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ABSTRACT

Dirichlet mixtures provide an elegant formalism for constructing and evaluating protein
multiple sequence alignments. Their use requires the inference of Dirichlet mixture priors
from curated sets of accurately aligned sequences. This article addresses two questions
relevant to such inference: of how many components should a Dirichlet mixture consist, and
how may a maximum-likelihood mixture be derived from a given data set. To apply the
Minimum Description Length principle to the first question, we extend an analytic formula
for the complexity of a Dirichlet model to Dirichlet mixtures by informal argument. We
apply a Gibbs-sampling based approach to the second question. Using artificial data gen-
erated by a Dirichlet mixture, we demonstrate that our methods are able to approximate
well the true theory, when it exists. We apply our methods as well to real data, and infer
Dirichlet mixtures that describe the data better than does a mixture derived using previous
approaches.
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1. INTRODUCTION

Multiple protein sequence alignment is a central problem in computational molecular biology.

A powerful and elegant formalism underpinning one approach to multiple sequence alignment is that

of Dirichlet mixtures (Brown et al., 1993; Sjölander et al., 1996; Altschul et al., 2010). Intuitively, it is

assumed that positions within a protein can be thought of as falling into a small number of classes. Each such

class may be described by its frequency within proteins, by a set of typical amino acid probabilities for protein

positions belonging to the class, and by how far the probabilities associated with a specific position tend to

diverge from these typical values. A Dirichlet mixture (DM) captures these notions formally.

There is no plausible way to construct from first principles a DM appropriate for protein sequence

comparison, and DMs for this purpose are therefore derived from curated sets of protein multiple align-

ments, generally by seeking a maximum-likelihood DM (Brown et al., 1993; Sjölander et al., 1996). An

immediate problem that arises is how many classes or components such a DM should have, but no

systematic guidance for answering his question has been published. As is generally the case in model

selection, the more components and therefore parameters a DM is allowed to have, the better it will be able

to describe a given set of data, but a DM with too many components will tend to overfit the data. The

National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health,
Bethesda, Maryland.

JOURNAL OF COMPUTATIONAL BIOLOGY

Volume 18, Number 8, 2011

# Mary Ann Liebert, Inc.

Pp. 941–954

DOI: 10.1089/cmb.2011.0040

941



Minimum Description Length (MDL) principle (Grünwald, 2007) provides a way to deal with this problem.

It implies that one should seek to minimize the description length of the data given the maximum-

likelihood M-component DM, plus a measure of the complexity of the set of all M-component DMs. To

apply the principle, we require both a method for finding maximum-likelihood DMs, and a formula for the

complexity of a Dirichlet mixture model.

This article is organized as follows. First, we review the essentials of multinomial, Dirichlet, and

Dirichlet mixture distributions, and of MDL theory. Second, we present heuristic arguments for ex-

tending to Dirichlet mixtures an analytic formula for the complexity of a single Dirichlet distribution

model. Third, we present a Gibbs-sampling algorithm for seeking a maximum-likelihood DM to describe

a given set of multiple alignment data. Other algorithmic approaches to this problem have been devel-

oped previously (Brown et al., 1993; Sjölander et al., 1996). Fourth, we apply our complexity formula

and optimization algorithm to artificial data generated by a known DM, to study whether our method

allows us to recover the DM’s number of components, and to estimate its parameters accurately. Finally,

we apply our method to real data from protein multiple alignments, and compare our results to earlier

ones.

2. REVIEW

2.1. Multinomial and Dirichlet distributions, and Dirichlet mixtures

Statistical approaches to protein sequence comparison analyze the probabilities ~pp for the various amino

acids to appear at particular protein positions. Baysian approaches require the specification of prior

probabilities over the space of all possible ~pp, and for mathematical convenience these priors are almost

always taken to be Dirichlet distributions or Dirichlet mixtures. In this section, we review briefly the

relevant mathematical concepts.

A multinomial distribution over an alphabet of L letters is described by an L-component vector of

positive probabilities ~pp, with
PL

j¼ 1 pj¼ 1. Because of the constraint, the space O of all possible multi-

nomials is L� 1 dimensional. One may imagine the probabilities for the various amino acids appearing at a

particular protein position as described by a particular multinomial.

Bayesian statistics require the specification of a prior probability density over the multinomial space O.

Such a prior should capture as well as possible one’s general knowledge concerning proteins. For

example, multinomials may be favored, among others, in which all and only the hydrophobic residues

have high probabilities, whereas multinomials may be disfavored in which both hydrophobic and charged

residues have high probabilities. Although a prior distribution y may take any form one wishes, for

analytic and computational convenience it is best to require that y be a Dirichlet distribution or a

Dirichlet mixture.

A Dirichlet distribution is a probability density over O. A particular Dirichlet distribution may be

specified by an L-dimensional parameter vector ~aa, with all aj positive, and it is convenient to define

a� �
PL

j¼ 1 aj. The density of this distribution at ~xx is defined as

f (~xx)¼ Z
YL

j¼ 1

x
aj � 1
j , (1)

where the normalizing scalar Z¼C(a�)=
QL

j¼ 1 C(aj) ensures that integrating f over its domain O yields 1.

The special case of all aj¼ 1 corresponds to the uniform density.

