
V
ision seems to be a critical component in animals’ abilities to respond
to their neighbors’ motions. For example, flocks of birds and schools
of fish are able to maintain a coherent formation without explicit
communication among individuals. Our long-term goal involves
enabling groups of mobile robots to visually maintain formations in

the absence of communication (Figure 1). Towards that end, we consider a forma-
tion control scenario in which the followers use motion segmentation for estimating
the image position of the other robots in the formation, and omnidirectional visual
servoing for tracking and collision avoidance.

The problem of controlling a formation of ground and aerial vehicles is gaining
significant importance in the control and robotics communities, thanks to

recent advances in communications and computer vision. Examples of for-
mation control in man-made devices include air-traffic control, satellite

clustering, automatic highways, and mobile robotics.
Previous work in formation control assumes that communication

among robots is possible and concentrates on aspects of the problem
such as stability and controller synthesis. Swaroop et al. [1] proposed
the notion of string stability for line formations and derived suffi-
cient conditions for a formation to be string stable. Tanner et al. [2]
concentrated on formations in acyclic graphs and proposed the
notion of leader-to-formation stability, based on the effect of feed-
back and feedforward on the input-to-state stability of the formation.

Fax et al. [3] analyzed the stability of formations in arbitrary graphs
and proposed a Nyquist-like stability criteria that can be derived from

the spectral properties of the graph Laplacian. Stipanovic et al. [4] studied
the design of decentralized control laws that result in stable formations, pro-

vided that the leader’s desired velocity is known.
In the absence of communication, the formation control problem becomes quite

challenging from a sensing viewpoint due to the need for simultaneous estimation of
the motion of multiple moving objects. Das et al. [5] tackle vision-based formation
control with feedback-linearization by employing a clever choice of coordinates in
the configuration space. They mitigate sensing difficulties by painting each leader of a
different color and then using color tracking to detect and track the leaders. Our
work in [6] showed the possibility of using central panoramic cameras to estimate the
position and velocities of multiple moving objects based on their optical flows (Figure
2). In more recent work, Cowan et al. [7] proposed two different controllers for
image-based leader-follower formation control. One is based on feedback-lineariza-
tion and the other combines Luenberger observers with a linear controller.

BY RENÉ VIDAL,
OMID SHAKERNIA, 
AND SHANKAR SASTRY

1070-9932/04/$20.00©2004 IEEEIEEE Robotics & Automation Magazine DECEMBER 200414

Distributed Formation Control with
Omnidirectional Vision-Based Motion
Segmentation and Visual Servoing

© DIGITAL STOCK, 1996



DECEMBER 2004 IEEE Robotics & Automation Magazine 15

In this article, we present a new approach to vision-based
formation control of nonholonomic robots equipped with
central panoramic cameras in which the detection and track-
ing of the leaders is based solely on their motions on the
image plane (Figure 2). Our approach is to translate the for-
mation control problem from the configuration space into a
separate visual servoing control task for each follower. We
show how to estimate the position of each leader in the
image plane of the follower by using a rank constraint on the
central panoramic optical flow across multiple frames. We
also derive the leader-follower dynamics
in the image plane of each follower for
a calibrated central panoramic camera
undergoing planar motion. We then
show that the closed-loop dynamics
after feedback linearization suffer from
degenerate configurations due to the
nonholonomic constraints of the robots
and the nonlinear ity of the central
panoramic projection model. We,
therefore, design a nonlinear tracking
controller that avoids such degenerate
configurations while maintaining the
formation input-to-state stability. That
is, we guarantee that the tracking errors
are bounded when the leader velocities
are. Our control law naturally incorpo-
rates collision avoidance by exploiting
the geometry of central panoramic
cameras. Later, we present simulations
and experiments validating our omnidi-
rectional vision-based formation control scheme. Finally, we
give directions for future research.

Central Panoramic Formation Dynamics
In this section, we derive the central panoramic optical flow
equations for a leader-follower configuration moving in the
X Y plane and present a multibody motion segmentation algo-
rithm for computing the position of the leaders in the image
plane of each follower. We assume that the camera is mounted
so that its coordinate system coincides with that of the follow-
er, i.e., the optical center is located at (X ,Y,Z ) = 0 in the
follower frame and the optical axis is the Z axis [8].

