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1. Introduction.

If S is a finite set of sites, and F a finite set of states, a random field on S with
state space F is a probability distribution on the set of all configurations ΩS = FS .
A Gibbs field (or Gibbs distribution) is a random field π such that π(x) > 0 for
all x ∈ ΩS . We denote by P+ = P+(F, S) the set of all Gibbs fields on ΩS . They
generally are represented under the form

(1) π(x) = πU (x) = e−U(x)/ZU ,

where U is the energy of π and ZU is a normalizing constant. More precisely, being
given an arbitrary element a in F , every Gibbs field can be written π = πU where
U takes the form

U(x) =
∑
C⊂S

uC(x),

uC being a function of xs, s ∈ C, such that uC(x) = 0 if xs = a for some s ∈ C
([Ruelle 1978], [Georgii 1988]) (the potential is then said to be normalized with
respect to a. One says that U is the energy associated to the potential u = (uC , C ⊂
S). The Hammersley-Clifford theorem ([Besag 1974], [Geman 1991]) exhibits the
relation between the potential and the structure of the conditional probabilities at
one site given the states of all others.

When such models are employed in practical applications (eg. image analysis,
neural networks, . . . ), it is most of the time necessary to have recourse to Monte
Carlo sampling. This is due to the fact that, because of the inherent complexity of
the processes which are modeled, one cannot make any direct computation of natu-
ral quantities of interest, such as probabilities of events or expectations of functions.
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Unfortunately, this simulation step often dramatically slows down the methods in
which it is required, and many attempts have been done to reduce the computation
time they induce. A large number of papers are devoted to the determination of
more efficient algorithms than the commonly used ones (see, for example, Swend-
sen and Wang 1987, Sokal 1989, Frigessi et al. 1990b, Besag and Green 1993, Smith
and Roberts 1993,. . . , the list being not exhaustive). Other attempts aim at find-
ing more efficient computer implementation of existing methods, and researchers
have very early studied the possibility of using a parallel hardware ([Geman 1984],
[Poggio 1985],. . . ). The efficiency of a rigorous parallel implementation rapidly de-
creases as the complexity of the involved interactions increases, and the obtained
improvement in efficiency appears, for this reason, as unsatisfactory. On the other
hand, a non rigorous parallelization of the sampling algorithms must be done with
care, and the study of the random fields which are simulated in that way requires
the introduction of a formalism which is different from the Gibbsian one.

In [Younes 1993b], we have studied this synchronous formalism, mainly with a
practical point of view, our purpose having been to construct models of random
fields which can be sampled in parallel, and for which efficient algorithms may be
devised in typical practical situations. The associated sampling algorithm requires
building a generalized Markov chain of order q ≥ 1 in Ω, for which the configura-
tion Xn ∈ Ω at time n is obtained after synchronously and independently drawing
the states (Xn

s , s ∈ S) according to a transition probability which depends on
Xn−q+1, . . . , Xn−1. If this Markov chain satisfied an additional condition which
boils down to reversibility in the case q + 1 = 1, we have shown in [Younes 1993b]
they may be used in most of the practical situations in which the Gibbs repre-
sentation is used, with the advantage of offering the possibility of being efficiently
simulated on a parallel hardware. These fields have been called (q + 1)-periodic
synchronous random fields ( see below for the reasons of this terminology).

The general parametric form of a periodic synchronous random field has been
given in [Younes 1993b], reminiscent as the representation of Gibbs fields with a
potential. However, when designing a parametric model in practice, it is very
important to know whether this model is identifiable, that is whether the mapping
which associates a probability distribution to a parameter is one-to-one. A sufficient
condition for this fact in the case of te Gibbs representation is that the potential
is normalized with respect to some a ∈ F . In this paper, we propose a special
parametric form for synchronous fields, which is also associated to a potential, and
provides identifiable models. This parametric form is also complete, in the sense
that every Gibbs field may be represented in that way. Moreover, under some
additional hypotheses on the potential, we will obtain estimates which will not
depend on the size of the lattice S, and which will therefore yield results in the case
of infinite integer lattices.

Representations of random fields, different from the Gibbsian one, already have
been introduced in the litterature. Among them are the hidden Markov random
fields ([Geman et al. 1993]), which are fields on S = Zd which are images of
some field, on Zd also, with nearest neighbourg interactions, but with a large state
space G than F . The unilateral approximation consists in representing a field as
a Markov chain with respect to some ordering of the set S (cf. [Goutsias 1991]).
Stochastic models introduced for neural networks, such as Boltzmann machines,
also are alternative representations of Gibbs fields, a probability distribution on
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some configuration set ΩS being represented as the marginal of a distribution on
ΩS∪H (H being a set of “hidden” sites – or neurons) which is associated to a
potential with only pairwise interactions (cf [Ackley et al. 1985], [Sussmann 1988],
[Younes 1993a]).

This paper is organized as follows. In the next section, we give the definition
of synchronous random fields, with the motivation which has led to it. In section
3, we introduce our parametrisation, which is based on a potential, and show that
it approximates Gibbs distributions in a way which implies the exhaustivity of the
class of synchronous fields. We shall also prove more precise results in the case
when S ⊂ Zd and the considered potential has bounded radius. Finally, in section
4, we see how these results may be extended to the case of infinite S (S = Zd).

2. Synchronous Random Fields.

In this paragraph, we summarize some necessary definitions and results con-
cerning synchronous random fields. More practical motivations may be found in
([Younes 1993b]). We start with a formal definition, which do not refer to synchro-
nous sampling, but has the advantage of being concise.

2.1. Definition. Let S be a finite set, F the state space and Ω = ΩS = FS . Let
k be a positive integer. We denote by Dk(F, S) the set of all Gibbs distributions µ
on Ωk which satisfy the following conditions:

a. Invariance by circular permutation: for all (x1, . . . , xk) ∈ Ωk,

µ(x1, . . . , xk) = µ(xk, x1, . . . , xk−1).

(We shall respect the following notational convention: superscripts are em-
ployed to index families of configurations, and subscripts to indicate the
state of a given configuration at some site. So, xls would refer to the value
of xl ∈ Ω at site s ∈ S: xls ∈ F ).

b. Conditional independance: the variables x1
s, s ∈ S, are µ-conditionally

independent given x2, . . . , xk.

We then define Sk(F, S) to be the set of all Gibbs fields on Ω which are a
marginal distribution of some element of Dk(F, S) (we shall omit to indicate S and
F when no confusion is possible). Elements of Sk are called k-periodic synchronous
distributions.

2.2. Interpretation in terms of sampling. We now show the relation between
this definition and synchronous Markov chains of order k − 1. Assume that µ is as
above. Denote by µi( . |xj , j 6= i), i = 1, . . . , k, the conditional distributions for µ
of the component xi ∈ Ω given xj , j 6= i. By hypothesis, µi splits as a product over
S, which we write :

µi(xi |xj , j 6= i) =
∏
s∈S

µis(x
i
s |xj , j 6= i) .

Then, consider the process (X(n), n ≥ 1) of configurations in Ω which is defined
as follows. Its k − 1 first components X(1), . . . , X(k − 1) are arbitrary, and for
n ≥ k, let i = i(n) be the element of the class of n modulo k which is in {1, . . . , k},
so that n = qk + i(n). Then, define the probability of X(n) = x given the values
of X(p), p < n to be

(2) µi(n)(x |X(qk + 1), . . . , X(qk + i− 1), X((q − 1)k + i+ 1), . . . , X(qk)) .
3



Such a process is in fact a standard algorithm which is known to simulate µ
(it is called the heat-bath, or Gibbs sampler in the litterature, see for example
[Geman 1991] or [Sokal 1989]), that is, the joint distribution X(qk+1), . . . , X(qk+
k) converges to µ when q tends to infinity. But, by circular permutation invariance,
the probability in (2) may be written under he form (since qk + i = n)

P (X(n− k + 1), . . . , X(n− 1) ; x)

for a transition probability P from Ωk−1 to Ω which is independent on n, and, since
it is the case for µi, this transition probability splits as a product of the kind (for
any (x1, . . . , xk−1) ∈ Ωk−1, and any x ∈ Ω):

(3) P (x1, . . . , xk−1 ; x) =
∏
s∈S

ps(x
1, . . . , xk−1 ; xs) ,

the ps being local transition kernels from Ωk−1 to F .
Thus, the process X(n) may also be considered as a homogeneous Markov chain

of order k − 1, for which the transition from X(p), p < n to X(n) is done by syn-
chronously updating all Xs(n). Since the joint distribution of X(qk+1), . . . , X(qk+
k) converges to µ, and all the marginal of µ are equal to π, the process X(n) con-
verges in distribution to π. Thus π may be simulated by a dynamic procedure
which, at each time chunk, synchronously updates all the sites with probabilities
which depend on the k − 1 last outcomes of the process.