One may show that the expected value of ~xx is ~qq¼~aa=a�, and it is sometimes convenient to specify a

Dirichlet distribution using the alternative parametrization (~qq, a*). Because only L� 1 of the components of

~qq are independent, there are still L free parameters. The ‘‘location parameters’’~qq specify the center of mass

of the distribution, while the ‘‘concentration parameter’’ a* specifies how tightly the probability density is

concentrated near~qq. Large values of a* correspond to densities very concentrated near~qq, whereas values of

a* near 0 correspond to densities concentrated near the boundaries of O.

Different protein positions are under different physical constraints and selective pressures, but it may be

imagined that most positions fall into one of several broad categories, each with its own amino acid

preferences. This implies that multiple distinct regions of multinomial space should have high prior

probabilities. A single Dirichlet distribution in general cannot model such a density, but a Dirichlet mixture
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(DM) can. A DM is a probability density over O that is a simple linear combination of a finite number M of

Dirichlet distributions, each called a Dirichlet component. Formally, it is defined by M Dirichlet distri-

butions with respective parameters ~aai, and a set of M positive ‘‘mixture parameters’’ ~mm that sum to 1.

Because of this last constraint, a DM has MLþM� 1 free parameters. Defining a�i �
PL

j¼ 1 ai, j, the center

of mass of a DM is simply
PM

i¼ 1 mi
~aai

a�
i
¼
PM

i¼ 1 mi~qqi.

For Bayesian analysis, the signal advantage of using a Dirichlet prior y over O is that after the obser-

vation of a single letter a, the posterior is also a Dirichlet distribution y0, with parameters identical to y,

except that a0a¼ aaþ 1. Similarly, if the prior is a DM, the posterior is also a DM, with parameters that are

easy to calculate (Brown et al., 1993; Sjölander et al., 1996; Altschul et al., 2010). The class of DMs is rich

enough to model well a broad range of prior beliefs.

2.2. Issues in inferring Dirichlet mixture priors

Because there is no plausible way to infer a DM appropriate for protein sequence comparison from

theory alone, DMs for this purpose are derived from curated sets of protein multiple alignments. In-

tuitively, by examining a ‘‘gold standard’’ set of multiple alignment data, constructed using structural or

other considerations, one may develop general knowledge about which multinomials tend best to de-

scribe protein alignment columns. Formally, after selecting the number M of components comprising the

DM, one seeks the maximum-likelihood DM, i.e., that which assigns the multiple alignment data the

greatest probability (Brown et al., 1993; Sjölander et al., 1996). Neither step of this procedure is trivial,

and the two may be seen as interrelated. This article studies ways in which each of these two steps may be

accomplished.

In general, given a variety of related models with which to describe a set of data, the model with the

greatest number of parameters will fit the data best. Too many parameters, however, can result in over-

fitting—modeling the noise within the data rather than the regularities—which can lead to poor predictions

on new data. To avoid this problem, a useful criterion for model selection is the MDL principle. Below, we

will describe in detail how the MDL principle may be applied to selecting the number of Dirichlet

components.

Given a specific number M of components, the question of how to find a maximum-likelihood DM

remains. Taking the likelihood of the data as an objective function, the central problem is that the space of

M-component DMs has many local maxima. This classic optimization problem has no known rigorous

solution, but there are a variety of fruitful heuristic approaches. Among these is Gibbs sampling, whose

application to DM optimization we describe below.

2.3. The minimum description length principle

The MDL principle (Grünwald, 2007) addresses the question of which among several models to choose

for describing a set of data. It proposes that the model is best which minimizes the description length of the

data given the model, plus the description length of the model. Formalizing these concepts is not trivial

(Grünwald, 2007), and for brevity we will confine our review of the MDL approach to those elements

relevant to the problem at hand.

We take a theory y to specify a probability distribution Py over the space of all possible sets of data. The

description length (in bits) of a set of data D given y is then defined as DL(Djy)¼�log2[Py(D)].

(Throughout this article, we assume logs to be base 2; when natural logarithms are needed, we use the

notation ln.) A model M is a parametrized set of theories, and the description length of D given M is

defined as DL(DjM)¼ infh2M DL(Djh). For a nested set of models M1,M2, . . . such as all DMs with 1, 2,

etc. components, it is evident that a more comprehensive model will never imply a longer description

length for a set of data.

The most challenging aspect of MDL theory is the definition and calculation of the description length,

also called the complexity, of a model. The complexity of a parametrized model may be thought of as the

log of the effective number of ‘‘independent’’ theories it contains (Grünwald, 2007), and this number is

dependent on the quantity of data that the model is asked to describe. In brief, assume our data consist of n

independent samples drawn from a probability distribution parametrized by y, where y lies in the k-

dimensional space Y. Then, given certain reasonable assumptions, we have that, for large n, the complexity

of M is given by
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COMP(M, n)¼ k

2
log nþAþ o(1), (2)

where A is a constant dependent on M (Grünwald, 2007).

The mathematics are too complex to compute A in eq. (2) for Dirichlet mixtures. However, as described

by Yu and Altschul (2011), the simpler case of a single Dirichlet distribution is tractable. Heuristic

arguments then allow us to derive a plausible formula for the complexity of Dirichlet mixtures from this

simpler case, and that of the multinomial distribution. This formula is the tool we require to specify the

optimal number of DM components for describing a set of multiple alignment data.

3. MODEL COMPLEXITY

3.1. The single Dirichlet model

A set of observed data is not drawn directly from a Dirichlet distribution, but is mediated through a

multinomial. Specifically, to say that the data in a multiple alignment is described by a Dirichlet distri-

bution is shorthand to say that, for each column of the alignment, a multinomial ~pp is sampled from the

Dirichlet distribution, and the data in the column are then sampled according to ~pp.