The Optical Flow of the Central Panoramic Camera
Central panoramic cameras are realizations of omnidirectional
vision systems that combine a mirror and a lens and have a
unique effective focal point. Building on the results of [9], we
show in [6] that the image (x, y)T of a three-dimensional (3-
D) point q = (X ,Y,Z )T ∈ R

3 , obtained by a calibrated
central panoramic camera with parameter ξ ∈ [0, 1], can be
modeled as a projection onto the surface

z = fξ (x, y) �
−1 + ξ 2

(
x2 + y2

)
1 + ξ

√
1 + (1 − ξ 2)

(
x2 + y2

) ,

followed by orthographic projection onto the X Y plane (Fig-
ure 3). The composition of these two projections gives
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Notice that ξ = 0 corresponds to perspective projection,
while ξ = 1 corresponds to paracatadioptric projection (para-
bolic mirror with orthographic lens).

When the camera moves in the X Y plane, its angular and
linear velocities are given by � = (0, 0,�z)

T ∈ R
3 and

V = (Vx,Vy, 0)T ∈ R
3 , respectively. Relative to the camera,

the point q evolves as q̇ = � × q + V . This induces a motion
in the central panoramic image plane, the so-called “central
panoramic optical flow,” which can be computed by differen-
tiating (1) with respect to time. We show in [6] that the opti-
cal flow (ẋ, ẏ)T induced by a central panoramic camera
undergoing a planar motion (�,V) is given by
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Figure 1. An omnidirectional vision-based formation of mobile
robots.
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Figure 2. Motion segmentation for two mobile robots based on their omnidirec-
tional optical flows.
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where λ = −Z + ξ
√

X 2 + Y 2 + Z 2 is an unknown scale
factor, z = fξ (x, y) and ρ � ξ 2/(1 + z).

Central Panoramic Motion Segmentation
Consider a central panoramic camera observing k leaders
moving in the X Y plane. We now describe how to estimate
the image positions of the leaders from measurements of their
optical flows across multiple frames. To this end, let (xi, yi)

T ,
let i = 1, . . . , n, be a pixel in the zeroth frame associated with
one of the leaders, and let (ẋ i j, ẏ i j)

T be its optical flow in
frame j = 1, . . . , m relative to the zeroth. From (2) we have[
ẋ i j, ẏ i j

] = SiMT
j where

Si = [
xi −yi

1−ρ i x2
i

λ i

−ρ i xi yi

λ i

1−ρ i y2
i

λ i

] ∈ R
1×5,

M j =
[

0 �z j Vx j Vy j 0
�z j 0 0 Vx j Vy j

]
∈ R

2×5. (3)

Let ẋ(·) j = [ẋ1 j, ẋ2 j, . . . , ẋn j]T ∈ R
n and ẏ(·) j = [ ẏ1 j,

ẏ2 j, . . . , ẏn j]T ∈ R
n for j = 1, . . . , m. Therefore, the opti-

cal flow matr ix W = [ẋ(·)1 ẏ(·)1| . . . |ẋ(·)m ẏ(·)m] ∈ R
n×2m

associated with the motion of a single leader satisfies
W = S̃M̃T , where S̃ = [ST

1 ST
2 · · · ST

n ]T ∈ R
n×5 denotes the

structure matr ix, and M̃ = [MT
1 MT

2 · · · MT
m ]T ∈ R

2m×5

denotes the motion matrix. We conclude that for a single
leader-follower configuration moving in the X Y plane, the

collection of central panoramic optical flows across multiple
frames lies on a five-dimensional subspace of R2m.

More generally, the optical flow matrix associated with k
independently moving leaders can be decomposed as:
W = diag

(
S̃1, · · · , S̃k

) [
M̃1 · · · M̃k

]T = SMT , where S ∈
R

n×5k and M ∈ R
2m×5k . In practice, however, the optical flow

matrix W will not be block diagonal, because the segmentation
of the image measurements is not known, i.e., we do not know
which pixels correspond to which leader.

Nevertheless, we can still recover the block diagonal structure
of W , hence the segmentation of the image measurements, by
looking at the structure of W . From our previous discussion,
each row of W lives in a subspace of dimension at most five, and
so all the rows of W live in k subspaces, one per independently
moving object. The problem of estimating and segmenting the
motion of these k objects is then equivalent to the problem of
estimating and segmenting k subspaces from the rows of W . We
solve this problem using an algebraic technique called general-
ized principal component analysis (GPCA) [11]. The basic idea
is that one can fit a polynomial p of degree k to the rows of W ,
and then obtain a vector normal to each subspace from the
derivatives of p (see Figure 4). Since each row of W correspond
to one pixel in the image, we segment the image pixels into k
groups by assigning each row to the closest subspace.