Conversely, let P be a positive transition probability of order k − 1 which syn-
chronously updates all the sites, and which is positive. Let µ be its k-step proba-
bility in stationary regime, ie. µ is the distribution of X(n + 1), . . . , X(n + k) for
the stationary Markov chain associated to P . Then, the distribution π of X(n) is
k-periodic as soon as µ satisfies property (a.) in definition (2.1). This alternative
definition of k-periodicity clearly is equivalent to the first one (cf. [Younes 1993b]).

An interesting case is when k = 2. (Xp) is then a standard Markov chain, and
condition (a.) is equivalent to the fact that Xp is reversible. From this point of
view, k-periodicity may be seen as a generalization of reversibility to k − 1 order
Markov chains.

At this point, the fact that a k-periodic synchronous distribution may efficiently
be simulated on a parallel hardware should be clear. What should be less evident is
why we needed to have recourse to Markov processes of order greater than 1 in our
construction, and did not restrict to ordinary Markov chains. The reason is that,
for ordinary Markov chains, reversibility is a very convenient property. When it is
true, it allows to obtain an explicit description of the invariant probability π (since
π(x)/π(y) = P (y, x)/P (x, y)), whereas, in the general case, π is only implicitely de-
fined by π.P = π. Moreover, it seems quite difficult to develop feasible adaptations
of standard practical algorithms which are employed under the Gibbsian formalism,
when the models are synchronous and non-reversible, whereas such adaptations may
be obtained in the reversible case. Thus, for practical reasons, using synchronous
random fields of order 1 requires restricting to the class of reversible ones.

Unfortunately, as it is shown in ([Koslov and Vasilyev 1980]), reversible synchro-
nous fields must satisfy some very constraining conditions. In fact, in this case, the
2-step distribution µ on Ω2 (of which the synchronous field π is a marginal) must
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be of the kind

(4) µ(x, y) = exp[
∑
st

hst(xs, yt) +
∑
s

hs(xs) +
∑
s

hs(ys)]/Z .

with with hst(a, b) = hts(b, a) for all s and t in S and all a, b in F .
Since this class is to small to model the distributions which are needed in practice,

the simpler way to enlarge it while remaining within a synchronous context was to
consider Markov chains of higher order as we did. The condition of k-periodicity
was enough to guarantee the feasibility of the algorithms in the applications, so
that the practical problems linked to non-reversibility are successfully addressed..

The objective of the remaining is to study the representation of Gibbs fields by
synchronous distributions in Sk(F, S). We shall exhibit an immersion of Sk(F, S)
into P+, and show that this immersion is onto when k = |S|. In the particular case
of local potential, we shall obtain uniform estimates with respect to |S|, which will
be used for proving a local identifiability theorem in the case of infinite S.

3. Representation of Gibbs distributions by synchronous ones.

3.1. A parametrization of synchronous distributions by a potential. We
now describe a framework under which a synchronous field may be defined with
the help of a potential.

If a ∈ F , every Gibbs distribution on Ω may be uniquely written under the form
πUa = exp(−Ua)/Z with

Ua(x) =
∑
C∈S

uaC(x),

where uaC is a function such that

i- uaC only depends on xs, s ∈ C.
ii- uaC(x) = 0 whenever xs = a for some s ∈ C.

A family of functions u = (uC , C ⊂ S) which satisfies condition (i-) is called a
potential. If (ii-) is also true for some a, one says that u is normalized with respect
to a. When uC ≡ 0 for |C| > k, one says that the range of u is bounded by k.

If a potential u is given, the associated energy is U =
∑
C uC , and we shall also

denote by πu the Gibbs field πU . We give a construction for approaching πu by a
synchronous distribution when u has range bounded by k. We assume that some
ordering has been chosen on every subset C ⊂ S. When writing C = {c1, . . . , cl},
we implicitely assume that the elements have been numbered consistently with it
(cp < cp+1).

If u have range smaller than k, we define an energy on Ωk, denoted Ũk as
follows. First, consider C ⊂ S with |C| ≤ k: C = {c1, . . . , cl}, l ≤ k. For
X = (x1, . . . , xk) ∈ Ωk set

(5) ũkC(X) =
1

k

k−1∑
p=0

uC(xpc1 , . . . , x
p+l−1
cl

),

where superscripts must be understood modulo k in the set {1, . . . , k}. (We shall
use this convention throughout this paper without making any new reference to it).
We now define, for X ∈ Ωk,

(6) Ũk(X) =
∑
C⊂S

ũkC(X).
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For λ, λ′ ∈ F we put d(λ, λ′) = 1 if λ 6= λ′ and 0 if not. For x, y ∈ Ω, we denote
by dS(x, y), or by d(x, y) when no confusion is possible, the quantity

∑
s∈S d(xs, ys).

Then, for X = (x1, . . . , xk) ∈ Ωk, we set

(7) V (X) =

k∑
p=1

dS(xp, xp+1).

Finally, with the notations above, we define, for every positive number, α, the
distribution µαk,u on Ωk by

(8) µαk,u(X) =
1

Zαk,U
exp

[
−αV (X)− Ũk(X)

]
.

We leave to the reader to check that

Proposition 1. For α > 0 and all potential u with range at most k, µαk,u is in

Dk(F, S).

We denote by ναk,u the element of S(F, S) which is associated to µαk,u, ie. the
first marginal of µαk,u. Everytime it will not induce confusion, we shall drop some of

the indices α, k or u to simplify the notations. Since Ũk(x, . . . , x) = U(x), and the
term −αV (X) in (8) penalizes differences between configurations xk, ναk,u converges

to πu when α→∞ (we prove a more precise statement in theorem 1). One obtains
in this way that Sn is dense in P+.

For a potential u = (uC), we let |u| be the smallest number M such that, for all
x, y ∈ Ω, for all C ⊂ S,

|uC(x)− uC(y)| ≤M
∑
s∈C

d(xs, ys).

We also let Ns(u) be number of sets C such that uC 6≡ 0 and s ∈ C and N(u) the
maximum of (Ns(u)).

Our first results estimate the proximity between πu and ναu . We have,

Theorem 1. Assume that Λ is an energy function on Ω and Λ̃ an energy function
on Ωk satisfying, for X = (x1, . . . , xk) ∈ Ωk

|Λ̃(X)− Λ(x1)| ≤ ∆.V (X).

Let π = πΛ be the Gibbs distribution with energy Λ, and ν be the first marginal
of the Gibbs distribution on Ωk with energy Λ̃ + αV .

Then, one has

(9) | log
ν(x)

π(x)
| ≤ |S|g(k,∆, α),

with

(10) g(k,∆, α) ≤ 2k(|F | − 1)e∆e−α

for α ≥ log k + ∆ + log |F |+ 1.

We have the corollary

Corollary 1. Let u be as above. Then∣∣∣∣log
ναk,u(x)

πu(x)

∣∣∣∣ ≤ |S|g(k, |u|N(u), α)
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This result trivially implies that ναk,u converges to πu when α tends to infinity.
For fixed α and n going to infinity, this also provides an estimate of the specific
Kullback information between these probabilities. Its proof is trivial from theorem
1 (which will be proved in the next section) and the lemma

Lemma 1. Let X = (X1, . . . , Xk) in Ωk. We have

(11) |Ũ(X)− U(x1)| ≤ N(u)|u|V (X)

To prove lemma 1, let x = x1. We have Ũ(X) − U(x) =
∑
C ũC(X) − uC(x).

