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The dissertation of René Esteban Vidal is approved:

Chair Date

Date

Date

University of California at Berkeley

Fall 2003



Generalized Principal Component Analysis (GPCA):

an Algebraic Geometric Approach to Subspace Clustering and Motion Segmentation

Copyright Fall 2003

by
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Abstract

Generalized Principal Component Analysis (GPCA):

an Algebraic Geometric Approach to Subspace Clustering and Motion Segmentation

by

René Esteban Vidal

Doctor of Philosophy in Engineering – Electrical Engineering and Computer Sciences

University of California at Berkeley

Professor Shankar Sastry, Chair

Simultaneous data segmentation and model estimation refers to the problem of estimating a col-

lection of models from sample data points, without knowing which points correspond to which

model. This is a challenging problem in many disciplines, such as machine learning, computer

vision, robotics and control, that is usually regarded as “chicken-and-egg”. This is because if the

segmentation of the data was known, one could easily fit a single model to each group of points.

Conversely, if the models were known, one could easily find the data points that best fit each model.

Since in practice neither the models nor the segmentation of the data are known, most of the exist-

ing approaches start with an initial estimate for the either the segmentation of the data or the model

parameters and then iterate between data segmentation and model estimation. However, the con-

vergence of iterative algorithms to the global optimum is in general very sensitive to initialization

of both the number of models and the model parameters. Finding a good initialization remains a

challenging problem.

This thesis presents a novel algebraic geometric framework for simultaneous data segmen-

tation and model estimation, with the hope of providing a theoretical footing for the problem as well

as an algorithm for initializing iterative techniques. The algebraic geometric approach presented in

this thesis is based on eliminating the data segmentation part algebraically and then solving the

model estimation part directly using all the data and without having to iterate between data segmen-

tation and model estimation. The algebraic elimination of the data segmentation part is achieved by

finding algebraic equations that are segmentation independent, that is equations that are satisfied by

all the data regardless of the group or model associated with each point.
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For the classes of problems considered in this thesis, such segmentation independent con-

straints are polynomials of a certain degree in several variables. The degree of the polynomials

corresponds to the number of groups and the factors of the polynomials encode the model parame-

ters associated with each group. The problem is then reduced to

1. Computing the number of groups from data: this question is answered by looking for polyno-

mials with the smallest possible degree that fit all the data points. This leads to simple rank

constraints on the data from which one can estimate the number of groups after embedding

the data into a higher-dimensional linear space.

2. Estimating the polynomials representing all the groups from data: this question is trivially

answered by showing that the coefficients of the polynomials representing the data lie in the

null space of the embedded data matrix.

3. Factoring such polynomials to obtain the model for each group: this question is answered

with a novel polynomial factorization technique based on computing roots of univariate poly-

nomials, plus a combination of linear algebra with multivariate polynomial differentiation and

division. The solution can be obtained in closed form if and only if the number of groups is

less than or equal to four.

The theory presented in this thesis is applicable to segmentation problems in which the

data has a piecewise constant, piecewise linear or piecewise bilinear structure and is well motivated

by various problems in computer vision, robotics and control. The case of piecewise constant data

shows up in the segmentation of static scenes based on different cues such as intensity, texture and

motion. The case of piecewise linear data shows up computer vision problems such as detection

of vanishing points, clustering of faces under varying illumination, and segmentation of dynamic

scenes with linearly moving objects. It also shows up in control problems such as the identification

of linear hybrid systems. The case of piecewise bilinear data shows up in the multibody structure

from motion problem in computer vision, i.e., the problem of segmenting dynamic scenes with

multiple rigidly moving objects.

Professor Shankar Sastry
Dissertation Committee Chair
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Chapter 1

Introduction

1.1 Motivation

A wide variety of problems in engineering, applied mathematics and statistics can be

phrased as an inference problem, that is a problem in which one is supposed to infer a model that

explains a given a collection of data points. In many cases, the data can be explained by a single

smooth model that can be as simple as the mean of the data as illustrated in Figure 1.1(a), or a hyper-

plane containing the data as illustrated in Figure 1.1(b), or as complex as an arbitrary manifold as

illustrated in Figure 1.1(c). The second case shows up, for example, in face recognition where

one assumes that the intensities in the image of a face under varying illumination lie on a linear

subspace of a higher-dimensional space. The third case shows up, for example, in the identification

of linear dynamical systems, where one is supposed to estimate the parameters A and C, and the

state trajectory {xt, t = 1, 2, . . .} of a linear dynamical system

xt+1 = Axt (1.1)

yt = Cxt (1.2)

from the measured output {yt, t = 1, 2, . . .}. The third case also shows up in the structure from mo-

tion problem in computer vision, where one is supposed to estimate the motion (rotation and transla-

tion) of a camera observing a cloud of points in 3-D space from two perspective views {(xj1,xj2)}Nj=1

of such points. The camera motion and the image points are related by the epipolar constraint

xjT2 Fxj1 = 0, (1.3)

where the so-called fundamental matrix F is a rank-2 matrix encoding the motion parameters.
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Figure 1.1: Inferring a constant, linear and nonlinear model from a collection of data points.

When the equations relating the data points and the model parameters are linear on the

latter, the inference problem becomes relatively simple and can be usually solved using tools from

linear algebra and optimization, such as least squares. When the equations relating the data and the

model parameters are nonlinear, the inference problem is more challenging and one needs to exploit

the algebraic, geometric or statistical structure of the problem in order to render it tractable. For

example, in the structure from motion problem one can exploit the fact that F ∈ so(3)× SO(3) to

obtain a linear solution for the translation and rotation of the camera.

When the inference problem is not tractable, one can resort to some sort of approximation.

