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Probabilistic Pursuit-Evasion Games: Theory,
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Abstract— We consider the problem of having a team of
Unmanned Aerial Vehicles (UAV) and Unmanned Ground
Vehicles (UGV) pursue a second team of evaders while con-
currently building a map in an unknown environment. We
cast the problem in a probabilistic game theoretic frame-
work and consider two computationally feasible greedy pur-
suit policies: local-max and global-max. To implement this
scenario on real UAVs and UGVs, we propose a distributed
hierarchical hybrid system architecture which emphasizes
the autonomy of each agent yet allows for coordinated team
efforts. We describe the implementation of the architecture
on a fleet of UAVs and UGVs, detailing components such
as high-level pursuit policy computation, map building and
inter-agent communication, and low-level navigation, sens-
ing, and control. We present both simulation and experi-
mental results of real pursuit-evasion games involving our
fleet of UAVs and UGVs and evaluate the pursuit policies
relating expected capture times to the speed and intelligence
of the evaders and the sensing capabilities of the pursuers.

Keywords— Multi-robot systems, pursuit-evasion games,
multi-agent coordination and control, autonomous vehicles.

I. Introduction

THE BErkeley AeRobot (BEAR) project is a research
effort at UC Berkeley that encompasses the disciplines

of hybrid systems theory, navigation, control, computer vi-
sion, communication, and multi-agent coordination. The
goal of our research is to integrate multiple autonomous
agents with heterogenous capabilities into a coordinated
and intelligent system that is modular, scalable, fault-
tolerant, adaptive to changes in task and environment, and
able to efficiently perform complex missions.

This paper highlights the theory, implementation and
evaluation of probabilistic pursuit-evasion games on the
BEAR test bed of Unmanned Aerial Vehicles (UAVs) and
Unmanned Ground Vehicles (UGVs) shown in Figure 1. In
this scenario, a team of UAV and UGV pursuers attempts
to capture evaders within a bounded but unknown envi-
ronment. We cast the problem in a probabilistic game the-
oretic framework that combines pursuit-evasion games and
map building in a single problem, which avoids the con-
servativeness inherent to classical worst-case approaches.
We consider two computationally feasible pursuit policies:
local-max and global-max. We prove that for the global-
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Fig. 1. The Berkeley AeRobot test bed for pursuit-evasion games.

max policy there exists an upper bound on the expected
capture time which depends on the size of the arena, and
the speed and sensing capabilities of the pursuers.

In order to implement this pursuit-evasion game scenario
on a fleet of UAVs and UGVs, we propose a distributed
hierarchical hybrid system architecture that segments the
control task into different layers of abstraction: high-level
pursuit policy computation, map building and inter-agent
communication; and low-level tactical planning, naviga-
tion, regulation and sensing. Our architecture is modu-
lar and scalable, allowing one to “divide and conquer” a
complex large scale system by developing and integrating
simpler components. Unlike the traditional sense-model-
plan-act decomposition, our architecture takes into consid-
eration the dynamics of each agent so that our system can
achieve real-time performance.

We evaluate the proposed probabilistic framework and
hierarchical architecture through simulation and experi-
mental results on our fleet of UAVs and UGVs. Using
the expected capture time as the performance criterion, we
compare the local-max and global-max pursuit policies on
numerous situations, varying the speed and intelligence of
the evaders and the sensing capabilities of the pursuers.
Our experimental results show that the global-max policy
outperforms the local-max policy in a realistic situation in
which the dynamics of each agent are included and com-
puter vision is used to detect the evaders. Furthermore,
our experiments show that the global-max policy is robust
to changes in the conditions of the game: even though it is
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designed for a randomly moving evader, the policy is also
successful in catching an intelligent evader.

A. Previous Research in Pursuit-Evasion Games

The classical approach to pursuit-evasion games is to first
build a map of the terrain and then play the game in a
known environment. For the map building stage, several
techniques have been proposed, see e.g. [1] and references
therein. Most of them are based on Bayesian estimation
and are implemented using the Extender Kalman Filter.
The main problem with these map building techniques is
that they are time consuming and computationally expen-
sive, even in the case of simple two dimensional rectilinear
environments [2]. On the other hand, most of the litera-
ture in pursuit-evasion games, see e.g. [3], [4], [5], [6], [7],
assumes worst case motion for the evaders and an accu-
rate map of the environment. In practice, this results in
overly conservative pursuit policies applied to inaccurate
maps built from noisy measurements.