We use the center of gravity of each group of pixels as
the pixel position for that leader. Note that, in practice,
there will be an extra group of pixels corresponding to stat-
ic points in the ground plane, whose motion is simply
induced by the motion of the camera. For a formation
control scenario with few leaders, we can always identify
this group of pixels as the largest one in the image. Since
this group does not correspond to a leader, we do not need
to compute its center of gravity. 

Central Panoramic Leader-Follower Dynamics
Consider now the following nonholonomic “unicycle”
model for the dynamics of each leader � and follower f :
Ẋ i = v i cos θ i, Ẏ i = v i sin θ i, θ̇ i = ω i , where i = �, f ,
(X i,Yi, θ i) ∈ SE (2) is the position and orientation of robot
i in the inertial frame, and the inputs v i and ω i are the linear
and angular velocities, respectively. We showed in [8] that
the relative angular and linear velocities of the leader relative
to the follower �� f ∈ R and V� f ∈ R

2 , respectively, are
given by �� f = ω� − ω f , and V� f = − [

v f , 0
]T + F� f ,

where F� f ∈ R
2 is a function of the relative position, orien-

tation, and velocity of the leader in the follower frame.
Consider now a central panoramic camera mounted

onboard each follower. Since we are assuming that the cam-
era coordinate system coincides with that of the follower, we
can replace the previous expressions for �� f and V� f in (2)
to obtain the optical flow of a pixel associated with leader �
in the image plane of follower f . Furthermore, since
z = fξ (x, y) and λ = Z /z, if we assume a ground plane
constraint, i.e., if we assume that Z = Zground < 0 is known,
then we can write the equations of motion of a pixel as the
drift-free control system:

Figure 3. Showing the curved virtual retina in the projection
model of central panoramic cameras.
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Figure 4. GPCA: segmentation and estimation of multiple
subspaces from sampled data by polynomial fitting and differ-
entiation.
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= H(x, y)u f + d� f (4)

where u f = (v f , ω f )
T ∈ R

2 is the control action for the fol-
lower, and d� f ∈ R

2 can be thought of as an external input
that depends on the state and control action of the leader and
the state of the follower.

Omnidirectional Visual Servoing
In this section, we design a control law u f for each follower to
keep a desired distance rd and angle αd from each leader in
the image plane; i.e., we assume that we are given a desired
pixel location (xd, yd) for each leader, where
(xd, yd) = ( rd cos(αd), rd sin(αd)).

Visual Servoing by Feedback-Linearization
Let us first apply feedback-linearization to the control sys-
tem (4) with output (x, y)T . We observe that the system
has a well defined vector relative degree of (1, 1) for all
pixels (x, y) such that H(x, y) is of rank 2, i.e., whenever
x �= 0 and x2 + y2 �= 1/ξ 2.. In this case, the relative degree
of the system is 1 + 1 = 2, thus the zero dynamics of the
system are trivially exponentially minimum phase. There-
fore, the control law

u f = −H(x, y)−1
(

d� f +
[

k1(x − xd)

k2(y − yd)

])
(5)

results in a locally exponentially stable system around (xd, yd)

whenever k1 > 0 and k2 > 0.
Notice, however, that (5) is undefined whenever x = 0 or

x2 + y2 = 1/ξ 2. The first degenerate configuration x = 0
arises from the nonlinearity of the central panoramic projec-
tion model and the nonholonomic constraints of the robots.
For instance, consider a (static) point in the ground for which
x = 0.Then, the y component of the flow ẏ is zero. Such a
flow can be generated by purely translating the follower, by
purely rotating the follower, or by an appropriate rotation-
translation combination. In other words, given the optical
flow of that pixel, we cannot tell whether the follower is
rotating or translating. Notice also that, due to the nonholo-
nomic constraints of the robots, if x = 0 and y − yd �= 0, the
robot cannot instantaneously compensate the error, since it
cannot translate along its Y axis. On the other hand, the sec-
ond degenerate configuration x2 + y2 = 1/ξ 2 corresponds to
the set of pixels on the outer circle of an omnidirectional
image (Figure 2). These pixels are projections of 3-D points

at infinity, i.e., they correspond to the horizon z = 0.There-
fore, the degenerate configuration x2 + y2 = 1/ξ 2 is not so
critical from a control point of view, because it can be avoid-
ed by assuming a finite arena. We therefore assume that
x2 + y2 ≤ r2max < 1/ξ 2 , from now on.