The most natural approximation is to assume that the data is generated by a finite mixture of simpler

(tractable) smooth sub-models. For example, in intensity-based image segmentation, one could

model the image brightness as a piecewise constant function taking on a finite number of gray

levels. The inference problem is that of estimating the number of the gray levels, their values, and

the assignment of pixels to gray levels. A second example, which we will later call generalized

principal component analysis, could be to approximate a manifold with a mixture of linear sub-

models as illustrated in Figure 1.2. This case shows up in the face recognition example, where

the images of multiple faces under varying illumination span multiple linear subspaces of a higher-

dimensional space, and the task is to recognize how many faces are present in a given dataset

and the subspace associated with each image. Similarly, one could think of approximating the

nonlinear dynamics of an unmanned aerial vehicle (UAV) with a linear hybrid system, i.e., a mixture

of linear dynamical sub-models of the type (1.1) and (1.2) connected by switches from one sub-

model to the other. One could have, for example, a different linear sub-model for take off, landing,

hovering, pirouette, etc., and would like to estimate such linear sub-models from measurements for

the position, orientation and velocity of the UAV, without knowing which measurement corresponds

to which linear sub-model.
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Figure 1.2: Approximating of a nonlinear manifold with a piecewise linear model.

However, there is a wide variety of inference problems in which using a mixture of sub-

models is not merely a modeling assumption, but an intrinsic characteristic of the problem. Consider

for example the problem of estimating the motion (translation and rotation) of multiple moving

objects from a collection of image measurements collected by a moving perspective camera, i.e.,

the multibody structure from motion problem in computer vision. In this case, the objective is to

find a collection of motion sub-models {Fi}ni=1 fitting a set of image measurements {(xj1,xj2)}Nj=1,

without knowing which sub-model Fi corresponds to which measurement (xj1,x
j
2) as illustrated in

Figure 1.3.
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Figure 1.3: A traffic surveillance sequence with multiple moving objects. The motion of each object
is represented with a different rotation and translation, (R, T ), relative to the camera frame.

In either case, a modeling assumption or an intrinsic characteristic of the problem, the

estimation of a mixture of smooth sub-models from a collection of data points is a rather challenging

problem, because one needs to simultaneously estimate

1. The number of sub-models in the mixture;

2. The parameters of each sub-model;

3. The segmentation of the data, i.e., the association between data points and sub-models.
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It is important to notice that if the segmentation of the data was known, then the estimation

of the parameters of each sub-model would be simple, because by assumption each sub-model is

tractable. Conversely, if the parameters of each sub-model were known, then the segmentation of

the data would be trivial, because one could just assign each point to the closest sub-model. Since in

practice neither the model parameters nor the segmentation of the data are known, the estimation of

a mixture model is usually though of as a ”chicken-and-egg” problem: in order to estimate the sub-

models one needs to first segment the data and in order to segment the data one needs to know the

sub-model associated with each data point. The main challenge is then the simultaneous estimation

of both the membership of each data point and the parameters of the sub-model for each class.

Statistical approaches to simultaneous data segmentation and model estimation assume

that the data points are generated by a mixture of probabilistic sub-models. The problem is then

equivalent to

1. Learning the number of sub-models and their parameters (e.g., mean and covariance);

2. Assigning points to sub-models based on the posterior probability of a point belonging to a

sub-model.

However, the estimation of the mixture model is in general a hard problem which is usually solved

using the Expectation Maximization (EM) algorithm [14]. The EM algorithm is an iterative proce-

dure in which one first estimates the segmentation of the data given a prior on the parameters of each

sub-model (E-step) and then maximizes the expected log-likelihood of the model parameters given a

prior on the grouping of the data (M-step). The main disadvantage of this iterative procedure is that

its convergence to the global optimum is in general very sensitive to initialization, because the com-

plete log-likelihood function presents several local maxima. Furthermore, most iterative algorithms

rely on prior knowledge about the number of sub-models to be estimated, and their performance

deteriorates when the given number of sub-models is incorrect. One may therefore ask:

Is there an algebraic way of initializing statistical approaches to data segmentation?

Furthermore, since some information about the number of sub-models must also be contained in the

data, we may ask

Is there an algebraic way of obtaining an initial estimate for the number of sub-models?

To our surprise, these questions have never been addressed in an analytic fashion. Most

of the currently existing methods1

1We will provide a more detailed review of each one of these algorithms in the introduction section of each chapter.
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1. Use a random initialization for the sub-model parameters.

2. Use some other iterative algorithm for initialization, such as K-means, that alternates between

data segmentation and model estimation, also starting from a random initialization.

3. Use spectral clustering techniques which are based on thresholding the eigenvectors of a

matrix whose ij entry represents a measure of the similarity between points i and j, the so-

called similarity matrix. Questions such as which and how many eigenvectors to use? and

how to combine those eigenvectors to obtain an initial segmentation? are still open problems.

4. Use some ad-hoc procedure that depends on the particular problem being solved. For ex-

ample, in 2-D motion segmentation it is customary to fit a single affine motion model to the

whole scene and then fit a second model to the outliers and so on.

In a sense, all these techniques attempt to do clustering first to then obtain an estimate

of the sub-model parameters, and then iterate between these two stages. Therefore, none of them

attempts to directly resolve the “chicken-and-egg” dilemma of clustering versus model estimation.

In other words, none of them is able to estimate all the sub-models simultaneously using all the data,

without previous knowledge about the segmentation of the data points.

According to [18], “It is hard to see that there could be a comprehensive theory of seg-

mentation . . . There is certainly no comprehensive theory of segmentation at time of writing . . . ”.

1.2 Dissertation contributions

This thesis represents a first step towards our long term goal of developing a mathematical

theory of data segmentation. In particular, we are interested in answering the following questions.

1. Are there classes of segmentation problems that can be solved analytically?

2. Under what conditions can these classes of segmentation problems be solved in closed form?

3. Under what conditions do these classes of segmentation problems have a unique solution?

4. Is there an algebraic formula for determining the number of sub-models?

In this thesis, we provide a complete answer to the last three questions for the following

classes of segmentation problems (see Figure 1.4).
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Figure 1.4: A hierarchy of segmentation problems.

