms, these intrinsically
simple classifiers can be implemented efficiently through
pre-existing gene expression methodologies. These classi-
fiers therefore embody a promising platform for diverse
diagnostic and prognostic tasks. These results also raise
the exciting possibility that widespread human diseases
could be reliably diagnosed through the acquisition of
standard blood samples, a major objective of personal-
ized medicine [43,44]. Sufficient information about the
state of somatic tissues and organs may be encoded by the
circulating leukocyte transcriptome to create a 'battery' of
gene expression measurements that could simultaneously
diagnose a large number of medical conditions. Further
research is warranted to examine the degree to which dif-
ferent human pathologies could be inferred using simple
transcriptional measurements from circulating cells.

Conclusion
We have shown that the top-scoring pair algorithm is able
to generate statistically significant and accurate gene
expression classifiers from microarray data. These meth-
ods are insensitive to data normalization, and perform
consistently when applied to novel experimental data.

Furthermore, the method is able to detect diverse human
diseases, even those not considered genetic in nature or
cause. Ultimately, two-transcript classifiers obtained from
microarray gene expression data present a robust analyti-
cal tool for clinical diagnostics.

Methods
Top-Scoring Pair Algorithm
The input to the top-scoring pair (TSP) algorithm is a gene
expression matrix from a microarray probe set corre-
sponding to semi-quantitative transcriptional measure-
ment, from multiple unique tissue samples. The
algorithm first replaces the gene expression value within
each sample by its corresponding rank relative to all the
gene expression values within the sample. This rank-based
processing renders the algorithm invariant to monotonic
data normalization. Importantly, this algorithm treats
each probe within a microarray platform individually -
such that, even when multiple probes are spotted inde-
pendently for the same gene on a microarray, both probes
are treated as independent, unrelated measurements.

The algorithm then assesses all possible pairs of genes A
and B whereby their relative expression predicts pheno-
typic class (either class 1 or 2), employing a simple classi-
fication rule for any sample:

IF Rank (gene A) > Rank (gene B), THEN Class = 1; ELSE
Class = 2

For each gene pair, the number of accurate class predic-
tions is counted and each gene pair is then ranked accord-
ing to the cumulative predictive accuracy across all
samples. The most accurate transcript pairs are returned as
top-scoring classifiers. The mean difference in rank
between two genes is calculated in the event of ties
between equivalently accurate classifiers as described pre-
viously [22]. Sensitivity (defined as the proportion of true
'positive' diagnoses that are accurately detected by the
classifier) and specificity (the proportion of true 'negative'
diagnoses that are accurately detected) are also recorded
for each top-scoring classifier.

To address the significant data-storage matters arising
from assessing so many prospective classifier pairs, the
algorithm employs a dynamic data analysis feature
whereby only pairs that might possibly represent 'top-
scoring' pairs are recorded for further analysis. Addition-
ally, the algorithm employs this parsimonious library of
highly accurate pairs to reduce the computational time
required for the k-TSP algorithm and leave-one-out cross-
validation analysis. With these optimizations, the algo-
rithm is able to fully analyze even large microarray data-
sets within one day on a standard desktop computer,
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including cross-validation analysis and False Discovery
Rate prediction.

Combinatoric k-TSP Algorithm
In an extension of the TSP algorithm, k individual TSP
classifiers can be combined into a multi-pair 'k-TSP' clas-
sifier. In this approach, the TSP algorithm itself is per-
formed, and all possible transcript pairs are ranked in
order of their classification accuracy. The top k highest-
ranked TSP pairs for a given classification task each repre-
sent one 'vote', with equal weight, for the class of each
given sample; the final predicted class of each sample is
the phenotype with the majority of votes. To avoid ties, k
is restricted to odd numbers only; for this study the maxi-
mum value of k was held to 11. For each classification
task, a leave-one-out cross-validation loop (described fol-
lowing) is employed to determine the optimal value of k.

Analysis of Non-Overlapping TSP and k-TSP Classifiers
We employed TSP and k-TSP algorithms to determine the
degree to which these methods can generate multiple
unique gene expression-based classifiers. We first deter-
mined the optimal TSP and k-TSP classifiers against the
previously mentioned GIST/LMS gene expression data.
We then removed the top-scoring individual gene pair
from the dataset, and repeated the algorithm on this
reduced gene expression data. We iteratively performed
this gene-pair excision, and recorded TSP and k-TSP clas-
sifier accuracies at each step. The value of k was held to a
maximum of 11, and was determined in each iteration by
an internal loop of leave-one-out cross-validation that
established the optimal value of k for each classification
task.

Leave-One-Out Cross-Validation
To estimate algorithm performance on novel samples, we
performed leave-one-out cross-validation (LOOCV), in
which the top-scoring pair as determined by N-1 samples
is used to predict the left-out sample class. This cross-val-
idation is performed iteratively for each of N samples,
with the number of correct predictions out of N then aver-
aged to determine LOOCV accuracy. Cross-validation sen-
sitivity and specificity were also determined.

Calculation of False-Discovery Rate
To estimate the statistical power of each classifier, we
applied the algorithm to each dataset following random
permutations of phenotypic class labels across all sam-
ples. We then compared the distribution of gene pair clas-
sification accuracy between actual and randomized data,
and calculated the false discovery rate (FDR), correspond-
ing to the likelihood of finding an apparently accurate
classifier due to chance. Examples of these original and
randomized distributions are shown in figure 2A, 2C, and

2E. The FDR estimate for any given accuracy cutoff was
computed as FDR = FP/TP, where FP represents the false
positive estimate at the selected accuracy cutoff, and TP
represents the total positives (pairs above the selected
accuracy cutoff observed in the dataset under considera-
tion). The FP estimate was calculated by evaluating the
accuracy of all gene pairs from 10 random permutations
of the class labels for each phenotype comparison dataset
considered herein. The FP estimate was computed as the
average number of pairs above the cutoff accuracy
observed in the 10 permutations. With random pheno-
type label permutations, we assume that all pairs observed
above a given accuracy in these datasets should be consid-
ered as false positives. Because all pairs are considered for
each permutation, the total number of pair accuracies
considered for the null distributions is high (typical
number per permutation for e.g. a human Agilent micro-
array would be around a billion). The FDR method
accounts for the multiple hypothesis testing inherent in
the TSP algorithm. In several cases of this study, no classi-
fier in the accuracy distribution of randomized data
achieved the top accuracy of those from the original data
and thus these TSPs technically exhibited a calculated FDR
of zero. In these cases, the lowest non-zero FDR value was
listed as an (often loose) upper-bound estimate for the
likely true FDR.
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