The model DL in question is the set of all Dirichlet distributions over the alphabet of L letters, applied to

the description of multiple alignment data consisting of n independent columns, with each column con-

taining c letters. This model is L-dimensional, and the constant A in eq. (2) depends on L and c. As

described by Yu and Altschul (2011), the complexity of DL is given by

COMP(DL, n, c)¼ L

2
log nþ L� 1

2
log

c

2
� log C(L=2)� 1

2
log (L� 1)þDL, cþ o(1), (3)

where DL,c is a small calculable constant which approaches 0 for c large. For proteins, D20,c is always less

than 0.3 bits, and its values for c ranging from 2 to 500 are given in Table 1.

In practice, one’s data frequently consists of n columns in which c varies by column. In this case, it is

appropriate to extend eq. (3) by using �cc, the mean number of observations per column, in place of c (Yu and

Altschul, 2011).

3.2. The Dirichlet mixture model

It is challenging to analyze the complexity of a single Dirichlet distribution (Yu and Altschul, 2011), and

we see no feasible way to analyze rigorously the complexity of a Dirichlet mixture. However, it is possible

to use informal arguments to plausibly approximate this complexity.

Table 1. D20,c
for the Single Dirichlet Model

c D20,c (bits) c D20,c (bits)

2 0.294 25 0.104

3 0.222 30 0.096

4 0.196 35 0.091

5 0.181 40 0.086

6 0.171 50 0.078

7 0.163 60 0.072

8 0.155 80 0.063

9 0.150 100 0.057

10 0.145 150 0.048

12 0.136 200 0.041

14 0.129 250 0.037

16 0.123 300 0.034

18 0.118 400 0.030

20 0.113 500 0.027

Values are calculated as described in Yu and Altschul (2011) and have a standard error

of about 0.0003 bits.
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We considerDMM, L, the Dirichlet mixture model with M components, on an alphabet of L letters. The data

DMM, L describes is the same as that considered above, namely a multiple alignment with n columns, and c

observations in each column. A DM can be viewed as using all its components to describe a particular column

of data, but with varying component probabilities which reflect how well the various components respectively

fit the data. Given a DM that describes a set of data well, for most columns the component probabilities are

concentrated on a single component. In order to gain a handle on the complexity of a DM model, we therefore

make the approximation that each column can be assigned to a single component. This allows us to separate

the complexity of a DM model into the complexity of its mixture parameters and the complexity of each of its

Dirichlet components. Our approximation necessarily counts some theories as distinct that might not be

distinguishable by the data, and therefore should overestimate the complexity of a DM model.

To start, the M� 1 mixture parameters of DMM, L can be viewed as describing a multinomial distri-

bution over an alphabet of M ‘‘letters,’’ where each letter represents a particular Dirichlet component. Thus,

by our approximation, the complexity of the mixture parameters can be seen as equivalent to that of a

multinomial model on M letters (MM), applied to n pieces of data. As described, for example, in the

supplementary material of Altschul et al. (2009), for large n the complexity of such a multinomial model is

given by

COMP(MM , n)¼ M� 1

2
log

n

2
þ 1

2
log p� log C(M=2)þ o(1): (4)

Second, we calculate the complexity of each of the M Dirichlet components using the theory reviewed

above, but modified so that each component is assumed to describe only a subset of the columns. Because

the logarithm is a concave function, the aggregate complexity of the Dirichlet components is maximized by

assuming the columns are divided evenly among them. Finally, we note that the labels attached to the M

Dirichlet components are purely arbitrary, and that a permutation of the labels results in an identical DM.

To compensate for this overcounting of distinct theories, we need to subtract log(M!) from our assessment

of the complexity of a DM model. Putting the various pieces together, we approximate this complexity with

the formula

COMP(DMM, L, n, �cc) � COMP(MM , n)þM COMP(DL,
n

M
, �cc)� log (M!): (5)

Given a set of multiple alignment data, Dirichlet mixture models with increasing numbers of components

will lead to shorter data description lengths. Eq. (5) and the MDL principle allows us to calculate at what

point these decreasing description lengths no longer compensate sufficiently for the increasing complexity

of the models.

4. INFERRING MAXIMUM-LIKELIHOOD DIRICHLET MIXTURES

4.1. A Gibbs-sampling strategy

As important as calculating the complexity of a Dirichlet mixture model is finding the specific mixture y
contained by the model that minimizes the description length of a given set of data. Formally, assume the

M-component DM y has mixture parameters ~mm and Dirichlet parameters ~aai, which are alternatively ex-

pressed, as described above, by (~qqi, a
�
i ). Assume further that the data D consist of n independent columns,

with letter counts c�(1), c�(2), . . . , c�(n), and with letter count vectors~cc (1),~cc (2), . . . ,~cc (n). Then the description

length of D given y is

DL(Djh)¼ �
Xn

k¼ 1

log
XM
i¼ 1

mip
(k)
i , (6)

where p(k)
i is the probability of a specific column with count vector~cc (k) given the ith Dirichlet component,

and can be written as

p(k)
i ¼

C(a�i )

C(a�i þ c�(k))

YL

j¼ 1

C(ai, jþ c(k)
j )

C(ai, j)
(7)
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(Sjölander et al., 1996; Altschul et al., 2010). We seek the M-component DM y that minimizes DL(Djy), i.e.

the maximum likelihood DM. Unfortunately, this optimization problem is both high-dimensional and non-

concave, and its rigorous solution is therefore likely to be intractable. Nevertheless, heuristic optimization

procedures are available, and an expectation-maximization (EM) approach has been described by Sjölander

et al. (1996). We here propose an alternative optimization procedure that we will argue has certain

advantages to the earlier one.