1. Piecewise constant data: In this case, we assume that the data points are clustered around

a finite collection of cluster centers as illustrated in Figure 1.5(a). This case shows up in a

variety of applications in computer vision, including image segmentation problems based on

intensity, texture, motion, etc. We will denote this case as Polynomial Segmentation (Poly-

segment), since our solution will be based on computing roots of univariate polynomials.

2. Piecewise linear data: In this case, we assume that the data points lie on a finite collec-

tion of linear subspaces, as illustrated in Figure 1.5(b) for the case of lines in R2. We will

denote this case as Generalized Principal Component Analysis (GPCA), since it is a natural

generalization of PCA [29], which is the problem of estimating a single linear subspace from

sample data points. GPCA shows up in a variety of applications in computer vision, including

vanishing point detection, segmentation of linearly moving objects, face recognition, etc.

3. Piecewise bilinear data: In this case, we assume that the data lies on a finite collection of

manifolds with bilinear structure, i.e., the data points (x1,x2) satisfy equations of the form

xT2 Fx1 = 0, where F is a matrix representing the model parameters. We show an example

of a mixture of two bilinear surfaces for x1 ∈ R2 and x2 ∈ R in Figures 1.5(c)-(d). We will

denote this case as Multibody Structure from Motion, since it very much related to the 3-D

motion segmentation problem in computer vision.
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Figure 1.5: Inferring different piecewise smooth models from data.

The main contribution of this thesis is to show that for these three classes of segmenta-

tion problems the ”chicken-and-egg” dilemma can be completely solved using algebraic geometric

techniques. In fact, it is possible to use all the data points simultaneously to recover all the model

parameters without previously segmenting the data. In the absence of noise, this can be done in

polynomial time using linear techniques and the solution can be obtained in closed form if and only

if the number of groups is less than or equal to 4. In the presence of noise, the algebraic solution

leads to an optimal objective function that depends on the model parameters and not on the segmen-

tation of the data. Alternatively, the algebraic solution can be used as an initialization for any of the

currently existing iterative techniques. Although these three classes of segmentation problems may

seem quite different from each other, we will show that they are strongly related. In fact, we will

show that the piecewise bilinear case can be reduced to a collection of piecewise linear problems.

Similarly we will show that the piecewise linear case can be reduced to a collection of piecewise

constant problems. The following sections give a more detailed account of our contributions for

each class of data segmentation problems.
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1.2.1 Piecewise constant data: polynomial segmentation

We propose a simple analytic solution to the segmentation of piecewise constant data and

show that it provides a solution to the well known eigenvector segmentation problem. We start

by analyzing the one-dimensional case and show that, in the absence of noise, one can determine

the number of groups n from a rank constraint on the data. Given n, the segmentation of the

measurements can be obtained from the roots of a polynomial of degree n in one variable. Since

the coefficients of the polynomial are computed by solving a linear system, we show that there is

a unique global solution to the one-dimensional segmentation problem, which can be obtained in

closed form if and only if n ≤ 4. This purely algebraic solution is shown to be robust in the presence

of noise and can be used to initialize an optimal algorithm. We derive such an optimal objective

function for the case of zero-mean Gaussian noise on the data points.

We then study the case of piecewise constant data in dimension two. We show that the

same one-dimensional technique can be applied in the two-dimensional case after embedding the

data into the complex plane. The only difference is that now the polynomial representing the data

will have complex coefficients and complex roots. However, the cluster centers can still be recovered

from the real and imaginary parts of the complex cluster centers. We then study the case of piecewise

constant data in a higher-dimensional space and show that it can be reduced to a collection of one

or two-dimensional clustering problems.

We present applications of polynomial segmentation on computer vision problem such as

image segmentation based on intensity or texture, 2-D motion segmentation based on feature points,

3-D motion segmentation based on optical flow, and face clustering with varying expressions.

1.2.2 Piecewise linear data: generalized principal component analysis

We consider the so-called Generalized Principal Component Analysis (GPCA) problem,

i.e., the problem of identifying n linear subspaces of a K-dimensional linear space from a collec-

tion of sample points drawn from these subspaces. In the absence of noise, we cast GPCA in an

algebraic geometric framework in which the number of subspaces n becomes the degree of a cer-

tain polynomial and the subspace parameters become the factors (roots) of such a polynomial. In

the presence of noise, we cast GPCA as a constrained nonlinear least squares problem which mini-

mizes the error between the noisy points and their projections subject to all mixture constraints. By

converting this constrained problem into an unconstrained one, we obtain an optimal function from

which the subspaces can be directly recovered using standard non-linear optimization techniques.
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In the case of subspaces of dimension k = K − 1, i.e., hyperplanes, we show that the

number of hyperplanes n can be obtained from the rank of a certain matrix that depends on the

data. Given n, the estimation of the hyperplanes is essentially equivalent to a factorization problem

in the space of homogeneous polynomials of degree n in K variables. After proving that such a

problem admits a unique solution, we propose two algorithms for estimating the hyperplanes. The

polynomial factorization algorithm (PFA) obtains a basis for each hyperplane from the roots of a

polynomial of degree n in one variable and from the solution ofK−2 linear systems in n variables.

This shows that the GPCA problem has a closed form solution when n ≤ 4. The polynomial

differentiation algorithm (PDA) obtains a basis for each hyperplane by evaluating the derivatives of

the polynomial representing the hyperplanes at a collection of points in each one of the hyperplanes.

We select those points either by intersecting the hyperplanes with a randomly chosen line, or by else

by choosing points in the dataset that minimize a certain distance function.

In the case of subspaces of equal dimension k1 = · · · = kn = k < K − 1, we first

derive rank constraints on the data from which one can estimate the number of subspaces n and

their dimension k. Given n and k, we show that the estimation of the subspaces can be reduced

to the estimation of hyperplanes of dimension k = K ′ − 1 which are obtained by first projecting

the data onto a K ′-dimensional subspace of RK . Therefore, the estimation of the subspaces can

be done using either the polynomial factorization or the polynomial differentiation algorithm for

hyperplanes.

