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Abstract

We present a geometric approach for the analysis of dynamic scenes
containing multiple rigidly moving objects seen in two perspective
views. Our approach exploits the algebraic and geometric proper-
ties of the so-called multibody epipolar constraint and its associated
multibody fundamental matrix, which are natural generalizations of
the epipolar constraint and of the fundamental matrix to multiple
moving objects. We derive a rank constraint on the image points
from which one can estimate the number of independent motions
and linearly solve for the multibody fundamental matrix. We prove
that the epipoles of each independent motion lie exactly in the inter-
section of the left null space of the multibody fundamental matrix
with the so-called Veronese surface. We then show that individual
epipoles and epipolar lines can be uniformly and efficiently com-
puted by using a novel polynomial factorization technique. Given
the epipoles and epipolar lines, the estimation of individual funda-
mental matrices becomes a linear problem. Then, motion and fea-
ture point segmentation is automatically obtained from either the
epipoles and epipolar lines or the individual fundamental matrices.
We test the proposed approach by segmenting a real sequence.

Keywords: Multibody structure from motion, multibody epipolar
constraint, multibody fundamental matrix, motion segmentation.

1 Introduction

Motion is one of the most important cues for segmenting an im-
age sequence into different objects. Classical approaches to 2-D
motion segmentation try to separate the image flow into different
regions either by looking for flow discontinuities [Spoerri and Ull-
man 1987], while imposing some regularity conditions [Black and
Anandan 1991], or by fitting a mixture of probabilistic models [Jep-
son and Black 1993]. The latter is usually done using an itera-
tive process that alternates between segmentation and motion esti-
mates using the Expectation-Maximization algorithm. Alternative
approaches are based on local features that incorporate spatial and
temporal motion information. Similar features are grouped together
using, for example, normalized cuts [Shi and Malik 1998] or the
eigenvectors of a similarity matrix [Weiss 1999].

3-D motion segmentation and estimation based on 2-D imagery
is a more recent problem and various special cases have been ana-
lyzed using a geometric approach: multiple points moving linearly
with constant speed [Han and Kanade 2000; Shashua and Levin
2001] or in a conic section [Avidan and Shashua 2000], multi-
ple moving objects seen by an orthographic camera [Costeira and
Kanade 1995; Kanatani 2001], self-calibration from multiple mo-
tions [Fitzgibbon and Zisserman 2000; Han and Kanade 2001],
or two-object segmentation from two perspective views [Wolf and
Shashua 2001]. Alternative probabilistic approaches to 3-D motion
segmentation are based on model selection techniques [Torr 1998;
Kanatani 2001] or combine normalized cuts with a mixture of prob-
abilistic models [Feng and Perona 1998].
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This paper presents a geometric approach for the analysis of dy-
namic scenes containing an arbitrary number of rigidly moving ob-
jects seen in two perspective views. In section 2 we introduce the
multibody epipolar constraint as a geometric relationship between
the motion of the objects and the image points that is satisfied by
all the image points, regardless of the body to which they belong.
The multibody epipolar constraint defines the so-called multibody
fundamental matrix, which is a generalization of the fundamental
matrix to multiple bodies. Section 3 derives a rank constraint on
the image measurements from which one can estimate the number
of motions and linearly solve for the multibody fundamental matrix
after embedding all the image points in a higher-dimensional space.
In Section 4 we prove that the epipoles of each independent motion
lie exactly in the intersection of the left null space of the multibody
fundamental matrix with the so-called Veronese surface.

A complete solution and an algorithm for segmentation and es-
timation of multiple motions is presented in Section 5, where we
show that individual epipoles and epipolar lines can be uniformly
and efficiently computed using a novel polynomial factorization
technique. Given the epipoles and the epipolar lines, the estima-
tion of the individual fundamental matrices becomes a simple linear
problem. Then, motion and feature point segmentation is automat-
ically obtained from either the epipoles and epipolar lines or the
individual fundamental matrices. We present preliminary results on
the segmentation of a real image sequence in Section 6.