Now, let C = {c1, . . . , cl}, with l ≤ k. We have

|ũC(X)− uC(x)| ≤ 1

k

k−1∑
p=0

|uC(xpc1 , . . . , x
p+l−1
cl

)− uC(x1)|

≤ 1

k

k−1∑
p=0

|u|
l∑

q=1

d(xp+q−1
cq , x1

cq )

= |u|
∑
s∈C

1

k

k∑
p=1

d(xps , x
1
s)

Hence

|Ũ(X)− U(x1)| ≤ |u|
∑
C

∑
s∈C

1

k

k∑
p=1

d(xps , x
1
s)

= |u|1
k

k∑
p=1

∑
s∈S

Ns(u)d(xps , x
1
s)

≤ N(u)|u|1
k

k∑
p=1

dS(x1, xp)

≤ N(u)|u|1
k

k∑
p=1

V (X)

= N(u)|u|V (X)

ut
Also the following estimate (proved in the next paragraph, together with theorem

1) will be useful. Let ∂Ω be the subset of Ωk containing all elements (x, . . . , x) with
x ∈ Ω.

Lemma 2. One has, with the hypotheses of theorem 1, and denoting by µ the Gibbs
distribution on Ωk with energy Ũ

(12) µαu(∂Ω | x1 = x) ≥ 1− 2nk(|F | − 1)e∆e−α.

for α ≥ log n+ log k + ∆ + log |F |+ 1.

As a consequence, we have

Proposition 2. Let µ be like in theorem 1. Let C ⊂ S and f be a function defined
on Ωk, depending only on x1

s, . . . , x
k
s with s ∈ C, such that |f(x)| ≤ 1. One has,

for x ∈ Ω,

(13) |E(f | x1 = x)− f(x, . . . , x)| ≤ k|C|(|F | − 1)e−α+∆ .
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where the expectation is with respect to µ.

Proof of proposition 2. One has

E(f | x1 = x) = E
[
E(f | x1 = x and xlt, l = 2, . . . , k, s ∈ S \ C) | x1 = x

]
,

so that it suffices to estimate

(14) E(f | x1 = x and xlt, l = 2, . . . , k, t ∈ S \ C)− f(x, . . . , x),

for given values of xlt, l = 2, . . . , k, t ∈ S \ C.
Let µC be the distribution on ΩkC , equal to the conditional distribution for µ

given xlt, l = 1, . . . , k, t ∈ S \ C. It is the Gibbs field in P+(F,C) with energy

Λ̃C(y1
C , . . . , y

k
C) = Λ̃(y1, . . . , yk),

configurations yl being extended outside C by ylt = xlt, t 6∈ C. Define ΛC(yC) =

Λ̃C(yC , . . . , yC). Then Λ and Λ̃ satisfy the hypotheses of theorem 1 with the same
value of ∆. The expectation in equation (14) is the conditional expectation for µC
given that x1

C = xC . Thus, denoting by EC the expectation with respect to µC ,

EC(f | x1
C = xC)− f(xC , . . . , xC) = EC(f ; XC 6∈ δΩC | x1

C = xC)

≤ 1− µ(δΩC | x1
C = xC)

≤ k|C|(|F | − 1)e−α+∆ .

ut
Remark: Our purpose is to study the parametrization u → ναk,u for fixed α. We
do not aim at approaching Gibbs fields by synchronous ones, but to directly use
synchronous modeling in practice. However, for large enough α, we show that
this parametrization shares some properties of the Gibbsian parametrization, in
particular the fact of being one-to-one.

3.2. Proof of theorem 1 and lemma 2. We have

ν(x)

π(x)
=

∑
X ; x1=x e

−αV (X)−Ũ(X)+U(x)

(
∑
X e
−αV (X)−Ũ(X)/

∑
x1 e−U(x1))

which yields

(15)
ν(x)

π(x)
≤

∑
X ; x1=x e

−(α−∆)V (X)

(
∑
X e
−(α+∆)V (X)−U(x1)/

∑
x1 e−U(x1))

.

But ∑
X

e−(α+∆)V (X)−U(x1) =
∑
y

e−U(y)
∑

X ; x1=y

e−(α+∆)V (X) ;

Since, as one can easily get convinced,∑
X ; x1=y

e−(α+∆)V (X)

does not depend on the configuration y ∈ Ω, (15) simplifies in

ν(x)

π(x)
≤
∑
X ; x1=x e

−(α−∆)V (X)∑
X ; x1=x e

−(α+∆)V (X)
.

Theorem 1 is a consequence of the lemma
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Lemma 3. For x ∈ Ω and β ∈ R, one has, letting f = |F |,

(16)
∑

X∈Ωk ; x1=x

e−βV (X) =

[
Bk(β)

f

]n
where

Bk(β) = (f − 1)
(
1− e−β

)k
+
(
1 + (f − 1)e−β

)k
.

and V (x1, . . . , xk) =
∑
s∈S

∑k
p=1 d(xps , x

p+1
s ).

Indeed, using (16) we see that we can set

(17) g(k,∆, α) = log
Bk(α−∆)

Bk(α+ ∆)
.

The upper bound given in (10) relies on the following elementary lemma

Lemma 4. If 0 ≤ x ≤ log 2/k, then (1 + x)k ≤ 1 + 2kx.

(of which we leave the easy proof to the reader). Using the facts that Bk(β) is
smaller than f(1 + (f −1)e−β)k, that the denominator in (17) is always larger than
f (see below), and that log(1 + x) ≤ x, we get the estimate (10).

Let’s describe how lemma 3 may be obtained. We have

A =
∑

X ; x1=x

e−βV (X)

=
∑

X, x1=x

exp

(
−β

k∑
p=1

n∑
l=1

d(xpl , x
p+1
l )

)

=

n∏
l=1

 ∑
x2
l∈F,...,x

k
l ∈F

exp

(
−β

k∑
p=1

d(xpl , x
p+1
l )

)
=

 ∑
c2,...,ck∈F

exp

(
−β

k∑
p=1

d(cp, cp+1)

)n .
where in the last term c1 is fixed as an arbitrary element of F , the result being
independent of its value; A is therefore equal to 1

f

∑
c1,...,cn∈F

exp

(
−β

k∑
p=1

d(cp, cp+1)

)n ,
where f = |F |. We now check that

(18)
Bk(β) :=

∑
c1,...,ck∈F exp

(
−β
∑k
p=1 d(cp, cp+1)

)
= (f − 1)

(
1− e−β

)k
+
(
1 + (f − 1)e−β

)k
Recall that d(ci, cj) = 1− δcj (ci) and that by convention ck+1 is equal to c1. To

evaluate B, we order the terms by the number of indices p such that cp 6= cp+1.
If this number is q, we have

(
k
q

)
possibilities for choosing them. This yields q + 1

regions in the set {1, . . . , q+1}. Denote by aq the number of ways for coloring these
9



regions, ie. the number of (q + 1)-uples (γ1, . . . , γq+1) in F such that γp 6= γp+1

and γq+1 = γ1. We have

(19) Bk(β) =

k∑
q=0

(
k
q

)
aqe
−qβ .

To compute aq, let bq denote the number of ways of choosing γ1, . . . , γq+1 in
F such that γp 6= γp+1, but without the constraint γq+1 = γ1. For this, we can
choose any γ1 in F , and then any γi in F \ {γi−1}. Thus, bq = f(f − 1)q. For ap,
assume we have chosen the values of γ1, . . . , γq−1. If γq−1 = γ1, it remains f − 1
possibilities for fixing γq, and f − 2 if γq−1 6= γ1. Thus, one has the identity :

aq = (f − 1)aq−2 + (f − 2)(bq−2 − aq−2) = aq−2 + (f − 2)f(f − 1)q−2.

Using a0 = f , and a1 = 0, we get aq = (f − 1)q + (−1)q(f − 1). Equation (19)
then gives formula (18). Note that we always have Bk(β) > a0 = f , and since
aq ≤ (f − 1)[1 + (f − 1)q−1], we have

Bk(β) ≤ (f − 1)(1 + e−β)k + (1 + (f − 1)e−β)k ≤ f(1 + (f − 1)e−β)k .

ut

We now prove lemma 2. We have

µαU (Ω \ δΩ | x1 = x) =

∑
Y ∈Ωn, y1=x e

−Λ̃(Y )−αV (Y ) − e−Λ(x)∑
Y ∈Ωn, y1=x e

−Λ̃(Y )−αV (Y )
,

which is smaller than{
2
|F | (1 + e−α+∆)k + (1− 2

|F | )
(
1 + (|F | − 1)e−α+∆

)k}n − 1{
2
|F | (1 + e−α−∆)k + (1− 2

|F | ) (1 + (|F | − 1)e−α−∆)
k
}n ,

which yields equation (12) after an application of lemma 4. ut

3.3. Representation by elements of Sk: general potentials. In this section,
we study the functions u → ναu for potentials u of range smaller than k. More
precisely, let a ∈ F and let a ∈ Ω be the configuration with state a at every site.
Denote by Rk the set of potentials, normalized with respect to a, which have range
bounded by k. We identify Rk with the vector space∏

|C|≤k

R(|F |−1)|C| ,

and represent its elements by u = (uC,xC = uC(xC) C ⊂ S, |C| ≤ k, xC ∈
(F \ {a})C). If u ∈ Rn, its energy U = Uu has been defined by

U(y) =
∑
C

uC(yC) =
∑
C,xC

uC,xC δxC (yc).