In the case of subspaces of arbitrary dimensions, 1 ≤ k1, . . . , kn ≤ K − 1, we show that

the union of all subspaces can be represented by a collection of homogeneous polynomials of degree

n is K variables, whose coefficients can be estimated linearly from data. Given such polynomials,

we show that one can obtain vectors normal to each one of the subspaces by evaluating the deriva-

tives of such polynomials at a collection of points in each one of the subspaces. The estimation of

the dimension and of a basis for (the complement of) each subspace is then equivalent to applying

standard PCA to the set of normal vectors. The above algorithm is in essence a generalization of

the polynomial differentiation algorithm to subspaces of arbitrary dimensions.

Our theory can be applied to a variety of estimation problems in which the data comes

simultaneously from multiple (approximately) linear models. Our experiments on low-dimensional

data show that PDA gives about half of the error of the PFA and improves the performance of iter-

ative techniques, such as K-subspace and EM, by about 50% with respect to random initialization.

We also present applications of our algorithm on computer vision problems such as vanishing point

detection, 2-D and 3-D motion segmentation, and face clustering under varying illumination.
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1.2.3 Piecewise bilinear data: multibody structure from motion

We present an algebraic geometric approach to segmenting static and dynamic scenes

from image intensities (2-D motion segmentation) or feature points (3-D motion segmentation).

In the 2-D motion segmentation case, we introduce the multibody affine constraint as a

geometric relationship between multiple affine motion models and the image intensities generated

by them. This constraint is satisfied by all the pixels in the image, regardless of the motion model

associated with each pixel, and combines all the motion parameters into a single algebraic structure,

the so-called multibody affine matrix. Given the image data, we show that one can estimate the

number of motion models from a rank constraint and the multibody affine matrix from a linear

system. Given the multibody affine matrix, we show that the optical flow at each pixel can be

obtained from the partial derivatives of the multibody affine constraint. Given the optical flow at

each pixel, we show that the estimation of the affine motion models can be done by solving two

GPCA problems. In the presence of noise, we derive an optimal algorithm for segmenting dynamic

scenes from image intensities, which is based on minimizing the negative log-likelihood subject to

all multibody affine constraints. Our approach is based solely on image intensities, hence it does not

require feature tracking or correspondences. It is therefore a natural generalization of the so-called

direct methods in single-body structure from motion to the case of multiple motion models.

In the 3-D motion segmentation case, we introduce the so-called multibody epipolar con-

straint and its associated multibody fundamental matrix as natural generalizations of the epipolar

constraint and of the fundamental matrix to multiple moving objects. We derive a rank constraint

on the image points from which one can estimate the number of independently moving objects as

well as linearly solve for the multibody fundamental matrix. We prove that the epipoles of each in-

dependent motion lie exactly in the intersection of the left null space of the multibody fundamental

matrix with the so-called Veronese surface. Given the multibody fundamental matrix, we show that

the epipolar lines can be recovered from the derivatives of the multibody epipolar constraint and

that the epipoles can be computed by applying GPCA to the epipolar lines. Given the epipoles and

epipolar lines, the estimation of individual fundamental matrices becomes a linear problem. The

segmentation of the data is then automatically obtained from either the epipoles and epipolar lines

or from the fundamental matrices. In the presence of noise, we derive the optimal error function for

simultaneously estimating all the fundamental matrices from a collection of feature points, without

previously segmenting the image data. Our results naturally generalize the so-called feature based

methods in single-body structure from motion to the case of multiple rigidly moving objects.
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1.3 Thesis outline

This thesis is organized in the following four chapters.

• Chapter 2, Polynomial Segmentation, covers the segmentation of piecewise constant data.

Section 2.2 covers the segmentation of one-dimensional data. This case is the simplest seg-

mentation problem, yet it allows to illustrate most, if not all, the concepts of the overall theory

presented in this thesis. Thus we recommend the reader to clearly understand all the details

before jumping into the the remaining chapters. In spite of its simplicity, the one-dimensional

case is strongly related with the spectral clustering techniques that we mentioned in the pre-

vious section. In fact, the solution to the one-dimensional case provides an automatic way of

thresholding the eigenvectors of a similarity matrix. The generalization to higher-dimensions

is covered in Sections 2.3 and 2.4 and is a straightforward extension of the one-dimensional

case. Such an extension indeed provides a solution to the problem of simultaneously thresh-

olding multiple eigenvectors, which is the basis for spectral clustering techniques.

• Chapter 3, Generalized Principal Component Analysis (GPCA), covers the segmentation

of piecewise linear data, i.e., data lying on a collection of subspaces. Section 3.2 gives the

basic formulation of the problem. Section 3.3 covers the case of subspaces of co-dimension

one (hyperplanes), including the polynomial factorization (Section 3.3.2) and polynomial dif-

ferentiation (Section 3.3.3) algorithms. Section 3.4 covers the case of subspaces of equal di-

mension, which is reduced to the case of hyperplanes via a projection. Section 3.5 covers the

case of subspaces of arbitrary dimensions via polynomial differentiation and division. Sec-

tions 3.6 derives an optimal function for obtaining the subspaces from noisy data. Section 3.7

shows how to use GPCA to initialize iterative algorithms such as K-subspace and EM.

• Chapters 4 and 5 extend the theory of Chapter 3 to the case of piecewise bilinear data. Al-

though the segmentation of piecewise bilinear data can always be reduced to the segmentation

of piecewise bilinear, the last step of the reduction is combinatorial. Therefore, we have cho-

sen to concentrate on the problem of segmenting dynamic scenes from 2-D imagery, because

in this case the combinatorial part can be bypassed by exploiting the geometric structure of

the problem. Chapter 4 covers the segmentation of static and dynamic scenes from image in-

tensities, and is a natural generalization of the so-called direct methods to the case of multiple

motion models. Chapter 5 covers the segmentation of dynamic scenes from feature points,

and is a natural generalization of the eight-point algorithm to multiple rigidly moving objects.
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Chapter 2

Polynomial Segmentation (Polysegment)

2.1 Introduction

Eigenvector segmentation is one of the simplest and most widely used global approaches

to segmentation and clustering [42, 11, 40, 45, 68]. The basic algorithm is based on thresholding

the eigenvectors of the so-called similarity matrix and can be summarized as having the following

steps [40]:

1. Associate to each data point a feature vector. Typical feature vectors in image segmentation

are the pixel’s coordinates, intensity, optical flow, output of a bank of filters, etc.