In [8] the pursuit-evasion game and map building prob-
lems are combined in a single probabilistic framework. The
basic scenario considers multiple pursuers trying to capture
a single randomly moving evader. In [9] we extended the
scenario to consider multiple evaders and proposed a sim-
ple vision-based algorithm for evader detection. We also
included supervisory agents, such as a helicopter, that can
detect evaders but not capture them. In parallel with our
theoretical work on pursuit-evasion games, we have been
developing a test bed for multi-agent coordination and con-
trol. In [10] we presented a real-time control system for
regulation and navigation of a UAV. In [9] we presented
an architecture for pursuit-evasion games and described
the implementations of the navigation, communication and
sensing layers. In [11] we presented the implementation of
the high-level mission coordination, including the compo-
nents for pursuit policy computation and map building.

Recent work on pursuit evasion games considers evaders
that actively avoid the pursuers, as described in [12] where
a dynamic programming solution to a Stackelberg equilib-
rium of a partial information Markov process is proposed.
There has also been work on vision-based pursuit-evasion
games, where the pursuers use optical flow to determine
the number of moving evaders as well as their position and
orientation [13]. Implementation and evaluation of these
two techniques is forthcoming.

B. Previous Research in Multi-Robot Systems

The multi-agent pursuit-evasion game scenario consid-
ered in this paper fits within the general framework of
multi-robot systems. There exists a large body of liter-
ature in multi-robot systems addressing problems such as
machine learning techniques for multi-agent systems [14],
hybrid algorithms for multi-agent control [15], multi-robot
localization [1], [16], distributed sensor fusion [17] and for-
mation control [18]. As for application of multi-robot sys-
tems in robot soccer, we refer the reader to [19] and [20]
for centralized coordination and control of multiple robots,
and to [21], [22] and [23] for completely distributed systems.

II. Pursuit-Evasion Scenario

This section describes the theoretic foundations for prob-
abilistic pursuit-evasion games, including map building,
pursuit policies, and evasion policies. We also describe a
vision-based algorithm for obstacle and evader detection.

Notation. We denote by (Ω,F ,P) the relevant probabil-
ity space with Ω the set of all possible events related to the
pursuit-evasion game, F a family of subsets of Ω forming
a σ-algebra, and P : F → [0, 1] a probability measure on
F . Given two sets of events A,B ∈ F with P(B) 6= 0, we
write P(A|B) for the conditional probability of A given B.
Bold face symbols are used to denote random variables.

A. Probabilistic Framework

Consider a finite two-dimensional environment X with
nc square cells containing an unknown number of fixed ob-
stacles and let xp ⊂ X (xe ⊂ X ) be the set of cells occupied
by the np pursuers (ne evaders). Pursuers and evaders are
allowed to move to cells in X in which there is no other
pursuer, evader or obstacle.

Each pursuer (evader) collects information about X at
discrete time instants t ∈ T , {1, 2, . . .}. Each measure-
ment y(t) is a triple {v(t), e(t),o(t)} taking values in a
measurement space Y, where v(t) denotes the measured
positions of the pursuers and e(t) (o(t)) is a set of cells
where evaders (obstacles) are detected. We let Y∗ be the
set of all finite sequences of elements in Y, and Yt ∈ Y∗ be
the sequence of measurements {y(1), . . . ,y(t)} taken up
to time t. In practice, measurements are taken within a
certain subset of X : the visibility region. We denote the
visibility region of pursuer k (evader i) at time t as Vpk(t)
(Vei(t)). Sensor information is assumed to be imperfect.
We use a simple sensor model based on the probability of
false positives p ∈ [0, 1] and false negatives q ∈ [0, 1] of a
pursuer detecting an evader or an obstacle. However, we
assume that pursuers have perfect knowledge of their own
locations, that is v(t) = xp(t)

1.
Capture of an evader is defined as follows: Let xpk(t) ∈

v(t) and xei(t) ∈ e(t) be the estimated positions of ground
pursuer k and evader i at time t, respectively. We say
that evader i is captured by ground pursuer k at time t if
xei(t) ∈ Vpk(t) and d(xpk(t), xei(t)) ≤ dm where d(·, ·) is
a metric in X and dm is a pre-specified capture distance.
Captured evaders are removed from the game. The capture
time of all evaders is defined as T∗ = max

i=1···ne
T∗i , where T∗i

is the time instant at which evader i is captured. We as-
sume that aerial pursuers can detect and share information
about the positions of evaders, but not capture them.