For u ∈ Rk, we set ‖u‖ = maxC,xC uC(xC), and always use the associated operator
norm for linear mapping between Rk and Rk′ .

Note that we have also defined another norm for u, namely |u| which was defined
as the smallest number M such that, for all C ⊂ S, x, y ∈ Ω,

|uC(x)− uC(y)| < M
∑
s∈C

d(xs, ys) .

10



For potential u in Rk, we have

‖u‖/k ≤ |u| ≤ 2‖u‖ .

For a configuration x ∈ Ω, denote by xaC the configuration with state xs at site
s for s ∈ C, and with state a at s for s 6∈ C.

To u ∈ Rk and α > 0, we have associated a synchronous random field ναu ∈
S(F, S). To describe the relation btween u and ναu , we consider the mapping

ψαk : Rk −→ Rk

u → (− log
ναu (xaC)

ναu (a)
, C ⊂ S, |C| ≤ k, xs ∈ F \ {a}, s ∈ C)

Let k be fixed and consider the family ψα of endomorphisms of Rk. The first re-
mark is that, when α→∞, ψα(u) converges to a limit ψ∞(u), because ναu converges
to πu. The expression of ψ∞, which comes from a straightforward computation, is
given by the next proposition.

Proposition 3. The limit of ψα when α →∞ is a linear, invertible, mapping on
Rk, given by

(20) ψ∞(u) =

(∑
B⊂C

uB,xB , C ⊂ S, |C| ≤ k, xs ∈ F \ {a}, s ∈ C

)
.

One has
(21)

(ψ∞)−1(u) =

(∑
C⊂B

(−1)|B−C|uC,xC , B ⊂ S, |B| ≤ k, xs ∈ F \ {a}, s ∈ B

)
.

For u ∈ Rk, denote by duψ
α and d2

uψ
α the first and second derivative of ψα

with respect to u. We first study the behaviour of these derivatives for large α.
The following theorem is proved in he next section :

Theorem 2. Let n = |S|. For all M > 0, there exists a number αkn(M), such
that for all u ∈ Rk, with |u| ≤ M , for all α > αkn(M), the differential duψ is
invertible, and

(22) 2k−2 ≤ ‖(duψ)−1‖ ≤ 2k+1.

One may take

(23) αkn =
(
n−1
k−1

)
M + (k + 3) log 2 + log(k2dimRk) .

Moreover, the norm of the second derivative of ψ is always bounded by 2(dimRk)2.

As a consequence, we obtain the following fact; denote by Ok(M) the set of all
potentials u in Rk such that |u| < M . Moreover, denote by Bk(u, r) the open ball
(for the norm ‖u‖ in Rk) with center u and radius r.

Theorem 3. There exists two positive numbers, rkn and ρkn, depending on k
and n = |S|, such that, for all M > 0, for all α > αkn(M), for all u such that
Bk(u, rkn) ⊂ Ok(M), ψα is a diffeomorphism from some open set V ⊂ Bk(u, rkn)
onto its image, which contains the open ball Bk(ψα(u), ρkn).

Furthermore, there exists αkn(M) ≥ αkn(M) such that, for all α > αkn(M), ψα

restricted to Ok(M) is one to one.
11



We therefore obtain a result stating that, at least for bounded potential and for
large enough α, our parametrisation is one-to-one. At this level of generality, α still
depends on the cardinality n of the set S, which may seem is unsatisfying, given
the fact that Gibbs field models usuually defined from finite range potentials are
formally not dependent on S. We will see later how this can be addressed in the
case of regular lattices, and local potentials. The present result a direct consequence
of the inverse mapping theorem, of which we take the following standard version :

If ϕ is a function (defined on an open subset of a Banach space X ,
into a Banach space Y), with ϕ(0) = 0, d0ϕ = I, and if δ > 0 is
such that, ϕ is defined on the open ball B(0, δ), and

(24) max(|x|, |x′|) < δ ⇒ |x− ϕ(x)− x′ + ϕ(x′)| < c|x− x′| ,

with c < 1 then, there is an open neighbourhood of 0, V, in X such
that ϕ is a diffeomorphism from V onto the open ball B(0, δ(1− c))
on Y.

Applying this theorem to

ϕ( . ) = (du0
ψ)−1[ψ( . + u0)− ψ(u0)] ,

and using the fact that ‖d2
uψ‖ < C in Rk, with C = 2(dimRk)2, we see that the in-

equality (24) is true for ϕ with c = 2Cδ‖(du0
ψ)−1‖. Taking δ = (4C‖(du0

ψ)−1‖)−1,
which is smaller than rkn = 2−k/C for α > αkn(M), we obtain the fact that there
exists some open set included in Bk(u0, rkn) which is diffeomorphic, by ψα, to the
set

ψ(u0) + (du0
ψ).Bk(0, δ/2) .

Since δ/2 > 2−k−4/C and ‖(du0
ψ)−1‖ ≤ 2k+1, we see that this set contains the

ball Bk(ψ(u0), ρkn) with

(25) ρkn = 2−2k−5/C .

To prove the second claim of proposition 3, assume that, for all α′ > αkn(M),
there exists an α > α′ and two potentials u and u′ in Rk, with max(|u|, |u′|) ≤
M and ψα(u) = ψα(u′). One can then construct a sequence αp → ∞ and two
sequences up and u′p, which may be assumed to converge (to u∞ and u′∞), such
that

ψαp(up) = ψαp(u′p) .

Since ψ∞ is one-to-one, we must have u∞ = u′∞, and we obtain the fact that there
exists no neighbourhood of u∞ on which ψα is a diffeomorphism for all large enough
α, which is a contradiction to the preceding result.

Thus, there exists an large enough α(M) such that, for all α > α(M), ψα is a
diffeomorphism.

ut

We also have this interesting corollary, which is valid for fixed u :

Corollary 2. Let a ∈ F . If u ∈ Rk is given, then ψαk is locally invertible at u,
excepted for a finite number of α.

12



Proof: The function γ(α,u) which associates to (α,u) ∈ R ×Rk the determinant
of dUψ

α is analytic (it is a rational function of the variables eα and euC,xC ). The
fact that, for fixed u this function cannot vanish if α > αk,n(u), implies that the
set of α such that γ(α,U) = 0 is finite. ut

And, as a second corollary, the representation theorem

Theorem 4. If S is a finite set of sites, of cardinality n, and F is a finite state
space, then

Sn(F, S) = P+(F, S).

(every Gibbs field is a n-reversible synchronous random field).

Proof: It suffices to show that ⋃
α

ψαn(Rn) = Rn,

since this means that for every Gibbs distribution π on Ω, there exists an n-periodic
synchronous random field ν such that, for all x ∈ (F \ {a})S and all B ⊂ S,

log
ν(xaB)

ν(a)
= log

π(xaB)

π(a)
,

which is exactly

log
ν(x)

ν(a)
= log

π(x)

π(a)
,

for all x ∈ Ω, which implies π = ν.
Thus, let v0 ∈ Rn, and set u0 = (ψ∞n )−1(v0). We know that ψαn(u0) converges

to v0, so let α0 be such that, for all α > α0,

‖ψαn(u)− u0‖ < ρnn/2 ,

where ρnn is the number given in theorem 3 for k = n. Let M be large enough
so that the ball Bn(u0, rnn) is included in On(M). Then, for all α > αnn(M), we
know that the ball Bk(ψαn(u0), ρnn) lies in ψαn(Rn), which implies that v0 = ψαn(u)
for some u.