2 The multibody epipolar constraint and
the multibody fundamental matrix

Consider two images of a scene containing an unknown number n
of independent and rigidly moving objects. The motion of each
object relative to the camera between the two frames is described
by the fundamental matrix Fi ∈ R3×3 associated with the motion
of object i = 1, . . . ,n. We assume that the motions of the objects
are such that all the fundamental matrices are distinct and different
from zero, and hence the relative translation between the two image
frames is non-zero. The image of a point qj ∈ R3 with respect
to image frame Ik is denoted as xjk ∈ P2, for j = 1, . . . ,N and
k = 1,2. In order to avoid degenerate cases, we will assume that
the image points correspond to 3-D points in general configuration
in R3, i.e. they do not all lie in any critical surface, for example.
We will drop the superscript when we refer to a generic image pair
(x1,x2). Also, we will always use the homogeneous representation
x = [x,y,z]T ∈ R3 to refer to an arbitrary image point in P2. We
define the multibody structure from motion problem as follows:

Problem 1 (Multibody structure from motion problem) Given
a set of image pairs {(xj1,x

j
2)}Nj=1 corresponding to an unknown

number of independent and rigidly moving objects that satisfy the
assumptions above, estimate the number of independent motions
n, the fundamental matrices {Fi}ni=1, and the segmentation of the
image pairs, i.e. the object to which each image pair belongs.

Let (x1,x2) be an arbitrary image pair corresponding to any mo-
tion. Then, there exists an fundamental matrix Fi satisfying the



epipolar constraint xT2 Fix1 = 0. Thus, regardless of the object to
which the image pair belongs, the following constraint must be sat-
isfied by the number of independent motions n, the relative motions
of the objects {Fi}ni=1 and the image pair (x1,x2)

L(x1,x2)
.
=

n

∏
i=1

(
xT2 Fix1

)
= 0. (1)

We call this constraint the multibody epipolar constraint, since it is
a natural generalization of the epipolar constraint valid for n= 1.

The multibody epipolar constraint converts Problem 1 into that
of solving for the number of independent motions n and the
fundamental matrices {Fi}ni=1 from the nonlinear equation (1).
This nonlinear constraint defines a homogeneous polynomial of
degree n in either x1 or x2. For example, if we let x1 =
[x1,y1,z1]T , then equation (1) viewed as a function of x1 can
be written as a linear combination of the following monomials
{xn1 ,xn−1

1 y1,x
n−1
1 z1, . . . ,z

n
1 }. It is readily seen that there are a

total of
Mn

.
= (n+ 1)(n+ 2)/2 (2)

different monomials. Thus, we can use the Veronese map of degree
n, νn : P2→ PMn−1, [x,y,z]T 7→ [xn1 ,x

n−1
1 y1,x

n−1
1 z1, . . . ,z

n
1 ]T ,

to write the multibody epipolar constraint (1) in bilinear form as
stated by the following Lemma.

Lemma 1 (The bilinear multibody epipolar constraint)
The multibody epipolar constraint (1) can be written as

νn(x2)TFνn(x1) = 0, (3)

where F ∈ RMn×Mn is a matrix representation of the symmetric
tensor product of all the fundamental matrices {Fi}ni=1.

Proof: See [Vidal et al. 2002] for the proof.

We call the matrix F the multibody fundamental matrix since it
is a natural generalization of the fundamental matrix to the case
of multiple moving objects. Since equation (3) clearly resembles
the bilinear form of the epipolar constraint for a single rigid body
motion, we will refer to both equations (1) and (3) as the multibody
epipolar constraint.

3 Estimation of the number of motions and
of the multibody fundamental matrix

Notice that, by definition, the multibody fundamental matrix F de-
pends explicitly on the number of independent motions n. There-
fore, even though the multibody epipolar constraint (3) is linear in
F , we cannot use it to estimate F without knowing n in advance.
We now derive a rank constraint on the image points from which
one can estimate n, hence F . First, we rewrite the multibody epipo-
lar constraint (3) as (νn(x2)⊗νn(x1))Tf = 0, where f ∈RM2

n is
the stack of the columns of F and⊗ represents the Kronecker prod-
uct. Therefore, given a collection of image pairs {(xj1,x

j
2)}Nj=1, the

vector f satisfies the system of linear equations

Anf = 0, (4)

where the jth row of An ∈ RN×M
2
n equals (νn(xj2)⊗νn(xj1))T ,

for j = 1, . . . ,N . In order to determine f uniquely (up to a scale
factor) from (4), we must have that

rank(An) =M2
n−1. (5)

This rank contraint on An provides an effective criterion to deter-
mine the number of independent motions n from the given image
pairs, as stated by the following Theorem.

Theorem 1 (Number of independent motions)
Let Ai ∈ RN×M

2
i be the matrix in (4), but computed with

the Veronese map νi of degree 1 ≤ i ≤ n. Under the assumptions
of Problem 1, if N ≥M2

n− 1 and at least 8 points correspond to
each motion, then

rank(Ai)





>M2
i −1, if i < n,

=M2
i −1, if i= n,

<M2
i −1, if i > n.