2. Form a similarity matrix S ∈ RN×N corresponding to N data points. Ideally Sij = 1 if

points i and j belong to the same group and Sij = 0 otherwise. A typical choice for Sij is

exp(−d2
ij/2σ

2), where dij is a distance between the features associated to points i and j and

σ is a free parameter. dij is chosen so that the intragroup distance is small and the intergroup

distance is large. When the points are ordered according to which group they belong, the

similarity matrix should be block diagonal as illustrated in Figure 2.1.

3. Group the points by thresholding an eigenvector x ∈ RN of the similarity matrix S ∈ RN×N .

Ideally, if two points i and j belong to the same group, then xi = xj . Thus if the points

are reordered according to which group they belong, the eigenvector should be a piecewise

constant function of the points as illustrated in Figure 2.1.

In practice, the data points are corrupted with noise, the intragroup distance is nonzero

and the intergroup distance is not infinity. This means that, in general, xi 6= xj even if points i
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Figure 2.2: Eigenvector obtained from noisy image measurements and the “ideal” eigenvector. Be-
fore segmentation (left) and after segmentation (right).

and j belong to the same group. We illustrate this phenomenon in Figure 2.2, where the leading

eigenvector of S is not piecewise constant, yet there is an unknown underlying piecewise constant

eigenvector: the “ideal” eigenvector. The question is

How does one recover the “ideal” eigenvector from the “noisy” one? Is there an analytic

way of doing so?

Furthermore, since information about the number of groups is also contained in the noisy eigenvec-

tor

How does one obtain an estimate of the number of groups from the noisy eigenvector?

To our surprise, these questions have never been addressed in an analytic fashion. Most

of the existing work (See Section 2.1.2 for a review) uses heuristics to threshold one or more eigen-

vectors of the similarity matrix and then extract the segmentation.
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2.1.1 Contributions

In this chapter, we address the eigenvector segmentation problem in a simple algebraic

geometric framework. We assume that the number of groups is unknown and that there exists a

set of underlying “ideal” eigenvectors which are permutations of piecewise constant vectors. The

problem then becomes one of estimating the number of groups, the “ideal” eigenvectors and the cor-

responding permutation from a set of “noisy” eigenvectors of S . We propose to solve this problem

using polynomial segmentation (Polysegment), a simple technique that transforms each eigenvector

into a univariate polynomial. The number of groups n becomes the degree of the polynomial and

the finite values that the “ideal” eigenvectors can take become the roots of the polynomial.

In Section 2.2 we consider the case of a single eigenvector. In Section 2.2.1 we derive

a rank condition on the entries of the “ideal” eigenvector from which we determine the number of

groups n. Once the number of groups has been determined, the segmentation of the data points

can be obtained from the roots of a polynomial of degree n in one variable, whose coefficients can

be computed by solving a linear system. This shows that there is a unique global solution to the

eigenvector segmentation problem, which can be obtained in closed form if and only if n ≤ 4. In

Section 2.2.2 we show that this purely algebraic solution is robust in the presence of noise since it

corresponds to the least squares solution to the algebraic error derived in the ideal case. In the case

of zero-mean Gaussian noise on the entries of the eigenvector, we show that such a sub-optimal

objective function can be easily modified to obtain an optimal function for the chosen noise model.

In Section 2.3 we consider the problem of segmenting the data from two eigenvectors and

show that Polysegment can be directly applied after transforming the two (real) eigenvectors into

a complex one, and then working with complex polynomials. In Section 2.4 we study the case of

multiple eigenvectors and show that it can be reduced to the case of one or two eigenvectors after a

suitable projection. We show how to use Polysegment to initialize K-means and EM in Section 2.5.

In Section 2.6 we present experimental results on intensity-based image segmentation that

show that Polysegment performs similarly or better than K-means and EM, but is computationally

less costly, because it only needs to solve one linear system in n variables plus one polynomial of

degree n in one variable. We also present experimental results on texture-based image segmentation

that show that Polysegment is very efficient at computing and segmenting textures and produces a

visually appealing segmentation of natural scenes from the Berkeley segmentation dataset. We then

apply Polysegment to 2-D and 3-D motion segmentation using either point features or optical flow.

Finally, we present experimental results on face clustering with varying expressions.
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2.1.2 Previous work

Spectral clustering techniques were first applied to motion segmentation by Boult and

Brown [7]. The authors propose a rank constraint to estimate the number of independent motions

and obtain the segmentation of the image data from the leading singular vectors of the matrix of

feature points in multiple frames. A similar technique was earlier proposed by Scott and Longuet-

Higgins [42] in the context of feature segmentation. The authors assume that the number of groups

n is given and use the first n eigenvectors of the similarity matrix S to build a segmentation matrix

Q such that Qij = 1 if pixels belong to the same group and zero otherwise. In the presence of

noise, the segmentation of the data is obtained by thresholding Q, which is sensitive to noise. The

same technique was later applied by Costeira and Kanade [11] to orthographic motion segmenta-

tion. In this case the similarity matrix is obtained as the outer product of a matrix formed from a

collection of feature points in multiple frames. Instead of thresholding Q, the authors obtain the

segmentation by partitioning a graph that is formed from the entries of Q. An alternative approach

to thresholding Q based on model selection techniques was proposed by Kanatani [31]. Shi and

Malik [45] demonstrated that segmentation based on a single eigenvector can be interpreted as a

sub-optimal solution of a two-way graph partitioning problem. They explored three algorithms for

image segmentation. In the two-way Ncut they threshold the second eigenvector of a normalized

similarity matrix into two groups. The choice of two groups is arbitrary, and can produce the wrong

segmentation for eigenvectors such as the one in Figure 2.2. In the recursive two-way Ncut each

one of the two groups is further segmented into two sub-groups by applying the two-way Ncut to

the eigenvectors associated to the similarity matrices of the previously computed groups. In this

case it is unclear when to stop subdividing currently computed groups. The authors also explore a