B. Map Building

We assume that pursuers are able to identify each evader
separately and that each evader moves independently of
the other evaders. Therefore, without loss of generality, we
will assume ne = 1 and omit the subscript identifying each

1This assumption is unrealistic in general, although valid when GPS
is used for pursuer localization and vision is used for evader detection.
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evader. Let pe(x, τ | Yt) be the posterior probability of the
evader being in cell x at time τ , given the measurement
history Yt = Yt. Similarly, let po(x | Yt) be the conditional
probability of having an obstacle in cell x given Yt. At each
t, pursuers have estimates of the evader and obstacle maps
pe(x, t | Yt−1) and po(x | Yt−1), obtain a new measurement
y(t) and recursively estimate po(x | Yt) and pe(x, t+1 | Yt)
in three steps: First, pursuers compute pe(x, t | Yt) as:
{

0 if x ∈ o(t) ∪ v(t) \ e(t) or the evader is captured
αpe(x, t | Yt−1)P (e | x, v, Yt−1) otherwise,

(1)

where α is a normalizing constant independent of x, and
P (e|x, v, Yt−1)=P (e(t)=e|xe(t)=x,v(t)=v,Yt−1 =Yt−1)

=

{
0 x ∈ v(t)

pk1(1−p)k2qk3(1−q)k4 otherwise.
(2)

Here, for each x, k1 is the number of false positives, k2

is the number of true negatives, k3 is the number of false
negatives, and k4 is the number of true positives. Recall
that p and q are the probability of the sensor reporting
false positives and false negatives, respectively.

Second, pursuers compute the obstacle map po(x |Yt) as:





(1−q)po(x|Yt−1)
(1−q)po(x|Yt−1)+p(1−po(x|Yt−1)) x ∈ Vp(t) ∩ o(t)

qpo(x|Yt−1)
qpo(x|Yt−1)+(1−p)(1−po(x|Yt−1)) x ∈ Vp(t) \ o(t)

1 x ∈ v(t) ∩ o(t)

0 x ∈ v(t) \ o(t)

po(x | Yt−1) otherwise,

(3)

where Vp(t) = ∪npk=1Vpk(t).
Finally, in order to compute pe(x, t+ 1|Yt), pursuers as-

sume a Markov model for the motion of the evader which is
determined by the probability ρ ∈ [0, 1/8] that the evader
moves to an unoccupied cell in A(x), where A(x) is the
set of (up to eight) cells adjacent to x. The evader map
pe(x, t+ 1|Yt) is updated as:

(1−|A(x)|ρ)pe(x, t|Yt)+ρ(1−po(x|Yt))
∑

x̂∈A(x)

pe(x̂, t|Yt). (4)

C. Pursuit Policies

Given the measurement history Yt, the pursuers need
to decide where to move at the next time instant. Let
u(t) , [u1(t), . . . ,unp(t)] be the desired position of the
pursuers at time t. Since two pursuers must not occupy
the same cell, u(t) is an element of the control action space
U ,

{
{v1, . . . , vnp} : vi ∈ X , vi 6= vj for i 6= j

}
. We define

a pursuit policy as the random function g : Y∗ → U :

g(Yt) , u(t+ 1) = [u1(t+ 1), · · · ,unp(t+ 1)]. (5)

We measure the performance of a specific pursuit policy
ĝ by the expected capture time Eĝ[T

∗] , E[T∗|g = ĝ].
Since the dependence of Eĝ[T

∗] on the pursuit policy ĝ is
in general very complex [8], instead of finding the optimal
policy that minimizes Eĝ[T

∗], we look for efficiently com-
putable sub-optimal policies with good performance. To

this end, we first introduce the notion of a persistent pur-
suit policy [8] and show that it guarantees a certain degree
of success for the pursuers. We then present two computa-
tionally efficient greedy policies and show that one of them
satisfies the persistence property, given certain assumptions
on the distribution of the obstacles and the sensing models.