Our basic approach is to use Gibbs sampling (Geman and Geman, 1984; Lawrence et al., 1993) to reduce

the hard problem of simultaneously optimizing the parameters of a Dirichlet mixture to the much simpler

one of separately optimizing the parameters of its constituent Dirichlet components. Specifically, we

proceed as follows:

a. Start with an M-component DM y. Calculate DLbest:¼DL(Djy) using eqs. (6) and (7), and let

ybest:¼ y.

b. Create M empty bins, and then for each column k:

i. Use ~mm and eq. (7) to calculate a likelihood mip
(k)
i for each constituent component of y.

ii. Normalize these likelihoods, and use them to randomly sample column k into one of the M bins.

c. For each bin i, corresponding to an individual Dirichlet component, calculate parameters for a new

DM y0 as follows:

i. Calculate a new mixture parameter as m0i : ¼ ni=n, where ni is the number of columns that have

been sampled into bin i.

ii. Calculate new location parameters as q0i, j : ¼Ci, j=Ci, where Ci,j is the aggregate count of letter j

among all columns assigned to bin i, and Ci is the aggregate count of all letters in all columns

assigned to bin i.

iii. Calculate a new concentration parameter a0�i using the maximum-likelihood procedure described in

the Appendix.

d. Calculate DL0:¼DL(Djy0). If DL0<DLbest, let DLbest :¼DL0, and ybest :¼ y0.
e. If more than R iterations have passed since ybest was changed, stop. Otherwise, let y :¼ y0, and return

to step b).

A notable feature of this Gibbs-sampling algorithm is that, after the assignment of columns to individual

bins, the mixture and location parameters ~mm and ~qqi are trivial to estimate. For each component, the

estimation of the concentration parameter a�i reduces to the simple one-dimensional optimization of a

smooth function, as described in the Appendix. This stands in contrast to the multi-dimensional optimi-

zation required by each step of the EM algorithm described by Sjölander et al. (1996).

4.2. Refinements

This basic optimization procedure can be refined in several ways. It may be iterated multiple times using

different random number seeds, and the best result from the multiple runs retained. When a relatively small

number of columns are sampled into a given bin, it is possible that one or more letters may be completely

missing from the sample. For this case, it is useful to employ pseudocounts, or some positive lower bound on

the q0i, j, so that the Dirichlet parameters remain valid, and so that the component in question retains the

ability to describe columns that contain the missing letters. Also, if fewer than two columns are sampled into

a bin, it is impossible to calculate a0�i in the final part of step c. It can thus be useful to impose a minimum

number of columns per bin, which if not achieved causes the program to halt, or else to remove the bin

completely and proceed henceforth with a smaller number of Dirichlet components. Finally, as we discuss

below, various strategies may be used to choose a promising y with which to initialize the procedure.

The Gibbs-sampling algorithm above can be modified to produce a non-stochastic descent procedure. In

place of sampling each column into a random bin in step b ii, each column can be assigned fractional

membership in each bin proportional to calculated likelihoods. Step c may then be generalized to calculate

the parameters of y0 from non-unitary column counts. The procedure terminates when DLbest improves by

less than a small, set value e. In our implementation, we use Gibbs simpling as a first stage, and once it

terminates move into a second, descent stage. We have found that this second stage produces negligible

improvement when the data consist of a large number of columns, but can yield noticeably improved results

for small data sets. Omitting the initial Gibbs-sampling stage, however, is not advisable, as the descent

stage alone is liable to get trapped by local optima.
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4.3. Initialization strategies

Gibbs sampling and related stochastic approaches such as simulated annealing (Metropolis et al., 1953;

Kirkpatrick et al., 1983) are widely used in attempts to find the global optimum of objective functions that

have many local optima. They have the virtue of frequently being able to escape local optima that may trap

deterministic procedures. By default, our Gibbs-sampling routine begins with an essentially ‘‘flat’’ y, i.e.,

one in which all mi¼ 1/M and all ai,j¼ 1. Remarkably, as we will see below, excellent results can be

obtained using even this completely agnostic strategy.

It is often useful to initiate a Gibbs-sampling routine at a point one believes may be near the global

optimum. Especially when one is exploring DMs with varying numbers of components, such initialization

strategies can be of significant utility. For example, one can use a good M-component DM yM to seek an

optimal (Mþ 1)-component DM by initiating the algorithm above with the ~aai of yM plus a flat component,

with trivial adjustments to the mixture parameters ~mm . Conversely, given an (Mþ 1)-component DM yMþ 1,

one can partition one’s data into Mþ 1 bins as above, and then determine which two bins, when combined,

yields the M-component yM that best describes the data. yM can then be used to initiate the search for an

optimal M-component DM.

Even when using stochastic approaches, a cohort of related columns can become ‘‘stuck’’ in one bin

when it would better be assigned to another, because the pull of the cohort will prevent individual members

from migrating. In this situation, moving back and forth between dimensions as described above can be

useful. In brief, when seeking an optimal (Mþ 1)-component DM, it is possible that the misplaced cohort

will break away to populate the new bin. Then, using the new yMþ 1 to create a yM with which to seed a new

search for an optimal M-component DM, it may become apparent that the cohort belongs better with a set

of columns other than that from which it broke away.