K-way Ncut that usesK eigenvectors. TheK entries corresponding to each pixel are used as feature

vectors that are clustered using the K-means algorithm with random initialization. They do not pro-

vide an analytic way of initializing K-means. Weiss [68] showed that the eigenvector segmentation

algorithms in [11, 40, 42, 45] are very much equivalent to each other. In some special cases, he

also analyzed the conditions under which they should give a good segmentation. For example, the

algorithm in [42] gives a good segmentation when the intergroup similarities are zero, the intra-

group similarities are positive and the first eigenvalue of each intragroup similarity matrix is bigger

than the second eigenvalue of any other. Similar conditions were derived in [39]. Unfortunately,

these conditions depend on the spectral properties of the segmented data and hence they cannot be

checked when the true segmentation is unknown.
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2.2 One-dimensional clustering: the case of one eigenvector

Assume that we are given an eigenvector x ∈ RN of a similarity matrix S ∈ RN×N ,

where N is the number of data points, and that we would like to segment the entries of x into

an unknown number of groups n. We assume that there exists an (unknown) ideal eigenvector x̃

that takes on a finite number of values, i.e., x̃j ∈ {µ1, µ2, . . . , µn}, with µ1 6= · · · 6= µn, for

j = 1, . . . , N . We define the eigenvector segmentation problem as follows.

Problem 1 (Eigenvector segmentation problem)

Given an eigenvector x ∈ RN of a similarity matrix S ∈ RN×N , estimate the number of groups n,

the constants {µi}ni=1, and the segmentation of the data, i.e., the group to which each point belongs.

2.2.1 The ideal case

Imagine for the time being that we had access to the ideal eigenvector x̃. In this case,

the segmentation problem can be trivially solved by sorting the entries of x= x̃. However, we will

pretend as if we did not know the sorting-based solution so that we can derive the equations that x

has to satisfy. It turns out that those equations are precisely the ones that will enable us to recover

x̃ from x, when x̃ is unknown.

Let x ∈ R be an indefinite variable representing say the jth entry of x ∈ RN . Then, there

exists a constant µi such that x = µi. This means that

(x = µ1) ∨ (x = µ2) ∨ · · · ∨ (x = µn), (2.1)

which can be compactly written as the following polynomial of degree n in x:

pn(x) =
n∏

i=1

(x− µi) =
n∑

k=0

ckx
k = 0. (2.2)

Since the above equation is valid for every entry of x, we have that

Ln c
.
=




1 x1 x2
1 · · · xn1

1 x2 x2
2 · · · xn2

...
...

1 xN x2
N · · · xnN







c0

...

cn−1

1




= 0. (2.3)

where Ln ∈ RN×(n+1) is the data matrix and c ∈ Rn+1 is the vector of coefficients of pn(x).
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In order for the linear system of equation (2.3) to have a unique solution for the vector of

coefficients c ∈ Rn+1, we must have that rank(Ln) = n. This rank constraint on Ln ∈ RN×(n+1)

provides a criterion to determine the number of groups n from the eigenvector x, as follows.

Theorem 1 (Number of groups) Let Li ∈ RN×(i+1) be the matrix formed from the first i + 1

columns of Ln. If N ≥ n, then

rank(Li)





> i, if i < n,

= i, if i = n,

< i, if i > n.

(2.4)

Therefore, the number of groups n is given by

n
.
= min{i : rank(Li) = i}. (2.5)

Proof. Consider the polynomial pn(x) as a polynomial over the algebraically closed field C and

assume that µ1 6= µ2 6= · · · 6= µn. Then the ideal I generated by pn(x) is a radical ideal with

pn(x) as its only generator. According to Hilbert’s Nullstellensatz (see page 380, [34]), there is a

one-to-one correspondence between such an ideal I and the algebraic set

Z(I)
.
= {x : ∀p ∈ I, p(x) = 0} ⊂ C

associated to it. Hence its generator pn(x) is uniquely determined by points in this algebraic set. By

definition, pn(x) has the lowest degree among all the elements in the ideal I . Hence no polynomial

with lower degree would vanish on all points in {µ1, µ2, . . . , µn}. Furthermore, since all the con-

stants µi are real, if x +
√
−1y ∈ C is in Z(I), then (x +

√
−1y) = µi ⇔ (x = µi) ∧ (y = 0).

Hence all points on the (real) line determine the polynomial pn(x) uniquely and vice-versa. Since

the coefficients of the polynomial pn(x) lie in the null space of Ln, and the rank of Ln determines

the number of solutions, it follows that the null space of Li is trivial if i < n, one-dimensional if

i = n and at least two-dimensional if i > n. This completes the proof.

The intuition behind Theorem 1 can be explained as follows. Consider for simplicity

the case of n = 2 groups, so that pn(x) = p2(x) = (x − µ1)(x − µ2), with µ1 6= µ2. Then it

is clear that there is no polynomial of degree one, p1(x) = x − µ, that is satisfied by all the data.

Similarly, there are infinitely many polynomials of degree 3 or more that are satisfied by all the data,

namely any multiple of p2(x). Thus the degree n = 2 is the only one for which there is a unique

polynomial representing all the data. Since the vector of coefficients c ∈ Rn+1 of the polynomial
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pn(x) lies in the null space of Ln, and the rank of Ln determines the number of solutions of the

linear system in (2.3), the number of groups is determined as the degree for which the null space of

Ln is one-dimensional.