C.1 Persistent on the average pursuit policies

A specific pursuit policy ĝ : Y∗ → U is said to be per-
sistent on the average if there is an integer T and some
ε > 0 such that, for each t ∈ T , the conditional probability
of capturing an evader on the set of T consecutive time
instants starting at t is greater than or equal to ε, i.e.,

P(T∗ ∈ {t, t+ 1, . . . , t+ T − 1} | g = ĝ,T∗ ≥ t) ≥ ε. (6)

We call T the period of persistence. Persistent on the av-
erage pursuit policies satisfy the following [8]:

Lemma 1: If ĝ : Y∗ → U is a persistent on the average
pursuit policy with period T , then P(T∗ <∞ | g = ĝ) = 1,
and Eĝ[T

∗] ≤ Tε−1, with ε as in (6).

Lemma 1 shows that for a pursuit policy which is per-
sistent on the average, the probability of capturing the
evaders in finite time is equal to one. Moreover, Lemma 1
gives a simple upper bound on the expected capture time.
The following lemma (proved in [24]) gives a sufficient con-
dition for a policy to be persistent on the average.

Lemma 2: Let Y¬fnd
t , be the set of all sequences of mea-

surements of length t, associated with an evader not being
found up to time t. A sufficient condition for a pursuit pol-
icy ĝ to be persistent on the average with period T is the
existence of some δ > 0 such that, for each t ∈ T and each
Y ∈ Y¬fnd

t+T−2, there is some τ ∈ {t− 1, t, . . . , t+ T − 2} for
which P(T∗ = τ + 1|Yτ = Yτ ,g = ĝ) ≥ δ. In this case (6)
holds with:

ε ,
{

1
T (1− 1

T )T−1 δ ≥ 1
T

δ(1− δ)T−1 δ < 1
T .

(7)

C.2 Admissible policies, obstacle density & sensor models

In order to apply Lemmas 1 and 2 to a specific pursuit
policy, we will need some extra assumptions on the dynam-
ics of the pursuers, the distribution of the obstacles, and
the sensor models used for evader detection.

First, we restrict our attention to pursuit policies that
respect the dynamics of each vehicle. Let Upk(xpk) ⊂ X be
the set of cells that pursuer k can reach from cell xpk in
one time step, provided that those cells are empty, and let
U(xp) ,

∏np
k=1 Upk(xpk)2. We say that a pursuit policy ĝ is

admissible if for every sequence of measurements Y ∈ Y∗
we have ĝ(Y ) ∈ U(xp), where xp = (xp1, . . . , xpnp ) are the
pursuers’ positions specified by the last measurement in Y .

Next, we assume that the density of obstacles in the
environment is small enough so that any cell in X can be
reached in a finite amount of time. More formally:

2The one-step reachable set Upk (xpk ) can be computed off-line as
a parametric function of xpk using polynomial time algorithms based
on robust semi-definite programming as shown in [25].
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Assumption 1: For any vo, vf ∈ X there exists a finite
sequence {xp(0), . . . , xp(t) : vo = xp(0), vf = xp(t), t ∈ T }
such that xp(τ) ∈ Up(xp(τ − 1)) for each τ ∈ T .

Finally, we assume that in a single time step, the condi-
tional probability of the evader being at a cell x ∈ X does
not decay by more than a certain amount, unless one pur-
suer reaches x—in which case the probability of the evader
being at x may decay to zero if the evader is not there—or
if it is possible to conclude from the measured data that an
obstacle is at x with probability one. Such an assumption
holds for most sensor models.

Assumption 2: There is a positive constant γ ≤ 1 such
that for any sequence Yt ∈ Y¬fnd

t of t ∈ T measurements
for which the evader was not captured,

pe(x, t+ 1|Yt) ≥ γpe(x, t|Yt−1), (8)

for any x ∈ X for which (i) x is not in the list of pursuers
positions specified by the last measurement in Yt and (ii)
the probability of an obstacle being at any given location
given the measurements up to time t is strictly less than 1
for any pursuit policy ĝ.