(6)

Therefore, the number of independent motions n is given by

n
.
= min{i : rank(Ai) =M2

i −1}. (7)

Proof: See [Vidal et al. 2002] for the proof.

Therefore, we can use Theorem 1 to estimate the number of in-
dependent motions incrementally from equation (7). Given n,
we can linearly solve for the multibody fundamental matrix F
from (4). Notice that the minimum number of image pairs needed
is N ≥M2

n−1, which grows in the order of O(n4) for large n.

4 Multibody epipolar geometry

Recall that the (left) epipole ei is defined as the (left) kernel of Fi,
that is eTi Fi

.
= 0. Hence we have that

(
eTi F1x

)(
eTi F2x

)
· · ·
(
eTi Fnx

)
= νn(ei)

TFνn(x) = 0, (8)

for any ei, i = 1, . . . ,n. Therefore, because the Mn monomials in
νn(x) are linearly independent, we have that νn(ei)

TF = 0, i.e.
the embedded epipoles {νn(ei)}ni=1 lie on the left null space of F ,
Null(F ). Thus, the rank of F is bounded depending on the num-
ber of distinct (pairwise linearly independent) epipoles as stated by
Lemmas 2 and 3 below.

Lemma 2 (Null space of F when the epipoles are distinct)
If the epipoles {ei}ni=1 are distinct, then the embedded epipoles
{νn(ei)}ni=1 are linearly independent. Therefore the rank of F is
bounded by

rank(F )≤ (Mn−n). (9)

Proof: See [Vidal et al. 2002] for the proof.

Notice that, even though embedded epipoles lie in the left null
space of F , we cannot estimate them directly from a basis of that
null space, because linear combinations of {νn(ei)}ni=1 are not em-
bedded epipoles in general. Furthermore, we do not know if the
n-dimensional subspace spanned by {νn(ei)}ni=1 equals Null(F ),
i.e. we do not know if rank(F ) = Mn −n (simulations confirm
that this is true when all the epipoles are distinct). An additional
complication, is that some of the epipoles may be repeated. In this
case, one would expect that the dimension of Null(F ) decreases.
However, this is not the case. The null space of F is actually en-
larged by higher-order derivatives of the Veronese map as stated by
the following Lemma.

Lemma 3 (Null space of F when one epipole is repeated)
Let e1 be repeated k times, i.e. e1 = · · · = ek , and let the other
n− k epipoles be distinct. Then the Mk−1 vectors of partial
derivatives of νn(x) of order k− 1 evaluated at e1 lie in the left
null space of F . Furthermore, νn(e1) is a linear combination of
these Mk−1 vectors. Therefore,

rank(F )≤Mn−Mk−1− (n−k). (10)

Proof: See [Vidal et al. 2002] for the proof.



Therefore, in order to uniquely recover the embedded epipoles
νn(ei) from the left null space of F we will need to exploit the
algebraic structure of the Veronese map. The following theorem
guarantees the uniqueness of the recovery of the embedded epipoles
from the intersection of Null(F ) with the so-called Veronese sur-
face.

Theorem 2 (Veronese null space of F ) The intersection of the
left null space of F Null(F ) with the Veronese surface νn(P2) is
exactly

Null(F )∩νn(P2) = {νn(ei)}ni=1. (11)

Proof: See [Vidal et al. 2002] for the proof.

5 Multibody structure from motion

5.1 Estimation of the epipolar lines

Given a point x1 in the first image frame, the epipolar lines associ-
ated with it are defined as li

.
= Fix1 ∈ R3, i= 1, . . . ,n. Since

νn(x2)TFνn(x1) =
n

∏
i=1

(
xT2 Fix1

)
=

n

∏
i=1

(xT2 li) = νn(x2)T l̃,

we conclude that the multibody epipolar line l̃
.
= Fνn(x1) ∈ RMn

represents the coefficients of the homogeneous polynomial in x

g(x)
.
= (xT l1)(xT l2) · · ·(xT ln) = νn(x)T l̃. (12)

Therefore, in order to recover the epipolar lines {li}ni=1 associ-
ated with x1 from the multibody epipolar line l̃ = Fνn(x1), we
need to factorize the homogeneous polynomial of degree n, g(x),
into the n homogeneous polynomials of degree one {xT li}ni=1.
We showed in [Vidal et al. 2002] that this polynomial factorization
problem has a unique solution (up to scale of each factor) and that
is algebraically equivalent to solving for the roots of a polynomial
of degree n in one variable, plus solving a linear system in n vari-
ables. We shall assume that this polynomial factorization technique
is available to us from now on, and refer interested readers to [Vidal
et al. 2002] for further details.