3.4. Proof of theorem 2. We first study the differential of ψ in u, duψ
α
k . Denote

by K̃C,yC the function, defined on Ωk by

K̃C,yC (x1, . . . , xk) =
1

k

k−1∑
p=0

l∏
q=1

δycq (xk+q
cq ),

where C = {c1, . . . , cl}, so that Ũ given in equation (6) may be written

Ũ(X) =
∑
C⊂S

∑
yC

uC,yC K̃C,yC (X).

We have (here and in the sequel, Eαu refers to expectation with respect to µαu,

the Gibbs field on Ωk with energy Ũ + αV ):

Proposition 4.

(26)
d

duC,yC
log

ναu (xaB)

ναu (a)
= EαU [K̃C,yC | x1 = a]− EαU [K̃C,yC | x1 = xaB ].

13



(27)
d2

duC,yCduC′,zC′
log

ναu (xaB)

ναu (a)
= covαu(K̃C,yC , K̃C′,zC′ | x

1 = a)−covαu(K̃C,yC , K̃C′,zC′ | x
1 = xaB) .

Proof: These identities are applications of the following well-known result: let
Pθ(ω1, ω2) be a probability distribution over the finite set Ω1 × Ω2, and let Qθ be
its marginal over Ω1. Assume that Pθ is twice differentiable with respect to the
parameter θ ∈ Rd. Then, one has :

d

dθ
logQθ(ω) = EP (

d

dθ
logQθ | ω1 = ω).

d2

dθ2
logQθ(ω) = varP (

d

dθ
logPθ | ω1 = ω) + EP (

d2

dθ2
logPθ | ω1 = ω).

We apply this result with Pθ = µu and Qθ = νu. The computation of the
derivatives of logµu with respect to u is easy, since µu is an exponential family of
probability measures: one gets

d

duC,yc
logµ(x1, . . . , xn) = E[K̃C,yC (x1, . . . , xn)]− K̃C,yC (x1, . . . , xn),

and
d2

duC,yCduC′,zC′
logµ(x1, . . . , xn) = cov(K̃C,yC , K̃C′,zC′ ).

Taking conditional expectations yields the expressions in proposition 4. ut
Assume that |u| ≤ M . We have defined N(u) to be the maximum, over all

s ∈ S, of the number of sets C ⊂ S such that s ∈ C and uC 6= 0. This number is
smaller than

(
n−1
k−1

)
for u ∈ Rk. Set ∆ = M

(
n−1
k−1

)
, which is therefore larger than

N(u)|u|. In this proof, we shall always assume that α > 2 log k + |F |+ ∆ + 1.

According to lemma 2 and proposition 4, − d
duC,yC

log
ναu (xaB)
ναu (a) is, for large enough

α, close to

K̃C,yC (xaB , . . . , x
a
B) =

∏
s∈C

δys [(x
a
B)s],

which is zero C 6⊂ B, and
∏
s∈C δys(xs) otherwise (note that, by definition of Rk,

ys 6= a). This is in fact the coefficient at the (B, xB) line and (C, yC) column of
the mapping ψ∞ considered as a matrix.

Now, write

duψ = ψ∞ +R,

which defines R. If ‖R(ψ∞)−1‖ ≤ 1, the system λ′ = (ψ∞ +R)λ, for λ′ ∈ Rk and
λ ∈ Rk, yields

λ = (ψ∞)−1λ′−(ψ∞)−1Rλ = (ψ∞)−1(λ′−[R(ψ∞)−1]λ′+· · ·+(−1)q[R(ψ∞)−1]qλ′+· · · )
which uniquely defines λ. Moreover, we have

‖λ‖ ≤ ‖(ψ∞)−1‖
1− ‖R(ψ∞)−1‖

.

If λ′ = ψ∞(λ) equation (21) implies that |λC,xC | ≤ 2|C|‖λ′‖, which yields
‖(ψ∞)−1‖ ≤ 2k.
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Moreover, fixing a C with |C| = k, and letting λ′B,xB = 1 is B ⊂ C and |C|− |B|
is even, and 0 otherwise, we see that the norm of (ψ∞)−1 is larger than the number
of subsets of C which a cardinality of the same parity as |C|, which is 2k−1. Since
a lower bound to ‖(ψ∞ +R)−1‖ is

‖(ψ∞)−1‖
(

1− 2‖R(ψ∞)−1‖
1− ‖R(ψ∞)−1‖

)
,

the inequality
‖R(ψ∞)−1‖ < 1/4

is more than enough for (22) to be true. Therefore, we shall choose α such that
‖R‖ ≤ 2−k−2.

To estimate ‖R‖, we use proposition 2, since every component of the matrix R is
the sum of two terms which have the form estimated in equation (14), with |C| ≤ k.
We see that, for λ ∈ Rk, ‖λ‖ = 1,

(28) ‖Rλ‖ ≤ max
B,yB

∑
C,xC

RC,xC (B, yB)λC,xC ≤ 2k2e−α+∆dimRk ,

so that the first part of theorem 2 comes if we take

(29) α > αkn = log(2k+22k2ne∆dimRk) .

We now estimate the second derivative of ψα. Denote, for short, byA(C,yC),(C′,zC′ )
(B, xB)

the expression of the the second derivative of the corresponding coefficient of ψ
given in equation (27). The norm of the second derivative of ψ is the supremum,
for λ, λ ∈ Rk, ‖λ‖ = ‖λ‖ = 1, of the norm of the vector∑

(C,yC),(C′,zC′ )

λC,yCλC′,zC′A(C,yC),(C′,zC′ )
(B, xB)

in Rk, that is

max
B,xB

∑
(C,yC),(C′,zC′ )

λC,yCλC′,zC′A(C,yC),(C′,zC′ )
(B, xB) .

It is smaller than

(dimRk)2 maxA(C,yC),(C′,zC′ )
(B, xB) ≤ 2(dimRk)2 .

ut

3.5. Representation by elements of Sk: case of local potentials on the
integer lattice. In equation (23), which gives the value of αkn(u), two terms
depend on n, namely

dimRk =

k∑
l=1

(nl ) (|F | − 1)l,

and
(
n−1
k−1

)
, which is the upper bound of N(u) for u ∈ Rk. We can get rid of this

dependancy by specifying additional constraints to the potential.
We consider the case when S is a subset of Zd, or S is a d-dimensional torus

S =
∏d
i=1 Z/niZ. For s ∈ S, we let |s| = maxdi=1 |si| (taking the representation of

si of smaller modulus in the case of the torus. We say that a potential u on S has
radius h if uC,xC = 0 for all C with diameter larger than h. Denote by Hh the set
of potentials with radius h. Setting k = (2h)d, we have Hh ⊂ Rk. When u ∈ Hh,
we have N(u) ≤ 2k which is independent of n. We let k = (2h)d in the following.

15



We may define a mapping ψαh , from on Hh into Hh, by associating to u the
collection of the − log ναk (xaB)/ναk (a) for diam(B) ≤ h. We can carry over all details
of the proof of theorem 2 withHh instead ofRk, but the estimate of ‖R‖ in equation
(28) can be significantly improved. In the present case, one has (cf. prop 2)

Proposition 5. Let u ∈ Hh, α > 0, and µ = µαk,u, with k = (2h)d. Let B1, B2 ⊂ S
and f be a function defined on Ωk, depending only on x1

s, . . . , x
k
s with s ∈ B1, such

that 0 ≤ f(x) ≤ 1. Let x, y ∈ Ω be such that xs = ys for all s ∈ S \B2. Then

(30) |E(f | x1 = x)− E(f |x1 = y)| ≤ k|B1|γ
d(B1,B2)

h −2
∗ .

where the expectation is with respect to µ, and γ∗ = 2k2e−α+N(u)|u|.
Moreover, if γ∗ < 1, and g is another function depending on x1

s, . . . , x
k
s with

s ∈ B2, such that 0 ≤ g(x) ≤ 1, one has

(31) |cov(f, g |x1 = x)| ≤ |B1||B2|γ
d(B1,B2)

h −2
∗ .

We prove this proposition at the end of this section. Fix an M > 0, and consider
u such that |u| < M . Applying proposition 5 to R, together with the estimate of
proposition 2, which still holds, we get that, if |C| ≤ k

|RC,xC (B, yB)| ≤ 2k2 min

(
e−α+∆, γ

d(B,C)
h −2

∗

)
,

in which we may take for ∆ an upper bound for N(u)|u| for u ∈ Hh and |u| ≤M ,
that is ∆ = ∆(h,M) = 2kM (with k = (2h)d).