C.3 Greedy policies

Given the assumptions in the previous section, we now
focus on finding efficiently computable sub-optimal pursuit
policies. We consider the following greedy policies: local-
max and global-max. Both policies try to maximize the
probability of capturing an evader at the next time instant;
the difference being that local-max searches only one-step
reachable cells, while global-max searches the entire map.

Local-max Policy. Under this policy, pursuer k moves to
the cell in the one-step reachable set with the highest prob-
ability of containing an evader over all the evader maps,
that is:

uk(t+ 1) = argmax
x∈U(xpk (t))

max
i={1...ne}

pei(x, t+ 1|Yt),

where pei(x, t+ 1|Yt) represents the probability of evader i
being in cell x at time t+ 1 given the measurements Yt.

Notice that the local-max policy is advantageous in scal-
ability, since it assigns more importance to local measure-
ments by searching only in U(xpk) regardless of the size
of the environment X . This policy is computationally effi-
cient, and can be computed independently by each pursuer
in a decentralized pursuit-evasion game. However, it can be
shown that in general the local-max policy is not persistent
on the average.

Global-max Policy. The global-max policy searches over
the entire map in order to compute the control that max-
imizes the probability of capturing an evader. Therefore,
it is more computationally intensive and does not scale as
well as the local-max policy with the size of X . However,
as we will show below, it has the nice property that it is
persistent on the average.

Take an arbitrary sequence of measurements Y ∈ Y∗,
and compute the cell in the map with the maximum prob-

ability of having an evader:

x∗ , argmax
x∈X

max
i∈{1,...,ne}

pei(x, t+ 1, | Yt). (9)

Next define the desired positions of the pursuers as:

x∗p , argmax
xp1

,...,xpnk
∈U

max
i∈{1,...,ne}

np∑

k=1

pei(xpk , t | Yt) (10)

Now define the global-max pursuit policy g(Y ) as:

g(Y ) , nav(x∗p, k
∗, Y ) (11)

where k∗ ∈ {1, . . . , np} is the integer for which x∗ = x∗pk∗ .
Here nav : U × {1, . . . , np} × Y∗ → U is an underlying
“navigation policy” which takes a list of desired positions
for the pursuers x∗p, together with measurements Yt and
produces a position reachable in a single time step that
is “one step closer” to x∗p, or concludes that there is an
obstacle at x∗p.

Theorem 1: If assumptions 1 and 2 hold, then the global-
max policy g : Y∗ → U is an admissible pursuit policy
which is persistent on the average with period T , d, where
d is the maximum number of steps needed to travel from
one cell to any other. Moreover P(T∗<∞ | g=g) = 1, and

Eg[T
∗] ≤ Tε−1, with ε as in (7) and δ = γd

nc
in Lemma 2.

Proof: By definition of the navigation policy, g is
admissible. In order to prove that g is persistent on the
average, we show that the hypotheses of Lemma 2 hold.
From the definition of x∗ in (9) we have that for any t ∈ T :

max
i∈{1,...,ne}

pei(x
∗, t | Yt) ≥

1

nc
,

where nc is the number of cells in X . Now since a pursuer
takes at most d steps to reach x∗, by following policy g
there must exist some τ ∈ {t, . . . , t + T − 2} with T =
d such that there is a pursuer just 1 step away from x∗.
Consider such a time τ and set xp = g(Yτ ). Therefore, the
conditional probability of finding an evader at time τ + 1
hg(Yτ ) , P(T∗ = τ + 1|Yτ = Yτ ,g = g) satisfies

hg(Yτ ) ≥ max
i∈{1,...,ne}

np∑

k=1

pei(xpk , τ |Yτ ).

By Assumption 2 and the fact that it takes at most d steps
to reach x∗ we have:

hg(Yτ ) ≥ max
i∈{1,...,ne}

pei(x
∗, τ | Yτ ) ≥ δ , γd

nc
> 0.

Applying Lemmas 1 and 2 finishes the proof.