5. RESULTS

5.1. Simulated data

The research group at UCSC that originally proposed the DM formalism for multiple sequence analysis

currently provides a variety of multiple alignment data sets and Dirichlet mixtures derived therefrom at

their website: http://compbio.soe.ucsc.edu/dirichlets/index.html. In order to test both the MDL principle

and our Gibbs-sampling algorithm on protein-like data for which the true solution is known, we used the 9-

component DM ‘‘byst-4.5-0-3.39comp’’ from this website (here called ~hh) to generate artificial data. Spe-

cifically, we constructed four artificial data sets of 10,000 or more columns, each with a different average

column size �cc, equal to 10, 20, 40 and 80. For a column k in a given data set, we first randomly selected

c*(k)> 1, the number of observations in that column, from the Poisson distribution with mean �cc. We then

used ~hh to select a random multinomial distribution over 20 letters, and generated c*(k) independent ob-

servations from this multinomial.

For the first n columns of a given data set, we used the Gibbs-sampling algorithm described above, with

flat initial ys, to seek maximum-likelihood DMs yM from models with M¼ 1 to M¼ 15 components. (We

let R¼ 3 in step e, and retained the best result from ten runs using different random number seeds.) We then

calculated the complexity of each model (eq. (5)), and the description length of the data (eqs. (6) and (7))

given yM. Finally, using the MDL principle, we chose M̂M to be the number of components for which the sum

of these numbers was minimized.

The calculation of M̂M for a specific example, with �cc¼ 20 and n¼ 2000, is illustrated in Table 2. As can be

seen, the description length of the data decreases as the number of components grows, but this improvement

eventually is outweighed by increases in the complexity of the models. In this case, the MDL principle

yields M̂M¼ 9, but this result prevails only barely over M¼ 8.

For each data set, with n ranging from 50 to 10,000 in increments of 50, we calculated M̂M using the

procedure described above; the results are shown in Figure 1. When there are very few columns, the best

model is a simple one, with only one or two Dirichlet components. However, as the number of columns

grows so, on average, does M̂M, until it settles first into the range 9 – 1, and eventually becomes nearly

certain to equal 9, the number of components actually used to generate the data. For each data set, we

indicate in Figure 1 the lowest value n0 for which M̂M¼ 9 – 1 for all tested n� n0. The larger the average

number of observations per column, the earlier this convergence tends to occur.
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Although the correct number of Dirichlet components can be recovered to good precision with even a

relatively small number of columns, the recovery of accurate values for the parameters of the generating

DM requires substantially more data. In Table 3, we compare the parameters recovered by the example

considered in Table 2 to those of ~hh, used to generate the data. We also consider the parameters recovered

using a much larger data set with n¼ 100,000 and �cc¼ 80, values which are comparable to those for real

FIG. 1. The estimated number

of Dirichlet components as a

function of data size. The 9-

component DM ~hh was used to

generate four data sets, with an

average of �cc observations per

column, with �cc¼ 10, 20, 40, and

80. Using our Gibbs-sampling

algorithm applied to the first n

columns of each data set (with n

divisible by 50), and the MDL

principle, we calculated M̂M, the

number of components in the

optimal Dirichlet mixture model.

For each data set, a vertical line

indicates the the smallest n0 for

which M̂M¼ 9 – 1 for all tested

value of n� n0.
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Table 2. Calculation of M̂M Using the MDL Principle

M Free parameters COMP(DM) (bits) DL(DjyM) (bits) COMP(DM)þDL(DjhM) (bits)

1 20 121 104,563 104,684

2 41 226 102,913 103,139

3 62 323 101,927 102,250

4 83 414 101,622 102,036

5 104 501 101,375 101,876

6 125 585 101,192 101,776

7 146 665 101,055 101,721

8 167 744 100,960 101,704

9 188 820 100,881 101,701

10 209 894 100,847 101,741

11 230 967 100,819 101,786

12 251 1039 101,810 101,848

13 272 1108 101,797 101,905

14 293 1177 101,774 101,951

15 314 1244 101,746 101,991

Model complexities are estimated using eq. (5) for DM models with M components, applied to a data set with 2000 columns and a

mean of 20 observations per column. Data description lengths are for a particular data set, generated as described in the text, using a

putative maximum-likelihood DM yM, estimated using the Gibbs-sampling algorithm described in the text. The MDL principle yields

M̂M¼ 9, at which the total description length COMP(DMM, 20, 2000, 20)þDL(DjhM) is minimized. All description lengths are rounded

to the nearest bit.
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protein data sets used to derive DMs, such as that studied below. Given the larger data set, we are able to

estimate both the mixture parameters ~mmi and the concentration parameters a�i on average to within 0.6%,

and in no case to err by more than 1.5%. The smaller data set yields much larger errors, erring in the

estimation of these parameters by over 15% more than half the time.

In general, the smaller ~aai, j, the smaller the absolute but the greater the relative error in estimating its

value, a fact related to the development in Ye et al. (2010). Thus, rather than recording data for individual

~aai, j, Table 3 summarizes the accuracy with which each component’s location parameters ~~qq~qqi are estimated,

using the measure of Jensen-Shannon divergence. For the smaller data set, three of the components yield a

divergence of over 0.025 bits, but for the larger data set the divergence in under 0.00025 bits for all but one

component.

For the artificial data studied in this section, we made no attempt to improve the result for one value of M

by using the best result for a neighboring value to select an initial y. Averaged over 10 runs on an Intel

Xeon 2.4-GHz E7440 CPU, using different random number seeds, our program took 1.7 seconds per run to

converge for the (n¼ 2000, �cc¼ 20) data set with M¼ 9, and 84 seconds for the (n¼ 100000, �cc¼ 80) data set

with M¼ 9.