We can interpret the factorization of the multibody epipolar line
l̃ = Fνn(x1) as a generalization of the conventional “epipolar
transfer” to multiple motions. In essence, the multibody fundamen-
tal matrix F allows us to “transfer” a point x1 in the first image
to a set of epipolar lines in the second image, the same way a fun-
damental matrix maps a point in the first image to an epipolar line
in the second image. We illustrate the multibody epipolar transfer
process with the following sequence of maps

x1
Veronese7−→ νn(x1)

Epipolar Transfer7−→ Fνn(x1)
Polynomial Factorization7−→ {li}ni=1.

5.2 Estimation of the individual epipoles

Given a set of epipolar lines, we now describe how to compute the
epipoles associated with each one of the n motions. Recall that
the (left) epipole associated with each rank-2 fundamental matrix
Fi ∈ R3×3 is defined as the vector ei ∈ R3 lying in the (left) null
space of Fi, that is ei satisfies eTi Fi = 0. Now let l ∈ R3 be an
arbitrary epipolar line associated with some image point in the first
frame. Then there exists an i such that eTi l = 0. Therefore, every
epipolar line l has to satisfy the following polynomial constraint

h(l)
.
= (eT1 l)(e

T
2 l) · · ·(eTn l) = ẽT νn(l) = 0, (13)

regardless of the motion with which it is associated. We call the
vector ẽ ∈ RMn the multibody epipole associated with the n mo-
tions.

Now, given a collection {lj}mj=1 of m ≥Mn− 1 epipolar lines
(which can be computed from the multibody epipolar transfer pro-
cess described before), the multibody epipole ẽ∈RMn satisfies the
following system of linear equations

Bnẽ= 0, (14)

where the jth row of Bn ∈ RN×Mn is given by νn(lj)T , for j =
1, . . . ,m. In order for equation (14) to have a unique solution (up to
a scale factor), we will need to replace n by the number of distinct
epipoles ne, which can be computed from the following Lemma.

Lemma 4 (Number of distinct epipoles) Let {lj}mj=1 be a collec-
tion ofm≥Mn−1 epipolar lines, with at least 2 lines correspond-
ing to each motion. Then

rank(Bi)





>Mi−1, if i < ne,

=Mi−1, if i= ne,

<Mi−1, if i > ne.

(15)

Therefore, the number of distinct epipoles ne ≤ n is given by

ne
.
= min{i : rank(Bi) =Mi−1}. (16)

Proof: See [Vidal et al. 2002] for the proof.

Once the number of distinct epipoles, ne, has been computed, the
vector ẽ ∈Mne can be obtained from the linear system Bne ẽ= 0.
Once ẽ has been computed, the individual epipoles {ei}nei=1 can be
computed by applying polynomial factorization to h(l) = ẽT νn(l).

5.3 Estimation of the fundamental matrices

Given the epipolar lines and the epipoles, we now show how to
recover each one of the individual fundamental matrices {Fi}ni=1.
Notice that the only case in which both left and right epipoles are
repeated is when the rotation axes of two (or more) motions are
equal to each other and parallel to the common translation direction.
Therefore, except for this degenerate case, we can assume that the
epipoles (either left or right) are distinct, i.e. ne = n, without loss
of generality.

Let Fi = [f1
i f

2
i f

3
i ] ∈ R3×3 be the fundamental matrix asso-

ciated with motion i, with columns f 1
i ,f

2
i ,f

3
i ∈ R3. We know

from Section 5.2 that, given x1 = [x1,y1,z1]T ∈ R3, the vector
Fνn(x1) ∈ RMn represents the coefficients of the following ho-
mogeneous polynomial in x

g(x)=
(
xT(f1

1x1+f2
1y1+f3

1z1)
)
· · ·
(
xT(f1

nx1+f2
ny1+f3

nz1)
)
.

Thus, given the multibody fundamental matrix F , one can com-
pute any linear combination of the columns of the fundamental ma-
trix Fi up to a scale factor, i.e. we can get vectors li ∈R3 satisfying

λili
.
= (f1

ix1 +f2
iy1 +f3

iz1), λi ∈ R, i= 1, . . . ,n.