D. Intelligent Evasion

Even though the pursuit policies described in the pre-
vious section are designed for a randomly moving evader
only, in Section IV we will apply these policies to the case
of an intelligent evader. We allow an intelligent evader to
build a map of obstacles and pursuers and to employ ei-
ther a local-min or global-min policy so as to minimize the
probability of being captured. The local-min and global-
min evasion policies are defined similarly to the local-max
and global-max pursuit policies.
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E. Vision-based detection of obstacles and evaders

Assume that the pursuers are equipped with a camera
to sense the environment. We show how to estimate the
position of obstacles and evaders from their observed po-
sitions in the image plane, the pose (rotation and trans-
lation) of the camera and that of the pursuer. We define
the coordinate frames: (a) Inertial frame, (b) UAV frame,
(c) Camera base, (d) Camera head, and (e) UGV frame,
and let gij , (Rij , pij) ∈ SE(3) be the relative pose of
frame i with respect to frame j. Also, let ŵ ∈ so(3) be the
skew symmetric matrix associated with axis w ∈ IR3 and
(e1, e2, e3) be the usual basis for IR3. If the observer is a
UAV, then gab = (exp(ê3ψ) exp(ê2θ) exp(ê1φ), pab), where
(ψ, θ, φ) are the estimates of the yaw, pitch and roll an-
gles of the helicopter and pab ∈ IR3 is the estimate of its
position. gbc = (Rbc, pbc) is a predefined (known) trans-
formation and gcd = (exp(ê2α) exp(ê1β), 0), where (α, β)
are the estimates of the pan and tilt angles of the camera.
Then, the pose of the camera head with respect to the fixed
inertial frame is then given by:

(Rad, pad) = (RabRbcRcd, Rabpbc + pab). (12)

Let x be the estimate of the position of an obstacle (evader)
in the image plane. Then its 3D position is obtained as:

q =
(z0 − eT3 pad)
eT3 RadA

−1x
RadA

−1x + pad (13)

where z0 is the (fixed) z-coordinate of the evader on the
ground, assuming a flat terrain, and A ∈ IR3×3 is the cam-
era calibration matrix.

If obstacles (evaders) are being observed by a ground
pursuer, equation (13) can still be applied with minor
changes. Replace frame (b) by frame (e), the UGV frame.
Then Rae = exp(ẑγ), where γ is the estimate of the head-
ing of the UGV, pae is the estimate of the position of the
observer and gec is also a predefined (fixed) transformation.

The vision system is also used to estimate the visibility
region of each vehicle. For a ground pursuer or evader, the
visibility region is defined as the trapezoid whose vertices
are computed from equation (13) applied to the vertices of
a fixed rectangle located below the horizon on the image
plane. For an aerial pursuer, since the camera is pointing
down, the rectangle on the image plane is chosen as the
whole image, which results in an approximately rectangular
visibility region.

III. System Architecture

In order to implement the pursuit-evasion game scenario
on real UAVs and UGVs, we propose a hierarchical hybrid
system architecture that segments the control of each agent
into different layers of abstraction as shown in Figure 2.
The different layers allow for the same high-level intelli-
gent control strategies to be applicable to both UAVs and
UGVs. By abstracting away the details of sensing and con-
trol of each agent, we gain the interoperability of a unified
framework for high-level intelligent pursuit policies across
all platforms.

This section gives an overview of the different layers of
abstraction of our system architecture and some details
about the implementation on our fleet of UAVs and UGVs.
Our architecture design was inspired by the architectures of
Automated Highway Systems [26], Air Traffic Management
Systems [27], and Flight Management Systems [28].

A. High-Level: Strategy Planner and Map Builder

The Strategy Planner is responsible for the high-level in-
telligent control of the vehicles, i.e., the pursuit policy com-
putation described in Section II-C. It maintains a state-
space of the system useful for mission planning and tasks
the agents according to mission objectives.

The Map Builder gathers sensor information from each
vehicle and computes probabilistic maps with the locations
of obstacles and evaders as described in Section II-B.

B. Low-Level: Tactical Planner, Regulation and Sensing

The Tactical Planner uses the state information main-
tained by the strategy planner for controling the motion of
each vehicle. It converts strategic plans into a sequence of
way-points or flight modes which are used by the Trajectory
Planner to produce a realizable and safe trajectory based
on a dynamic model of the vehicle and safety routines such
as obstacle avoidance. The final trajectory is sent to the
Regulation Layer, which performs the real-time control of
the vehicle along the specified trajectory.