A 9-component DM model provides 188 free parameters, and optimizing a function that yields local

optima over a space of this size provides a significant challenge. Nevertheless, Table 3 suggests that when

the observations are in fact generated by a DM contained in this model, our Gibbs-sampling algorithm is

able to converge on the true solution given sufficient data.

5.2. Real data

To analyze real data, we consider the ‘‘diverse-1216-uw’’ data set, from the website cited above, here called

DUCSC, containing n¼ 314585 columns, with an average of �cc¼ 75:99 amino acids per column, and the 20-

component DM ‘‘dist.20comp,’’ here called yUCSC, that was previously derived from this data set. Letting y0 be

a multinomial distribution fit to the amino acid frequencies of DUCSC, a baseline description of the data has

total description length DL(DUCSCjh0)þCOMP(M20, 314585 · 75:99)¼ 99604971þ 206¼ 99605177 bits,

or 4.1667 bits per amino acid. Using yUCSC instead to describe the data, the total description length is reduced

to DL(DUCSCjhUCSC)þCOMP(DM20, 20, 314585, 75:99)¼ 74277770þ 3461¼ 74281231 bits, or 3.1073 bits/

a.a. The improvement with respect to the baseline multinomial model is 1.0594 bits/a.a., and is represented by

a triangle in Figure 2.

We applied the optimization methods described above to approximate maximum-likelihood yM for these

data. In contrast to our artificial data, real data are not produced by a true underlying DM, even though they

can perhaps be well modeled by one. This means that as the quantity of available data grows, the com-

plexity of the best model is likely to grow as well, albeit slowly, never converging to a ‘‘true’’ number of

components.

Table 3. Comparison of Recovered to Generating DM Parameters

m̂mi= ~mmi âa�i =~aa�i JS(~~qq~qqi, ~̂qq~qqi)

i ~mmi �cc¼ 20 �cc¼ 80 ~aa�i �cc¼ 20 �cc¼ 80 �cc¼ 20 �cc¼ 80

1 0.2420 1.030 1.007 7.078 1.009 0.996 0.00162 0.00002

2 0.1397 1.337 1.000 3.806 0.939 0.998 0.00716 0.00004

3 0.1390 0.838 0.994 0.197 1.028 0.985 0.02608 0.00013

4 0.1382 1.165 0.993 2.156 0.823 0.985 0.00923 0.00006

5 0.0959 0.884 0.998 2.833 0.742 1.003 0.00553 0.00006

6 0.0810 0.421 1.010 2.489 1.963 0.997 0.02997 0.00022

7 0.0726 0.977 0.994 3.752 1.165 0.998 0.00618 0.00006

8 0.0658 1.003 0.996 2.908 1.206 0.996 0.00573 0.00023

9 0.0258 1.196 1.013 0.505 1.491 1.005 0.03329 0.00109

Using a nine-component DM ~hh, artificial data sets with (n¼ 2000, �cc¼ 20) and (n¼ 100, 000, �cc¼ 80) were generated. For each data

set, a maximum-likelihood 9-component DM ĥh was estimated. The parameters of each component i of ~hh are compared to the

corresponding parameters in the nearest component of ĥh. JS(~~qq~qqi, ~̂qq~qqi) is the Jensen-Shannon divergence of the location parameter vectors

~~qq~qqiand ~̂qq~qqi, where JS(~rr,~ss) is given by 1
2

P
j rj ln

2rj

rj þ sj
þ sj ln

2sj

rj þ sj

� �
.
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Because there is likely no true DM describing the data, the objective function tends to be much flatter

over parameter space than it is for artificial data, making the search for a globally optimal DM corre-

spondingly harder. Perhaps as a result, we found that for a given M, flat initial ys often were outperformed

by initial ys derived from the best ‘‘current’’ solution for adjacent values of M. Thus, our optimization

strategy consisted first of finding a set of provisional solutions yM for the range of M explored, and then of

improving these solutions through further runs in which initial ys were derived from neighboring provi-

sional yM.

We graph in Figure 2 the improvement in total description length our best yM yield with respect to the

baseline, for M from 2 to 38. y35 produced the greatest improvement, of 1.0654 bits/a.a. (On DUCSC, an

average single run for M¼ 35 took 512 seconds until convergence.) y16 yielded an improvement of 1.0595

bits/a.a., essentially equivalent to that of the 20-component yUCSC, and y20 yielded the somewhat greater

improvement of 1.0612 bits/a.a. Using the ‘‘fssp-3-5-98-select-0.8-3.cols’’ data set from the website above,

we achieved comparable results and improvements with respect to the corresponding DM ‘‘fournier-

fssp.20comp’’ (data not shown).

As is evident from Figure 2, until M¼ 35, increasing the number of components yields a steady but

generally diminishing improvement in total description length. Programs that employ DMs generally run

more slowly the larger the number of components, which provides an independent reason for preferring

smaller M. There are no points in Figure 2 where the implicit slope changes abruptly, but examination

suggests that for this data set, y10, y14, y23, and y29, which yield improvements that are, respectively, 99.0%,

99.3%, 99.7%, and 99.9% of the optimal, may provide good tradeoffs between simplicity and accurate

description of the data.