These vectors are nothing but the epipolar lines associated with the
multibody epipolar line Fνn(x1), which can be computed using
polynomial factorization as described in Section 5.2. Notice that, in
particular, we can obtain the three columns of Fi up to a scale fac-
tor by choosing x1 = [1,0,0]T , x1 = [0,1,0]T and x1 = [0,0,1]T ,
respectively. However:

1. We do not know the fundamental matrix to which the recov-
ered epipolar lines belong.

2. The recovered epipolar lines, hence the columns of each Fi,
can be obtained up to a scale factor only. Hence, we do not
know the relative scales between the columns of each Fi.



The first problem is easily solvable: if a recovered epipolar line
l ∈ R3 corresponds to a linear combination of columns of the fun-
damental matrix Fi, then it must be perpendicular to the previously
computed epipolar line ei, i.e. we must have eTi l = 0. As for the

second problem, for each i let lji be the epipolar line associated with

xj1 that is perpendicular to ei, for j = 1, . . . ,m. Since the xj1’s can
be chosen arbitrarily, we choose the first three to be x1

1 = [1,0,0]T ,
x2

1 = [0,1,0]T and x3
1 = [0,0,1]T to form a simple basis. Then for

every xj1 = [xj1,y
j
1 ,z

j
1 ]T , j ≥ 1, there exist unknown scales λji ∈R

such that

λji l
j
i = f1

ix
j
1 + f2

iy
j
1 + f3

iz
j
1 j ≥ 4,

= (λ1
i l

1
i )x

j
1 + (λ2

i l
2
i )y

j
1 + (λ3

i l
3
i )z

j
1 , j ≥ 4.

Cross-multiplying both sides by lji , we obtain

0 = lji ×
(

(λ1
i l

1
i )x

j
1 + (λ2

i l
2
i )y

j
1 + (λ3

i l
3
i )z

j
1

)
, j ≥ 4 (17)

where λ1
i ,λ

2
i ,λ

3
i are the only unknowns. Therefore, the fundamen-

tal matrices are given by

Fi = [f1
i f

2
i f

3
i ] = [λ1

i l
1
i λ

2
i l

2
i λ

3
i l

3
i ], (18)

where λ1
i , λ

2
i and λ3

i can be obtained as the solution to the linear
system




x4
1(l4i × l1i ) y4

1(l4i × l2i ) z4
1(l4i × l3i )]

x5
1(l5i × l1i ) y5

1(l5i × l2i ) z5
1(l5i × l3i )]

...
xm1 (lmi × l1i ) ym1 (lmi × l2i ) zm1 (lmi × l3i )]






λ1
i
λ2
i
λ3
i


= 0. (19)

We have given a constructive proof for the following statement:

Theorem 3 (Factorization of the multibody fundamental matrix)

Let F ∈ RMn×Mn be the multibody fundamental matrix as-
sociated with fundamental matrices {Fi ∈ R3×3}ni=1. If the n
epipoles are distinct, then the matrices {Fi}ni=1 can be uniquely
determined up to a scale factor for each Fi.

5.4 3-D motion segmentation

3-D motion segmentation of the image pairs {(xj1,x
j
2)}Nj=1 can

be easily done from either the epipoles {ei}ni=1 and epipolar lines
{lj}mj=1, or from the fundamental matrices {Fi}ni=1, as follows.

1. Motion segmentation from the epipoles and epipolar lines:
Given (x1,x2), factorize l̃ = Fνn(x1) into n epipolar lines.
One of these lines, say l, passes through x2, i.e. lTx2 = 0.
The pair (x1,x2) is assigned to the ith motion if lT ei = 0.

2. Motion segmentation from the fundamental matrices: The im-
age pair (x1,x2) is assigned to the ith motion ifxT2 Fix1 = 0.

Figure 1 illustrates how a particular image pair, say (x1,x2), which
belongs to the ith motion, i= 1, . . . ,n, is successfully segmented.

5.5 Summary of multibody geometry

Table 1 summarizes our theoretical development with a comparison
of the geometric entities associated with two views of 1 rigid body
motion and two views of n rigid body motions.

Polynomial factorization

Segmentation

Epipolar transfer

Veronese map

PSfrag replacements

x1 ∈ R3

x2 ∈ R3

νn(x1) ∈ RMn

[x,y,z]T 7→ [. . . ,xn1yn2zn3 , . . .]T

Fνn(x1) ∈ RMn

xT2 lk = 0

(x1,x2) ∈ ith motion

eTi lk = 0, or xT2 Fix1 = 0

νn(x)TFνn(x1) = (xT l1) · · · (xT ln)

(eT1 l) · · ·(eTn l) = 0

lk ∈ R3{e1, . . . ,en ∈ R3}

{l1, . . . ,ln ∈ R3}

Figure 1: Transformation diagram associated with the segmentation
of an image pair (x1,x2) in the presence of n motions.