Each vehicle makes observations about the environment
using a vision system and about its state using a variety
of sensors for position and orientation. Sensor fusion tech-
niques are used to improve the quality of the measurements.

Fig. 2. System Architecture: Strategy planning and map building
are implemented in MATLAB and run in a laptop which is also
used for visualization. Tactical planning, regulation and sensing
are implemented in C++ and run in the UAV or UGV computers.
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C. Implementation of High-Level Control Layers

We implemented the strategy planner and map builder in
a MATLAB/Simulink environment as a part of a unified
platform on which to conduct both simulations and exper-
iments. Furthermore, we used a TCP interface to connect
the MATLAB-based strategy planner and map builder with
the UAVs and UGVs through the wireless LAN.

With this unified platform we are able to seamlessly com-
bine experiments and simulations. In simulation mode, the
strategy planner sends control commands over TCP to a
UAV simulator obtained from system identification [10] and
to a UGV simulator. Visibility regions are simulated ac-
cording to the state variables of each vehicle, and the detec-
tion of evaders and obstacles is simulated with probabilis-
tic sensor models. In experiment mode, the same strategy
planner sends commands over TCP to the actual UAVs
and UGVs, while the same map builder receives vehicle
locations from the GPS/INS, and visibility regions and lo-
cations of obstacles and evaders from the vision system.

D. Implementation of Low-Level Control Layers

Our UAV fleet consists of custom-designed UAVs based
on Yamaha R-50 and R-MAX industrial helicopters. The
trajectory planner and regulation layers are implemented
in C on an embedded PC running the QNX real-time OS.
The low-level controller has a TCP interface that asyn-
chronously receives desired setpoints from the high-level
strategic planner, and reports the UAV’s current position.
The vision system used to detect obstacles and evaders
is implemented in C++ on a second PC running Linux.
See [10] and [29] for further details.

Our UGV fleet consists of ActivMedia Pioneer 2-AT all-
terrain ground robots. The tactical/trajectory planner and
regulation layer run on a microcontroller, while the vision
system runs on a PC running Linux. See [9] for details.

UAVs and UGVs share the following components for
sensing and communication: IEEE 802.11b wireless LAN
connectivity, differential GPS, a PC104 Pentium 233MHz-
based PC running Linux, and a color-tracking vision sys-
tem. All these components are described in detail in [9].

IV. Simulation and Experimental Results

In this section, we present simulation and experimental
results of pursuit-evasion games on our fleet of UAVs and
UGVs3. Table I presents the mean capture time of 10 simu-
lations between 3 pursuers and 1 evader with random initial
conditions. Simulations 1–4 evaluate the performance of
the two pursuit policies against a randomly moving evader
for two types of visibility regions: An omni-directional view
Spk

4 and a trapezoidal view Tpk
5. Simulations 5–8 evalu-

ate the performance of the global-max policy with a trape-
zoidal view for different speeds and levels of intelligence of
the evader. Table II presents results of real experiments be-

3All the experiments are performed in a 20m × 20m environment
with 1m× 1m square cells, p = q = 0.1 and dm = 1.5m.

4Spk (t) is a square of side 5m, centered at xpk (t).
5Tpk (t) , 4(xpk (t), 45◦, 7m)\4(xpk (t), 45◦, 1m), where 4(x, θ, h)

denotes an isosceles triangle with vertex x, angle θ and height h.

TABLE I

Simulation Results

Exp Purs.
Policy

Purs.
Speed

Evad.
Policy

Evad.
Speed

Visib.
Region

Capt.
Time

1 L-max 0.3 Rand 0.3 Omni 279s
2 L-max 0.3 Rand 0.3 Trap 184s
3 G-max 0.3 Rand 0.3 Omni 86s
4 G-max 0.3 Rand 0.3 Trap 67s
5 G-max 0.3 Rand 0.5 Trap 56s
6 G-max 0.3 Rand 0.1 Trap 92s
7 G-max 0.3 G-min 0.1 Trap 151s
8 G-max 0.3 G-min 0.5 Trap 168s

tween 3 UGV pursuers and 1 UGV evader. Figure 3 shows
the evolution of Experiment 1 through photographs and
corresponding snapshots created by the map builder. The
darker cells in the map represent regions with higher prob-
ability of having an evader. Figures 4 and 5 show the map
building snapshots for Experiments 2 and 3, respectively.
Figure 6 shows snapshots from Experiment 4: A game with
1 UAV and 2 UGV pursuers and 1 evader. The game pa-
rameters were similar to those in Table II: Pursuer speed
was 0.3 m/s, evader speed was 0.1 m/s, the evader moved
randomly, pursuers had trapezoidal visibility regions and
followed the global-max policy. The capture time was 30s.