6. DISCUSSION

Although for real data, no optimal solution is known with certainty, it is instructive to examine the

Dirichlet components recovered, and to compare yM for different values of M. In Table 4, we summarize

the components of our y10 and y14, ordered by the magnitude of their mixture parameters mi. Similarly to

the results of Brown et al. (1993) and Sjölander et al. (1996), most components can be seen to correspond

to natural classes of amino acids. For example, component 9 of y10 and component 13 of y14 both favor

the aromatic amino acids. Other components favor hydrophobic, positively charged, and negatively

charged residues, and the special amino acids glycine and proline. It is also worth noting two other types

of components. First, components 1 of y10 and y14 both have very low values of a*, indicating high

probability density near the boundaries of multinomial space; the columns these components describe

therefore consist heavily of single amino acids. As M grows further, a component of this type may break

into multiple components, each with large a* and corresponding to a single amino acid, similar in this

way to components 8 and 10 of y10. Second, components 4 of y10 and y14 both have fairly high values of

a*, but do not strongly favor or disfavor any amino acid. These components describe protein positions

FIG. 2. Decrease in total description length as a

function of the number of Dirichlet components. Given

the data set DUCSC (with n¼ 314, 585 and �cc¼ 75:99), we

used our Gibbs-sampling algorithm to estimate with yM

the maximum-likelihood M-component DM, for M from

2 to 38. The total description length was calculated as

DL(DUCSCjhM)þCOMP(DMM, 20, n, �cc), and compared

to the total description length given the multinomial

model on 20 letters, M20. The decrease in description

length per amino acid of the data is plotted, and reaches

its maximum at M̂M¼ 35. The triangle represents the de-

crease in description length yielded by the 20-component

yUCSC, which was derived from DUCSC.
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that are probably not under strong evolutionary pressure, and accept all amino acids at roughly their

background frequencies.

In Figure 3, we compare y10’s to y14’s location parameters. Qualitatively, it is evident that as M grows,

many Dirichlet components retain their essential character, as represented by the corresponding com-

ponents in the first eight rows and columns of the figure. Other Dirichlet components split apart, as seen

in the last two rows, which correspond to components 3 and 2 of y10 Finally, components of an almost

completely new character can be born, as seen in the last two columns, which correspond to components

9 and 6 of y14.

7. CONCLUSION

In this article, we have studied several questions relevant to the inference of a Dirichlet mixture model

from a ‘‘gold standard’’ set of protein alignment data. We sought to apply the MDL principle to the

question of how many components a Dirichlet mixture should have. This required an evaluation of the

complexity of DM models, and we accordingly developed heuristic arguments for extending to Dirichlet

mixtures an analytic formula for the complexity of a single Dirichlet model. A second element needed for

the application of the MDL principle is a method for approximating maximum-likelihood DMs from a

given set of data. Although this problem has been addressed previously, we have described a new Gibbs-

sampling approach that reduces the high-dimensional optimization problem to several tractable one-

dimensional optimization problems.

Table 4. Components of Dirichlet Mixtures y10 and y14

log(qi,j /pj)

i mi a�i > 1 > 0.5 <�1

y10 parameters

1 0.175 1.5 CG DHW VMIL

2 0.152 30.5 DE NQK YMWCVLFI

3 0.152 9.6 ILVM F PSHQNGRKED

4 0.125 36.7 RQK

5 0.105 25.4 ILVMF ENGD

6 0.083 14.9 KRQ E YPVCLGIWF

7 0.061 13.5 AC ST PDER

8 0.052 24.3 G N CYWMFLVI

9 0.049 11.3 YWFH QIVRTSAKDPEG

10 0.045 26.9 P YVMFLCI

y14 parameters

1 0.134 1.3 CWG H L

2 0.109 10.3 VI ML PSQHNGERKD

3 0.100 39.2 EQD K GMWYVLICF

4 0.091 44.1 RKQ

5 0.088 27.4 ILVMF NDG

6 0.076 18.1 TS HN

7 0.069 15.6 LMI F ATHSPQRNGKED

8 0.065 14.6 RKQ CPLVGFI

9 0.051 13.3 DN E RCAYWMFVLI

10 0.049 26.0 G N TCYWMFLVI

11 0.048 47.9 DN SP YCWMFVLI

12 0.045 14.0 AC S ILWNREKD

13 0.041 13.0 YWFH TASPKEGD

14 0.035 29.4 P GVWYLMCFI

The components of y10 and y14 are ordered by decreasing value of their mixture parameters ~mm. For each component, the log ratio of

each amino acid’s location parameter to its background frequency is calculated, and listed in decreasing order of log ratio if this ratio is

> 1, > 0.5 or <�1.
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To test the efficacy of our methods, we have applied them to artificial data generated by a known

Dirichlet mixture, and shown that they are able both to recover the correct number of Dirichlet components,

and to converge effectively on the ‘‘true’’ DM parameters. Finally, we have applied our methods to real

data, where they are able to recover DMs that describe the data more concisely than do DMs constructed

using an earlier approach. It is hoped that the methods presented here will aid in the construction of

improved DMs for the comparison of multiple protein sequences.

8. APPENDIX: MAXIMUM-LIKELIHOOD ESTIMATION
OF THE CONCENTRATION PARAMETER

Our Gibbs sampling approach provides us with a way to estimate the values of the mixture parameters ~mm,

and thereby to reduce the problem of finding a maximum-likelihood (m.l.) Dirichlet mixture to that of

finding a m.l. Dirichlet distribution. Because of this reduction, we simplify the notation in this section by

dropping the component subscript i from all relevant parameters.