Visual Servoing by Nonlinear Feedback
Although the control law (5) guarantees locally that
(x( t), y( t)) converges to (xd, yd) asymptotically, this
requires that x( t) �= 0 for all t and xd �= 0. Therefore,

✦ one cannot specify a desired formation in which
xd = 0, that is a formation in which the leader is
directly to the left or to the right of the follower 

✦ even if xd �= 0, the controller will saturate when the
leader crosses the follower’s Y axis at x = 0.

Since the latter case is fairly common in most formation config-
urations, we now design a slightly different controller that avoids
this degeneracy, while maintaining the input-to-state stability of
the formation. That is, we guarantee that the tracking errors are
bounded when the leader velocities are. We first rewrite the
leader-follower dynamics in polar coordinates ( r, α), so as to
exploit the geometry of the central panoramic camera. The
dynamics become ( ṙ, α̇)T = H̃( r, α)u f + d̃� f , where H̃( r, α)

and d̃� f are polar coordinate versions of H(x, y) and d� f ,
respectively. Rather than exactly inverting the dynamics as in (5),
we use the pseudo-feedback linearizing control law:

u f =
[ λ cos(α)

(1−ρ r2) 0
sin(α) cos(α)

r(1−ρ r2) 1

]([
k1( r − rd)
k2(α − αd)

]
+ d̃� f

)
. (6)

With this controller, the closed-loop dynamics on the track-
ing er rors e r = r − rd and eα = α − αd become:
ė r = −k1 cos2(α) e r + sin2(α) d r , where d r is the r component
of d̃� f , and ėα = −k2 eα . Therefore, α( t) converges to αd

asymptotically when k2 > 0. On the other hand, after 
solving the first order differential equation for the error 
e r we obtain e r( t) = e r( t0) exp(−k1

∫ t
τ= t0

cos2(α(τ))dτ)+∫ t
τ=0 sin2(α(τ))d r(τ) exp (−k1

∫ t
σ=τ

cos2(α(σ))dσ)dτ . A
simple calculation shows that |d r( t)| ≤ |v�( t)| /Z + |ω�( t)|.
Thus, if k1 > 0, α( t) �= ±π/2 from some t on, and the
leader velocities (v�, ω�) are uniformly bounded, then the
formation is leader-to-formation stable (LFS) [2]. Now, since
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α( t) = αd + eα( t0) exp(−k2( t − t0)), the formation is LFS
except when αd = ±π/2 and eα( t0) = 0.

Notice that the controller (6) is discontinuous at eα = ±π

due to the identification of S1 with R, together with the fact
that the seemingly continuous feedback term k2eα does not
respect the underlying topology of S1. One could use smooth
feedback instead, e.g. k2 sin(α), at the cost of a spurious criti-
cal point at ±π . Since the topology of the annulus dictates
that such spurious critical points are inevitable for smooth
vector fields, we prefer the discontinuous controller (6) at the
benefit of greater performance.

Estimation of the Feedforward Term
In order to implement either controller (5) or controller (6),
we need to feedforward the unknown external input
d� f ∈ R

2. Although this term is a function of the state and
control of the leader and the state of the follower, we do not
need to measure any of these quantities. Instead, we only
need to estimate the two-dimensional vector d� f , which can
be easily done from the output of the motion segmentation
algorithm developed previously. To this end, let (xw, yw)

and (ẋw, ẏw) be the position and optical flow of a pixel that
corresponds to a static 3-D point in the world such that
xw �= 0. Similarly, let (x�, y�) and (ẋ�, ẏ�) be the position
and optical flow of a pixel that corresponds to a 3-D point
on leader �. From (4), where the second term is zero
because the point in 3-D space is static (i.e. (vl, ωl) = (0, 0)), the
external disturbance can be estimated as:
d� f = [ẋ� ẏ�]T − H(x�, y�)H(xw, yw)−1[ẋw ẏw ]T .

Notice that in the presence of noise, one may improve the
estimation of the feedforward term by using more than one
pixel corresponding to the static background and solving the
previous equation in a least squares sense.

Collision Avoidance
Although the control law (5) guarantees local stability of the
leader-follower formation, it does not guarantee that the fol-
lower will not run into the leader. For example, imagine that
the follower is initially in front of the leader and that the
desired formation is with the follower behind the leader.
Since the closed-loop dynamics are linear in the error
(x − xd, y − yd), the follower will apply a negative linear
speed, and will most likely run into the leader.