TABLE II

Experimental Results

Exp Purs.
Policy

Purs.
Speed

Evad.
Policy

Evad.
Speed

Visib.
Region

Capt.
Time

1 G-max 0.3 Rand 0.1 Omni 105s
2 G-max 0.3 Rand 0.1 Trap 42s
3 G-max 0.3 Rand 0.5 Trap 37s

A. Discussion of Simulation and Experimental Results

Capture Time vs. Visibility Region: Simulations 1–4 in
Table I and experiments 1–3 in Table II show that, regard-
less of pursuit policy, pursuers with trapezoidal vision out-
perform those with omni-directional vision. Even though
at a given time instant both visibility regions cover approx-
imately the same number of cells, a pursuer with a trape-
zoidal view can change its heading, thus covering many
more new cells than a pursuer with an omni-directional
view. This agrees with natural predator/prey systems.

Capture Time vs. Pursuit Policy: Simulations 1–4 in Ta-
ble I show that the global-max policy generally outperforms
the local-max policy. This is expected since the global-max
policy is persistent on average, while the local-max is not.

Capture Time vs. Evasion Policy: Simulations 5–8 in
Table I evaluate the global-max pursuit policy against an
evader following either a random or a global-min evasion
policy. Since the global-max policy is designed for a ran-
domly moving evader, there is no guarantee that the ex-
pected capture time will be finite for the case of an intel-
ligent evader. We conclude from the simulations that it
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Fig. 3. Experiment 1: An actual game between 3 UGV pursuers and
1 UGV evader. The pursuers P1, P2 and P3 (?) move at 0.3 m/s
and use the global-max policy with an omni-directional visibility
region. The evader E1 moves randomly at 0.1 m/s.

takes longer to capture an intelligent evader than a ran-
domly moving one. Also, for a fast evader it takes 300%
longer to capture an intelligent one than a randomly mov-
ing one, while for a slow evader it takes only 64% longer.

Capture Time vs. Evader Speed: Simulations 5 and 6 in
Table I show that it takes longer to capture a faster ran-
dom evader than a slower random evader. This is because a
faster random evader visits more cells in the map, increas-
ing the chances of being detected. In Figure 5, for example,
the higher speed of E1 allows it to move away from the vis-
ibility region of P2 for t ∈ [0, 14], but E1 soon moves into
the visibility region of P3 and is quickly captured.

UAV Pursuer vs. UGV Pursuer: Simulation results in
[30] and Experiment 4 show that the local-max policy has
a similar performance with either a UAV or UGV pursuer,
while the global-max policy performs better with a UAV.

V. Conclusions

We presented a probabilistic approach to pursuit-evasion
games involving UAVs and UGVs. We considered two com-
putationally feasible greedy pursuit policies: local-max and
global-max. We proved that for the global-max policy there
exists an upper bound on the expected capture time which
depends on the size of the arena, and the speed and sensing
capabilities of the pursuers. Next, we presented an imple-
mention of the scenario on a fleet of UAVs and UGVs based
on a hierarchical hybrid system architecture. Finally, we
presented several experiments, evaluating the performance
of the proposed pursuit policies with respect to the speed
and intelligence of the evaders and the sensing capabilities
of the pursuers. Our results show that the global-max pur-
suit policy outperforms the local-max policy in a realistic
situation in which the dynamics of each agent are included
and computer vision is used to detect the evaders.
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Fig. 4. Experiment 2: Three UGV pursuers vs. a slow UGV evader.
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Fig. 5. Experiment 3: Three UGV pursuers vs. a fast UGV evader.

Fig. 6. Experiment 4: 1 UAV and 2 UGV pursuers vs. 1 UGV
evader. Clockwise from top left: Initial configuration, evader
on the left. UAV pursuer detects evader. UGV pursuers head
towards global-max. A UGV pursuer captures evader.
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