We can therefore use Theorem 1 to estimate the number of groups incrementally from

equation (2.5), starting with i = 1, 2, . . . , etc. Notice that the minimum number of points needed is

N ≥ n, which is linear on the number of groups.1

Once the number of groups n has been computed, we can linearly solve for the vector

of coefficients c from equation (2.3). In fact, after rewriting (2.3) as a (non-homogeneous) linear

system with unknowns [c0, c1, . . . , cn−1]T , the least squares solution for [c0, c1, . . . , cn−1]T can be

obtained by solving the linear system



1 E[x] · · · E[xn−1]

E[x] E[x2] · · · E[xn−1]
...

...

E[xn−1] E[xn] · · · E[x2n−2]







c0

...

cn−1


 = −




E[xn]

E[xn+1]
...

E[x2n−1]



, (2.6)

where E[xk]
.
= 1

N

∑N
j=1 x

k
j is the kth moment of the data. This shows that for a mixture of n

groups, it is enough to consider all the moments of the data up to degree 2n− 1.

Finally, since

pn(x) =
n∏

i=1

(x− µi) =
n∑

k=0

ckx
k = 0, (2.7)

given n and c we can obtain {µi}ni=1 as the n roots of the polynomial pn(x). Given {µi}ni=1, the

segmentation is obtained by assigning point j to group i whenever µj = xi.

Remark 1 (Solvability of roots of univariate polynomial) It is well-known from abstract alge-

bra [34] that there is a closed form solution for the roots of univariate polynomials of degree n ≤ 4.

Hence, there is a closed form solution to the eigenvector segmentation problem for n ≤ 4 as well.

2.2.2 The general case

Let us now consider the case in which we are given a noisy eigenvector x whose ideal

eigenvector x̃ is unknown. As before, let x be an indefinite variable representing say the j th entry

of x. Then, there exists a constant µi such that x ≈ µi, hence we must have

pn(x) = (x− µ1)(x− µ2) · · · (x− µn) =
n∑

k=0

ckx
k ≈ 0. (2.8)

1We will see in future chapters that this is no longer the case for more general segmentation problems.
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By applying the above equation to each entry of x, we obtain the system of linear equations

Lnc ≈ 0, (2.9)

where Ln ∈ RN×(n+1) is defined in (2.3). We can solve this equation in a least-squares sense by

minimizing the algebraic error

EA(c)
.
=

N∑

j=1

(pn(xj))
2 =

N∑

j=1

(
n∑

k=0

ckx
k
j

)2

= ||Lnc||2. (2.10)

The solution c to the above problem is simply the singular vector ofLn corresponding to the smallest

singular value. Given c, the cluster centers {µi}ni=1 can be obtained as the n roots of pn(x). Finally,

given {µi}ni=1, the segmentation of the data is obtained by assigning point j to the group i that

minimizes the distance between xj and µi, i.e., point j is assigned to the group

i = arg min
`=1,...,n

(xj − µ`)2. (2.11)

In summary, if the number of groups n is given, then the same algorithm that we derived

in the ideal case can be directly applied to compute the vector of coefficients c, the cluster centers

{µi}ni=1 and the segmentation of the data. Now if the number of groups n is unknown, we cannot

directly compute it from the rank condition in (2.5), because the matrix Li may be full rank for any

i ≥ 1. Therefore, we determine the number of groups by thresholding the singular values of the

data matrix. That is, we estimate the number of groups as

n = min{i : σi+1/σi < ε}, (2.12)

where σi is the ith singular value of Li and ε is a pre-specified threshold that depends on the noise

level. One can also use the geometric information criterion to estimate the rank as shown in [32].

Even though we have derived the polynomial segmentation algorithm Polysegment in a

purely algebraic setting, it turns out that it also has a probabilistic interpretation. Let {xj}Nj=1 be a

noise corrupted version of the ideal data {x̃j}Nj=1 drawn from a mixture model with means {µi}ni=1.

The problem is then to estimate the means of the mixture model {µi}ni=1 from the noisy sample data

{xj}Nj=1. The following lemma [54] shows that the algebraic solution described above is exactly

the moment estimator for certain types of distributions, e.g., Exponential and Gamma.

Lemma 1 (Moment estimator for mixtures of scalar random variables) Given a collection of

points {xj}Nj=1 drawn from a mixture model with means {µi}ni=1, if the probability distribution for

group i is such thatE(xk) = µki for all i = 1, . . . , n and for all k ≥ 1, then the solution for {µi}ni=1

given by (2.6) and (2.7) corresponds to the moment estimator for the means of the mixture model.
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Consider now the case in which the data {xj}Nj=1 is corrupted with i.i.d. zero-mean Gaus-

sian noise. Since this case does not satisfy the conditions of Lemma 1, the algebraic solution is

not necessarily optimal in a maximum likelihood sense. We therefore seek an optimal solution by

solving the following constrained optimization problem

min
c0,...,cn−1

N∑

j=1

(x̃j − xj)2 (2.13)

subject to
n∑

k=0

ckx̃
k
j = 0, j = 1, ..., N. (2.14)

Since pn(x̃) = pn(x) + p′n(x)(x̃ − x) + O((x̃ − x)2) and (x − x̃) is assumed to be

zero-mean and Gaussian, after neglecting higher order terms an optimal objective function can be

obtained by minimizing

EO(c)
.
=

N∑

j=1

(
pn(xj)

p′n(xj)

)2

=
N∑

j=1

( ∑n
k=0 ckx

k
j∑n

k=1 kckx
k−1
j

)2

. (2.15)

Minimizing EO(c) is an unconstrained optimization problem in n variables, which can be solved

with standard optimization techniques. Notice that the optimal error EO(c) is just a normalized

version of the algebraic error EA(c). Given n and c we obtain the constants {µi}ni=1 as before, i.e.,

they are the n roots of the polynomial pn(x). Given the constants {µi}ni=1, the segmentation of the

data is obtained as in (2.11).