5.6 Multibody structure from motion algorithm

We are now ready to present a complete algorithm for multibody
motion estimation and segmentation from two perspective views.

Algorithm 1 (Multibody structure from motion algorithm).

Given a collection of image pairs {(xj1,x
j
2}Nj=1 of points under-

going n different motions, recover the number of motions n, the
fundamental matrices {Fi}ni=1 and the segmentation as follows:

1. Number of motions. Compute the number of independent
motions n from the rank constraint in (7), using the Veronese
map of degree i = 1,2, . . . ,n applied to the image points
{(xj1,x

j
2}Nj=1.

2. Multibody fundamental matrix. Compute the multibody
fundamental matrix F as the solution of the linear system
Anf = 0 in (4), using the Veronese map of degree n.

3. Epipolar transfer. Pick N ≥Mn−1 vectors {xj1 ∈R3}Nj=1,

with x1
1 = [1,0,0]T , x2

1 = [0,1,0]T and x3
1 = [0,0,1]T , and

compute their corresponding epipolar lines {ljk}
j=1,...,N
k=1,...,n by

applying polynomial factorization to {Fνn(xj1)∈RMn}Nj=1.

4. Multibody epipole. Use the epipolar lines {ljk}
j=1,...,N
k=1,...,n to

estimate the multibody epipole ẽ as coefficients of the poly-
nomial h(l) in (13) by solving the system Bnẽ = 0 in (14).

5. Individual epipoles. Compute the individual epipoles
{ei}ni=1 by applying polynomial factorization to the multi-
body epipole ẽ∈RMn .

6. Individual fundamental matrices. For each j, choose k(i)

such that eTi l
j
k(i)

= 0 , i.e. assign each epipolar line to its
motion. Then use (18) and (19) to obtain each fundamental
matrix Fi from the epipolar lines assigned to motion i.

7. Features segmentation by motion. Assign image pair
(xj1,x

j
2) to motion i if eTi l

j
k(i)

= 0 or if xT2 Fix1 = 0.

One of the main drawbacks of Algorithm 1 is that it needs a lot of
image pairs in order to compute the multibody fundamental matrix.
We discuss in [Vidal et al. 2002] a few variations to Algorithm 1
that significantly reduce the data requirements.



Comparison of 2 views of 1 body 2 views of n bodies

An image pair x1,x2 ∈ R3 νn(x1),νn(x2) ∈ RMn
Epipolar constraint xT2 Fx1 = 0 νn(x2)TFνn(x1) = 0
Fundamental matrix F ∈ R3×3 F ∈ RMn×Mn

Linear estimation from
N image pairs




x1
2⊗x1

1

x2
2⊗x2

1

.

.

.
xN2 ⊗xN1



f = 0




νn(x1
2)⊗νn(x1

1)

νn(x2
2)⊗νn(x2

1)

.

.

.
νn(xN2 )⊗νn(xN1 )



f = 0

Epipole eTF = 0 νn(e)TF = 0
Epipolar lines l= Fx1 ∈ R3 l̃= Fνn(x1) ∈ RMn
Epipolar line & point xT2 l= 0 νn(x2)T l̃= 0
Epipolar line & epipole eT l= 0 ẽT νn(l) = 0

Table 1: Comparison between the geometry for two views of 1 rigid
body motion and that for n rigid body motions.

6 Segmentation results

We tested the proposed approach by segmenting a real image se-
quence with n = 3 moving objects: a truck, a car and a box. Fig-
ure 2(a) shows the first frame of the sequence with the tracked fea-
tures superimposed. We tracked a total of N = 173 point features:
44 for the truck, 48 for the car and 81 for the box. Figure 2(b) plots
the segmentation of the image points from the obtained fundamen-
tal matrices. The segmentation has no mismatches.

7 Conclusions

We have proposed a geometric approach for the analysis of dynamic
scenes based on the multibody epipolar constraint and its associated
multibody fundamental matrix. The theory developed in this paper
generalizes the well-known epipolar geometry to multiple moving
objects and shows that it is possible to estimate multiple motions
without prior segmentation using a purely geometric approach.
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