Let~cc (k) be the letter count vectors associated with the n columns assigned to the bin in question, and let

c*(k) be the total letter count for column k. Applying eq. (7), the log-likelihood L of the data is then given by

L¼
Xn

k¼ 1

ln
C(a�)

C(a� þ c�(k))

YL

j¼ 1

C(a�qjþ c(k)
j )

C(a�qj)

" #

¼
Xn

k¼ 1

ln C(a�)� ln C(a� þ c�(k))þ
XL

j¼ 1

[ ln C(a�qjþ c(k)
j )� ln C(a�qj)]

( )
: (8)

If the columns associated with a bin are assigned non-unitary weights wk, one may generalize this formula

by simply including the factor wk before ln in the first summation.

Although it is possible to find the a* and ~qq that maximize eq. (8) by Newton’s method in L-

dimensional space, the computation of the gradient and the Hessian matrix is time-consuming, espe-

cially when n is large. Thus, our second heuristic idea is to reduce the maximization problem to one

dimension using first moment information from the ~cc (k). In short, if ~pp is sampled from a Dirichlet

distribution with parameters ~aa, pj follows a beta distribution with parameters (aj, a*� aj). Furthermore,

FIG. 3. Comparison of location

parameters for the Dirichlet mix-

tures y10 and y14. The location pa-

rameters ~qqi for each component of

y10 are compared to those for each

component of y14 using the mea-

sure of Jensen-Shannon divergence,

described in the legend to Table 3.

The indices of the components are

those given in Table 4, and are re-

ordered to make the relationships

among components easier to read.
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conditioning on c*(k) and pj, c(k)
j follows a binomial distribution with parameters (c*(k), pj). This implies

we can estimate qj by

q̂qj¼
Pn

k¼ 1 c(k)
jPn

k¼ 1 c�(k)
, (9)

and replace qj in eq. (8) by q̂qj. This leaves the single parameter a* still to estimate.

To apply Newton’s method, we need the first and second derivatives of L with respect to a*, which can

be written as:

dL
da�
¼
Xn

k¼ 1

w(a�)�w(a� þ c�(k))þ
XL

j¼ 1

q̂qj

�
[w(a�q̂qjþ c(k)

j )�w(a�q̂qj)

( �)
; (10)

d2L
da�2

¼
Xn

k¼ 1

w0(a�)�w0(a� þ c�(k))þ
XL

j¼ 1

q̂q2
j [w0(a�q̂qjþ c(k)

j )�w0(a�q̂qj)
h i( )

, (11)

where c and c0 are the digamma and trigamma functions. Given an initial a* near the m.l. ~aa� that optimizes

L, it is then simple to estimate ~aa� to great precision in a small number of iterations using Newton’s method.

There are rapid algorithms for calculating c and c0 (Bernardo, 1976; Schneider, 1978; Spouge, 1994). Note

as well that because c and c0 appear in eqs. (10) and (11) only as differences, they can be replaced by

rational functions when all letter counts c(k)
j are integral.

Several problem may arise with this approach. First, L may be maximized in the limit only at the

boundaries of (0, ?). One may show that L is optimal as a* approaches 0 only if each column of the data

consists of a single type of letter, although this letter may vary from column to column (proof omitted).

Furthermore, one may show that L is optimal as a* approaches ? only if the observed letter frequencies

are identical from column to column (proof omitted). It is easy to detect and allow for these special cases,

but when there are more than a very small number of columns associated with a bin they essentially never

arise in practice. Second, it is possible that L has multiple local maxima over (0, ?). We conjecture that

this can not be the case, but have not been able to prove it. As shown by representative examples in Figure

4, L is very simply behaved in all cases we have observed. Third, it is possible that d2L=da�2 may be

positive for an initial value of a*, for example if a* were chosen greater that 5.3 in panel B of Figure 4. It is
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FIG. 4. The log-likelihood L of

the data as a function of a*. The

graphs give L in units of 106.

Examples are shown for four

bins generated using the data set

DUCSC described in the text, with

M¼ 10 components. (A) A bin

generated after the first round of

Gibbs sampling beginning from

a flat initial y; all 10 bins in this

first round yield very similar re-

sults. (B) The bin corresponding

to component 1 of Table 4, after

convergence. (C) The bin corre-

sponding to component 3 of Ta-

ble 4, after convergence. (D) The

bin corresponding to component

8 of Table 4, after convergence.

Solid vertical lines indicate the

maximum-likelihood values ~aa�.
Dashed vertical lines indicate the

âa� calculated using the method

of moments, and used to initiate

Newton’s method.
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trivial to detect such cases, and replace a* by a smaller value, for which d2L=da�2 is negative. In practice,

as illustrated in Figure 4, we use the method of moments, detailed below, to initialize Newton’s method.

This approach yields initial a* that tend to be near to but somewhat smaller than the m.l. ~aa�.
Just as we use first moment information for ~cc (k) to reduce the dimension of our problem, so we can use

second moment information to obtain a starting point for Newton’s method. Specifically, for an individual

letter j, some algebra allows us to write a method-of-moments estimate of a* as

âa�(j)¼ [q̂qj(1� q̂qj)
^
EE(c�2)

^
EE

2
(c�)
� vj] = [vj�

q̂qj(1� q̂qj)

^
EE(c�)

], (12)

where vj¼
^
Var(cj)
^
E

2
(c�)
�

^
Var(c�)

^
E

2
(c�)

q̂q2
j . We average âa�(j) to obtain an initial âa� ¼

PL
j¼ 1 q̂qjâa

�(j).
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