We must estimate A =
∑
C,xC

|RC,xC (B, yB)|. Pick some site s0 ∈ B. Since only

at most |F |k configurations xC are concerned for each C, and each site s is contained
in at most 2k sets of diameter less than h, there exists a constant K(d, h, |F |) such
that

A ≤ K.
∑
s∈S

min(e−α+∆, γ
d(s,s0)
h −4

∗ ).

(the letter K stands for a generic constant, of which we shall not trace the value).
We have, for p > 4h,∑

s,d(s,s0)>p

γ
d(s,s0)
h −4

∗ <
∑
q>p

∑
s,d(s,s0)=q

γ
q/h−4
∗ <

∑
q>p−4h

(2q+8h)dγ
q/h
∗ < K(d)(p)dγ

p/h−4
∗ .

This implies, taking p = 5h, A ≤ K(d, |F |, h)[(5h)de−α+∆ + γ
1/h
∗ ]. Since γ∗ =

C(h)e−α+∆, there exists α0
h independent on |S|, such that ‖R‖ < 2−k−2 for α > α0

h.
The rest of the proof of theorem 2 remaining unchanged, we have proved the first
part of

Theorem 5. Assume that S ⊂ Zd, or S =
∏d
i=1 Z/niZ. For all M > 0, there

exists αh(M) > 0, independent on |S|, such that, for all α > αh(M), for all u ∈ Hh
with |u| < M , duψ

α is invertible and

2k−2 ≤ ‖(duψα)−1‖ ≤ 2k+1,

with k = (2h)d.
Moreover, there exists a constant Ch, independent on |S|, such that, for α >

αh(M),
‖d2

uψ
α‖ ≤ Ch,
16



This theorem therefore states that the model is identifiable for α larger than a
lower bound which does not depends on the size of S.
Proof of theorem 5:

It remains to prove the second part, that is, to estimate the second derivative
of ψ with a bound which does not depend on |S|. Denote, as in paragraph 3.4, by
A(C,yC),(C′,zC′ )

(B, xB) the partial second derivative of ψ with respect to uC,yC and
uC′,zC′ . According to proposition 4, it is given by

(32) covαu(K̃C,yC , K̃C′,zC′ | x
1 = a)− covαu(K̃C,yC , K̃C′,zC′ | x

1 = xaB) .

By proposition 5, this quantity may be bounded in two ways. First, each covari-
ance term is smaller than a quantity of the kind

K(h, |F |)γ
d(C,C′)

h −2
∗ .

Moreover, since (32) also involves differences between conditional expectations given
a or xaB , it is also smaller than

K(h, |F |)γ
min(d(C,B),d(C′,B))

h −2
∗ .

The norm of the second differential d2
uψ is given by

max
B,xB

∑
(C,yC),(C′,zC′ )

|A(C,yC),(C′,zC′ )
(B, xB)|,

and is therefore smaller than

K(h, |F |)
∑

(C,yC),(C′,zC′ )

min

(
1, γ

d(C,C′)
h −2

∗ , γ
min(d(C,B),d(C′,B))

h −2
∗

)
.

Using the fact that, for each C, there is at most |F |k configurations xC ∈ ΩC , that

each site s may be element of at most 2(2h)d sets C, the above sum is smaller than

K(h, |F |)
∑
s,t∈S

min

(
1, γ

|s−t|
h −2
∗ , γ

min(|s−s0|,|t−s0|)
h −2

∗

)
,

where s0 is any fixed element of B (in all the preceding estimates, K(h, |F |) means
a function of only h and |F |, but for which the expression may vary from line to
line).

Let η = γ
1
h
∗ , and denote by G the sum above. We have, noting that, for each

s ∈ S, there are at most 2d(2p+ 1)d−1 sites t such that |t− s| = p,

G ≤
∑
p≥2h

22d(p+1)dηp−2
∑
s∈S

min(1, η|s−s0|−2p)+
∑
p<2h

22d(p+1)d
∑
s∈S

min(1, η|s−s0|−p−2) .

But
∑
s∈S min(1, η|s−s0|−2p) is smaller than

(2p)d +
∑
q≥0

2d(2p+ 2q)d−1ηq

and this is smaller than a polynomial in p, so that the first sum in the right-hand
term of the above inequality is bounded by a constant, depending on h, |F | and γ∗,
and is a increasing function of γ∗ < 1. Since it is clearly the same for the second
sum, we obtain the fact that G is bounded by a increasing function of γ∗ (and thus
decreasing in α), which finishes the proof of theorem 5. ut
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We also can obtain a more precise measure of the difference between ψαh and
its limit ψ∞h , by the following proposition, which is a refinement of lemma 1. The
result is an estimate which is again independent on |S|.

Proposition 6. We have, for all u ∈ Hh,

(33) ‖ψαh (u)− ψ∞h (u)‖ ≤ (4h)dg(h, 2k|u|, α)

with the same g as in theorem 1.

Proof : We must estimate the quantity

Q = log
ναk,u(xaB)

ναk,u(a)
− log

πu(xaB)

πu(a)

for diam(B) < h.
We have (dropping indices α, k,u),

(34)
ν(xaB)π(a)

π(xaB)ν(a)
=

∑
X ; x1=xaB

e−αV (X)−Ũ(X)+U(xaB)∑
X ; x1=a e

−αV (X)−Ũ(X)+U(a)
,

where U and Ũ are the energies associated to u on Ω and Ωk, as in section 3.1. Since
u is normalized with respect to a, we see from equation 5 that ũC(xaB , x

2, . . . , xk) =

0 for all C such that C ∩B = ∅. This implies that Ũ(a, x2, . . . , xk) = U(a) = 0 and
that

Ũ(xaB , x
2, . . . , xk) =

∑
C,C∩B 6=∅

ũC(xaB , x
2, . . . , xk) .

Let B be the set of all s ∈ S such that dist(s,B) ≤ h. The energies U and Ũ in
(34) only depend on xps for p = 1, . . . , k and s ∈ B. For B′ ⊂ S, denote by VB′ the
function ∑

s∈B′

k∑
p=1

d(xps , x
p+1
s ) ,

and for X = (x1, . . . , xp) ∈ Ωk, denote by XB′ the p-uple formed with the restric-
tions (x1

B′ , . . . , x
p
B′). With this notation, one has

(35)

ν(xaB)π(a)

π(xaB)ν(a)
=

∑
XBc ; x1

Bc
=aBc

e−αVBc (X)
∑
XB ; x1

B
=xB

e−αVB(X)−Ũ(X)+U(xaB)∑
XBc ; x1

Bc
=aBc

e−αVBc (X)
∑
XB ; x1

B
=aB

e−αVB(X)

This implies that the ratio ν(xaB)π(a)/π(xaB)ν(a) is always smaller than the
maximum and larger than the minimum of

(36)

∑
XB ; x1

B
=xB

e−αVB(X)−Ũ(X)+U(xaB)∑
XB ; x1

B
=aB

e−αVB(X)
.

Letting ∆ = 2k|u| ≥ N(u)|u|, we see, as in the proof of lemma 1, that the logarithm
of the expression in (36) is, in absolute value, smaller than |B|g(k,∆, α), so that
(33) comes from the fact that |B| ≤ (4h)d. ut

This proposition enables us to prove that ψh is in fact a diffeomorphism on the
compact subsets of Hh for large enough α independent on |S|. Denote by Oh(M)
the set of potential u ∈ Hh with |u| < M .
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Theorem 6. For all M > 0, there exists an αh(M) > αh(M) such that, for all
α > αh(M), the restriction of ψαh to Oh(M) is a diffeomorphism onto its image.

Indeed, using the inverse mapping theorem for ψαh , we see that there exists
ε > 0 (depending on M , h, but not on |S| and α) such that if max(|u|, |u′|) < M ,
‖u − u′‖ < ε and u 6= u′, then ψαh (u) 6= ψαh (u′). Moreover, since ψ∞h is linear,
invertible, and ‖(ψ∞h )−1‖ ≤ 2k, we have

‖u− u′‖ ≤ 2k‖ψ∞h (u)− ψ∞h (u′)‖ .

Finally, for large α (independent on |S|), we have ‖ψαh (u) − ψ∞h (u)‖ ≤ 2−k−1ε
for ‖u‖ < M . These facts together imply that one cannot have, for large α,
ψαh (u) = ψαh (u′) and u 6= u′.