Thanks to the geometry of central panoramic cameras, col-
lisions can be avoided by ensuring that the leader stays far
enough away from the center of the image. Effectively, our
choice of image coordinates ( r, α) for the controller (6) reveals
the safe configurations as a simple constraint on r, namely
rmin ≤ r ≤ rmax. Furthermore, the control law (6) is the gradi-
ent of a potential function V( r, α) = 1

2 (k1( r − rd)2+
k2(α − αd)

2), which points transversely away from the safety
boundary, and has a unique minimum at ( rd, αd) (assuming
rd > rmin). Therefore, the control law (6), or a polar coordi-
nate version of controller (5), naturally incorporate collision
avoidance by exploiting the geometry of central panoramic
cameras. In order to further guarantee collision avoidance, one
could modify the potential function V( r, α) to yield a proper
navigation function, as suggested in Cowan et al. [10], and
then use the gradient for the modified V as the control law.

Experimental Results
We evaluated the performance of the proposed multi-body
motion segmentation algorithm in the case where two inde-
pendently moving mobile robots are viewed by a static cam-
era. We grabbed 18 images of size 240 × 240 pixels from the
omnidirectional camera at a framerate of 5 Hz. The optical
flow was computed using Black’s algorithm, available at
http://www.cs.brown.edu/people/black/ignc.html.

Figure 2 shows a sample of the motion segmentation
based on the optical flow. The optical flow generated by the
two moving robots is shown in (a), and the segmentation of
the pixels corresponding to the independent motions is in
(b). The two independently moving robots are segmented
very well from the static background.

We also tested our omnidirectional vision-based formation
control scheme (Figure 5) by having three nonholonomic
robots start in a Wedge Formation and then follow a String
Formation with ( rd, αd) = (1/

√
2, 0) (Figure 6). Since

αd = 0, we choose to use controller (5) in polar coordinates
with the parameters ξ = 1, k1 = 2.5 and k2 = 1.76. Figure 7
shows the simulation results. For t ∈ [0, 29], the leader moves
with v� = 0.5 and ω� = 0, and the followers move from the
initial configuration to the desired one. Notice how the fol-
lowers automatically avoid collision when Follower1 tries to
move in between Follower2 and the leader. For t ∈ [29, 36],
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Figure 5. Omnidirectional vision-based formation control
scheme.
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Figure 7. Simulation results for a string formation. For t ∈ [0, 10] the followers move from their initial wedge formation to the
desired spring formation, while avoiding a collision when Follower1 moves in between Follower2 and the leader. The leader
abruptly rotates for t ∈ [29, 36], but the followers are able to both avoid collision and later return to the desired line. For t >36,
they maintain their formation into a line, circle, line and a circle. Notice that it is not possible to maintain zero angular error dur-
ing circular motion, because of the nonholonomic kinematic constraints.
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the leader changes its angular velocity to w� = 1, thus moving
in a circle. Follower1 starts rotating to the right to follow the
leader, but soon realizes that the leader is coming towards it
and backs up to avoid collision. For t ∈ [36, 55], the leader
changes its angular velocity to w� = 0, and the followers are
able to return to the desired formation. For t ∈ [55, 60], the
leader turns at w� = 0.5 and the followers are able to keep the
formation. For t ∈ [60, 100], the leader turns at w� = 0.1 and
the followers maintain the formation into a line and a circle.

Conclusions and Future Work
We have presented a new approach to formation control of
nonholonomic mobile robots equipped with central
panoramic cameras. Our approach uses motion segmentation
techniques to estimate the position of each leader and omnidi-
rectional visual servoing for tracking and collision avoidance.
We showed that direct feedback-linearization of the leader-
follower dynamics leads to asymptotic tracking but suffers
from degenerate configurations. We therefore presented a
nonlinear controller that avoids such singularities but can only
guarantee input-to-state stability of the formation.

Future work will include combining the two controllers
presented in this article in a hybrid theoretic formulation that
allows the design of a feedback control law that avoids singu-
larities and guarantees asymptotic tracking. We would also like
to explore the design of alternative control laws that do not
use optical flow estimates in the computation of the feedfor-
ward term. We also plan to implement our formation control
scheme on the Berkeley test bed of unmanned ground and
aerial vehicles.
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