3.6. Dobrushin’s comparison theorem. Since the proof of proposition 5 is
based on Dobrushin’s comparison theorem ([Dobrushin 1968]), as reformalized in
([Föllmer 1982]), we give a brief account of the results. Consider an at most count-
able set I and the associated configuration space E = F I . If π and π are two
probability distributions over E, an estimate for π and π is a family (a(i), i ∈ I) of
positive numbers such that, for all function f on E, which only depends on a finite
number of coordinates, ∣∣∣∣∫ fdπ −

∫
fdπ

∣∣∣∣ ≤∑
i

a(i)ωi(f) ,

where ωi(f) denotes the oscillation of f at site i.
If π is a Gibbs distribution on E, denote by πi(dxi |xj , j 6= i) the conditional

distribution at site j ∈ I given the state of all other sites. Define the matrix
Γ = (γ(i, j)) by

γ(i, j) = ‖πi( . |x)− πi( . | y)‖ = sup
1

2

∑
λ∈F

|πi(λ|x)− πi(λ|y)| ,

the supremum being computed over all x, y ∈ E with xk = yk for k 6= j.
Finally, π and π being given, define the family b(i) , i ∈ I by

b(i) =

∫
‖πi( . |x)− π( . |x)‖π(dx) .

Lemma 5 ([Dobrushin 1968], [Föllmer 1982]).

1. If a is an estimate for π and π, the the vector aΓ + b is also an estimate.
2. Assume that

∑
j γ(i, j) ≤ γ∗ < 1 for all i. Let Ξ = (ξ(i, j)) =

∑
p≥0 Γp

Then, for any two functions f and g depending on a finite number of coor-
dinates,

(37) covπ(f, g) ≤ 1

4

∑
i,j

ξ(i, j)ωi(j)ωj(g).

We now can give the proof of proposition 5
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3.7. Proof of proposition 6. Denote by µ1 (resp. µ2) the distribution µ( . |x1 =
x) (resp. x1 = y). Both may be seen as Gibbs distributions on Ωk−1, and we shall
apply lemma 5 with I = {2, . . . , k}×S, π = µ1 and π = µ2. We must compute the
matrix Γ and the vector b for these distributions.

For the vector b, fix a site i = (l, s) ∈ I. By construction of the potential ~̃u,
the conditional distributions for µ at i given all other sites in {1, . . . , k} × S only
depends on sites (l′, s′) with |s − s′| ≤ h. This implies in particular that b(i) = 0

whenever s 6∈ B̃2, where B̃2 is the union of all C ⊂ S such that diam(C) ≤ h and

C ∩B2 6= ∅. If s ∈ B̃2, we have b(i) ≤ 1.
We have a straightforward estimate of γ(i, j) for µ1. Indeed, At site (l, s), the

conditional expectation only depends on sites (l′, t) such that |s − t| ≤ h, so that
γ(i, j) = 0 if |s − t| > h. Moreover, whatever the external condition is, the condi-
tional distribution for µ1 at site i = (l, s) is almost equal, for large α, to the Dirac
measure at state xs. Applying estimates such as the ones of lemma 2 in the case
of |S| = 1, we have

γ(i, j) ≤ 2e−α+N(u)|u| .

when |s− t| ≤ h.
Finally, if f is as in proposition 5, one has ωi(f) = 0 for all i = (l, s) with s 6∈ B1.
Start with the initial estimate ai ≡ 1 for µ1 and µ2, and let D =

∫
fdµ1−

∫
fdµ2.

Iterating lemma 5 one has, for all integer p > 0:

D ≤
k∑
l=2

∑
s∈B1

(
aΓp +

p−1∑
q=0

bΓq

)
(l, s) .

Let γ∗ = maxi
∑
j γ(i, j): γ∗ ≤ 2k2e−α+N(u)|u|. Then, one has (Γp)(i, j) ≤ γp∗ if

i = (l, s) and j = (i′, s′) with |s− s′| ≤ ph, and (Γp)(i, j) = 0 if |s− s′| > ph. This

implies that, if p is the largest integer such that one cannot have s ∈ B1, s′ ∈ B̃2

and |s− s′| ≤ ph, ie p is the integer part of d(B1, B̃2)/h, then,

D ≤ (k − 1)|B1|γp∗ ,

which proves the first part of the proposition. The second part is almost straight-
forward from estimate (37). ut

3.8. Case of stationary local potentials. In this paragraph, we assume that S

is a d-dimensional torus S =
∏d
i=1 Z/niZ. In addition to the locality assumptions,

we may introduce the constraint that a potential u ∈ Hh is stationary, that is, for
all s ∈ S, C ⊂ S, x ∈ Ω,

(38) uC+s(Tsx) = uC(x) ,

where Tsx is the configuration y ∈ Ω such that yt = xs+t. Denote by Hsh(F, S) the
set of all stationary potentials with radius h, which is a linear subspace of Hh(F, S).

Given a stationary potential u in Hsh, we can construct an associated potential

on Ωk, ~̃u, which is stationary too. For this, a little care must be taken in the
ordering of the sets C which is assumed in equation (5), since this ordering must
be invariant by translation, ie. if the elements of C are numbered in c1, . . . , cl, and
those of C ′ = C+s in c′1, . . . , c

′
l, one must have c′p = cp+s for all p (this can always

be achieved).
We have the proposition, in which everything is obvious, by construction or by

theorem 6.
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Proposition 7. Assume that the ordering of the subsets of S is invariant by trans-
lation. Then, the application ψαh defined in section 3.5 leaves Hsh invariant.

Therefore, for all M > 0, for all α > αh(M), the set of all potential u in Hsh
such that |u| < M is diffeomorphic to its image by ψα.

This proposition will be used in the next section.

4. Case of infinite S.

Let S be an infinite, countable lattice. Gibbs fields in this case may be defined
by means of an infinite potential, which is a family u = (uC) of functions indexed
by the finite subsets of S. In the following, we assume that the reader is acquainted
with the basic definitions and properties of Gibbs fields over countable lattices (see
[Georgii 1988]).

Definition 2.1 of Dk(F, S) and Sk(F, S) remains valid in this case, since points
a. and b. are meaningful also in the infinite dimensional case. One may ask the
same question as asked in ([Geman et al 1993]) for hidden Markov random fields:
is
⋃
k Sk dense (for convergence in distribution) in the set of Gibbs fields over S,

(and thus in the set of probabilities on Ω). The answer is positive. Indeed, let π be
a Gibbs field, or more generally any field which has strictly positive marginals on
finite subsets of S. Consider a increasing sequence Sn of finite subsets of S, such
that

⋃
n Sn = S. Let πn be the random field given by:

πn = π|Sn ⊗
⊗
s6∈Sn

η,

where η is the uniform probability measure on F and π|Sn is the marginal of π on Sn.
In other terms, πn coincides with π for events which only depends on configurations
over Sn, whereas the states of sites in S \ Sn are mutually independent, with law
η, and independent of what happens on Sn. Then πn converge in distribution to π
(note that, since F is finite, the set of probability distributions on FS is compact).
Moreover, since P+(F, Sn) = S|Sn|(F, Sn), π|Sn is the first marginal of a distribution

µn ∈ D|Sn|(F, Sn). Now, πn is the marginal of the distribution µn on Ω|Sn| equal

to µn on F |Sn|
2

, (ie. |Sn| copies of |F |Sn|), and such that the states are all other
sites are mutually independent with law η. This last distribution is in D|Sn|(F, S),
and thus πn ∈ S|Sn|(F, S). We therefore have proved the theorem:

Theorem 7. Synchronous random fields are dense in the set of probability measures
on Ω.

We now specialize to the case of the integer lattice and local potentials. In this
case, our estimates were independent of the size of the set S, and we can carry
some of our results to the infinite dimensional case. From now on, let S = Zd.

We still denote by Hsh(F, S) the set of all stationary potentials on S, the defini-
tions in section 3.8 being obviouly valid in the case S = Zd. We also assume that
the ordering of the subsets of S is translation invariant, so that the potential ~̃u on
Ωk which is built from u in Hsh remains stationary.

Denote by ~̃u
α

the potential on Ωk containing all functions (ũC , C ⊂ S), and
to which are added functions corresponding to the term αV (X), ie. functions

tuαs,l,l+1(X) = αd(xls, x
l+1
s ). Since ~̃u

α
is local on Ωk, there exist Gibbs distributions

on Ωk which are associated to it. They all satisfy point b. and among them, some
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of them satisfy the permutation constraint a. and are stationary. For α > 0 and
u ∈ Hsh(F, S), we therefore can define D(α,u) as the nonempty set of station-

ary, permutation invariant, Gibbs distributions associated to the potential ~̃u
α

, and
S(α,u) as the set of first marginals of distributions in D(α,u). We therefore have
built a parametrization of synchronous fields by means of a potential. That the
union of the sets S(α,u) is dense in the set of stationary and permutation invariant
Gibbs fields may be proved by more or less the same arguments as before. We shall
show that this parametrization furthermore satisfies the following identifiability
theorem:

Theorem 8. For all h > 0, and for all M > 0, there exists an αsh(M) > 0 such
that, if u,u′ ∈ Hsh and max(|u|, |u′|) < M , for all α > αsh(M),

S(α,u) ∩ S(α,u′) = ∅ .

Before proving this, we wish to note that identifiability is a very important result
in the context of parameter estimation. For example, it is required for consistency
of maximum likelihood estimator for Gibbs distribution, and our results allow us
to apply the results of Comets and Gidas ([Comets and Gidas 1992]).

Non identifiability may occur for some α. Take, for example, the “synchronous
Ising model”, which is a 2-synchonous random field, with F = {−1, 1}, defined as
the first marginal of

µ(x1, x2) =
1

Z
exp(α

∑
s

x1
sx

2
s + β

∑
s6=t

x1
sx

2
t ) .

In this case, when α = 0, it is easy to check that β and −β yield the same marginal
distribution for x1. In this particular case, one may show, at the cost of some
lengthy computation, that the model is globally identifiable when α 6= 0.

Proof of theorem 8: Let u ∈ Hsh, α > 0 and ν ∈ S(α,u). Denote by µ the
associated element of D(α,u). Consider an increasing sequence of hypercubes Sn =
[−cnh, cnh]d, where cn = 2dn + 1 is an increasing sequence of odd numbers tending
to infinity. We denote by µn the associated Gibbs distribution on {1, . . . , k} × Sn
with periodic boundary conditions. It is the element of D(Sn, F ) associated to the

potential ~̃u
α

n = (ũαC(x̂C), C ∩ Sn 6= ∅), where x̂ is the configuration in Ω obtained
from x ∈ ΩSn by periodic replication outside Sn. Let νn be the first marginal of
µn. Define in the same way, for u′ ∈ Hh, the distributions µ′n and ν′n on Sn. From
the results of the previous section, we know that there exists an α0 > 0, ε > 0 and
τ > 0 such that, for all α > α0, for all n, there exists Bn ⊂ Sn with diam(Bn) ≤ h,
and a configuration xBn over Bn such that

| log
νn(xaBn)

νn(a)
− log

ν′n(xaBn)

ν′n(a)
| > min [ε, τ max(|uC(xC)− u′C(xC)|)] .

But, since each νn is stationnary, the left hand term of the preceding inequality
is invariant by tranlation, so that we may assume that 0 ∈ Bn, which implies that
Bn (and thus xBn) may only take a finite number of values. Thus, replacing cn by
a subsequence if necessary, we may take Bn = B and xB independent of n, which
yields the result: if u 6= u′,

(39) lim inf | log
νn(xaB)

νn(a)
− log

ν′n(xaB)

ν′n(a)
| > 0 .
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It remains to show that this cannot happen (at least for large α) when ν = ν′.
Note that

νn(xaB)

νn(a)
=

νn(xB |xt = a, t ∈ Sn \B)

νn(xs = a, s ∈ B |xt = a, t ∈ Sn \B)
.

The end of the proof comes with the help of the next lemma which implies, together
with (39) that when u′ 6= u,∣∣∣∣log

ν(xB |xt = a, t ∈ Sn \B)

ν(xs = a, s ∈ B |xt = a, t ∈ Sn \B)
− log

ν′(xB |xt = a, t ∈ Sn \B)

ν′(xs = a, s ∈ B |xt = a, t ∈ Sn \B)

∣∣∣∣ > 0 .

which implies of course ν 6= ν′.

Lemma 6. If 0 ∈ B and diam(B) ≤ h, for any configuration xs, s ∈ B
(40) |νn(xB |xt = a, t ∈ Sn \B)− ν(xB |xt = a, t ∈ Sn \B)| ≤ K(h, |F |, cn)ηcn

with η < 1 for α > α′0(u), and K is at most polynomial in cn.
Moreover ν(xB |xt = a, t ∈ Sn \B) > 0 for all xB.

The proof of lemma 6 relies again on Dobrushin’s comparison results. Fix an
arbitrary configuration Z ∈ Ωk, let µ denote the conditional distribution for µ given
that xlt = zlt for t 6∈ Sn and l ∈ {1, . . . , k}. It is well defined, since it only depends
on zlt for cn < |t| ≤ cn + h. We apply lemma 5 with π = µn( . |xt = a, t ∈ Sn \ B)
and π = µ( . |xt = a, t ∈ Sn \B). As in the proof of proposition 5, the contraction
coefficients γ(i, j) for π verify, for i = (l, s) , s ∈ Sn \B and j = (l′, t), |s− t| ≤ h

γ(i, j) ≤ 2eN(u)|u|e−α.

We shall take α′0 such that γ∗ = (2h)2d2eN(u)|u|e−α
′
0 < 1.

If s ∈ B, |s − t| ≤ h, we take γ(i, j) ≤ 1 and γ(i, j) = 0 when |s − t| > h.
Concerning the coefficients bi, we have bi = 0 for i = (l, s), s ∈ [−cnh+h, cnh−h]d.

We have taken cn = 2dn + 1, let Dn = [−dnh − h, dnh + h]d \ [−dnh, dnh]d, so
that B ∩Dn = ∅ and Dn ⊂ Sn. Moreover, we have

Eπ
[
1xB (x1

B)
]

= Eπ
{
Eπ
[
1xB (x1

B) |xlt, t ∈ Dn l = 1, . . . , k
]}

,

and similarly for π. But, the conditional expectations on B given Dn for π and π
coincide. Let

f = Eπ
[
1xB (x1

B) |xlt, t ∈ Dn l = 1, . . . , k
]
.

Then, 0 ≤ f ≤ 1, f depends only on coordinates xls for s ∈ Dn, and

π(x1
B = xB)− π(x1

B = xB) = Eπ(f)− Eπ(f) .

Thus, if (ai , i ∈ {1, . . . , k} × Sn) is an estimate for π and π, we have

|π(x1
B = xB)− π(x1

B = xB)| ≤
k∑
l=1

∑
s∈Dn

al,s.

We shall now iterate lemma 5, which says that if (a
(p)
i ) is an estimate for π and

π, then (a
(p+1)
i ) is also an estimate, where a(p+1) = a(p)Γ + b .

Let γp(i, j) denote the (i, j)-coefficient of Γp. Since γ(i, j) = 0 if |i − j| > h,
one has γp(i, j) = 0 for i = (l, s), j = (l′, t), and |s − t| > ph. Moreover, we have
chosen α0 so that for i = (l, s) and s 6∈ B,

∑
j γ(i, j) < γ∗ < 1. This implies that, if

d(s,B) > ph, γp(i, j) < γp+1
∗ for all j. Thus, taking p = dn, we see that a

(p)
l,s < γ∗p

for s ∈ Dn, which yields:
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|π(x1
B = xB)− π(x1

B = xB)| ≤ k(2dnh)dγdn∗ .

Recall that π is the conditional distribution for µ on Sn given an external con-
dition z outside Sn, and the fact that x1

s = a for s ∈ Sn \ B. Taking the mean of
the preceding inequality over z implies that

|νn(x1
B |xt = a, t ∈ Sn \B)− ν(x1

B |xt = a, t ∈ Sn \B)| ≤ k(2dnh)dγdn∗ ,

which finishes the first part of lemma 6.
To prove the last assertion, we only need to show that π(x, . . . , x) is bounded

away from zero whatever to external condition z is. But this is obvious, since π is
positive and only depends on a finite number of variables.

Thus, lemma 6 is proved, which also finishes the proof of theorem 8. ut
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