Remark 2 (Solving for {µi}ni=1 directly) Notice that in the nonlinear case it is not necessary to

solve for c first. Instead one can define the optimal error EO as a function of {µi}ni=1 directly,

because pn(xj) = (xj − µ1) · · · (xj − µn). The error becomes

N∑

j=1

(
pn(xj)

p′n(xj)

)2

=
N∑

j=1

( ∏n
i=1(xj − µi)∑n

i=1

∏
`6=i(xj − µ`)

)2

. (2.16)

In the presence of noise is better to search for {µi}ni=1 directly, without computing c first. This is

because the unconstrained minimization of EO(c) does not consider the constraints on the entries

of c associated to the fact that pn(x) should have real roots.

Remark 3 (Approximate distance from a point to its cluster center) Notice from (2.16) that if a

point xj is close to cluster center µi, then the denominator is approximately equal to
∏
6̀=i(xj−µ`).

After dividing the numerator by the denominator, we notice that the contribution of point j to the

error EO(c) is equal to (xj − µi)2. Therefore, the error function EO(c) is a clever way of writing

the sum of the square distances from each point to its own cluster center, modulo higher order terms.



21

2.3 Two-dimensional clustering: the case of two eigenvectors

Consider now the case in which we are given eigenvectors x1 ∈ RN and x2 ∈ RN of a

similarity matrix S ∈ RN×N . As before, the objective is to find two ideal eigenvectors x̃1 ∈ RN

and x̃2 ∈ RN such that the rows of the matrix X̃ = [x̃1 x̃2] ∈ RN×2 take on finitely many values

{µi ∈ R2}ni=1. Alternatively, we can interpret the above problem as a clustering problem in R2.

We could imagine that each row of the data matrix X = [x1 x2] ∈ RN×2 is a data point to be

clustered and that {µi}ni=1 are the (unknown) cluster centers.

We now show that the two-eigenvector problem can be solved using the same technique

we used in the single-eigenvector case, i.e., polynomial segmentation, except that we need to use

complex coordinates. To this end, let us interpret the cluster centers as a collection of complex

numbers {µi ∈ C}ni=1 and let z = x1 +
√
−1x2 ∈ CN be a new (complex) eigenvector. Then each

coordinate z ∈ C of the (noisy) eigenvector z ∈ CN must approximately satisfy the polynomial

pn(z) =
n∏

i=1

(z − µi) =
n∑

k=0

ckz
k = 0 (2.17)

As before, by applying the above equation to each one of the N entries of z we obtain the following

linear system on the vector of (complex) coefficients c ∈ Cn+1

Ln c = 0, (2.18)

where Ln ∈ CN×(n+1) is defined similarly to (2.3), but computed from the complex eigenvector z.

We can now solve for c in a least-squares sense from the SVD of Ln. Given c, we compute the n

roots of pn(z), which correspond to the n cluster centers in R2 {µi}ni=1. The clustering of the data

is then obtained by assigning each row of X to the closest cluster center, similarly to (2.11).

Remark 4 (A difference between one-dimensional and two-dimensional cases) Although the one-

dimensional and two-dimensional cases are conceptually identical, in the noisy case there is a po-

tential difference that is worth mentioning. In the one-dimensional case we are dealing with poly-

nomials in R, and R is not an algebraically closed field. Therefore the roots of pn(x) may not be all

real, because we never enforced that when solving for the vector of coefficients c from Lnc = 0. In

the two-dimensional case, on the other hand, we are working in C which is an algebraically closed

field, hence all the roots are complex and there is no need to constraint the roots of pn(z) when

solving for c. However this difference is only conceptual. In practice one always gets real solutions

in the one-dimensional case. For example, if n = 2 one can solve for c from (2.6) and show that

c2 = V ar[x], c1 = E[x2]E[x]−E[x3] and c0 = E[x3]E[x]−E[x2]2 ≤ 0, hence c2
1− 4c0c2 ≥ 0.
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2.4 K-dimensional clustering: the case of multiple eigenvectors

In many segmentation problems a single eigenvector will not be enough for obtaining the

correct segmentation. We illustrate this in Figure 2.3, where individual eigenvectors contain two

groups, while all three eigenvectors contain three groups.

In this section, we generalize Polysegment to deal simultaneously with multiple (noisy)

eigenvectors2 x1,x2, . . . ,xK ∈ RN of a similarity matrix S ∈ RN×N . The objective is to find

a collection of ideal eigenvectors x̃1, x̃2, . . . , x̃K ∈ RN such that the rows of the matrix of ideal

eigenvectors X̃ = [x̃1, x̃2, . . . , x̃K ] ∈ RN×K take on finitely many values {µi ∈ RK}ni=1. As

before, we can interpret the multiple eigenvector segmentation problem as a clustering problem in

RK in which we would like to cluster the rows of X = [x1,x2, . . . ,xK ] ∈ RN×K around the

cluster centers {µi ∈ RK}ni=1.
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Figure 2.3: A case in which individual eigenvectors contain two groups, while all three eigenvectors
contain three groups.

In principle, one may wonder if it is possible to solve the case of K > 2 eigenvectors by

applying the same trick of the K = 2 case, namely to identify R2 with the complex plane. Unfortu-

nately, one cannot directly generalize the properties of complex numbers to higher dimensions. In

the case K = 4, for example, one could think that working with quaternions could be the solution.

However, unlike the multiplication of complex numbers, the multiplication of quaternions is not

commutative. Furthermore, it is unclear how to solve for the roots of a polynomial on quaternions.

Therefore, in solving the case K > 2 we will look for an alternative solution based on

reducing the problem to the cases K = 1 and/or K = 2. To this end, notice that the case K = 2

can be reduced to the case K = 1 by projecting the rows of X ∈ RN×2 onto a one-dimensional

subspace. We illustrate this in Figure 2.4, where three clusters are projected onto the horizontal axis,

2In general, it is enough to use K = rank(S) eigenvectors. Thus K can be obtained by choosing the eigenvectors of
S that are such that the corresponding eigenvalues are above a certain threshold.
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Figure 2.4: Projecting the rows of X ∈ RN×2 onto any line not perpendicular to the lines passing
through the cluster centers preserves the segmentation. In this example, one can project onto the
horizontal axis, but not onto the vertical axis.

and the segmentation of the data is preserved. More generally, given a matrix with K eigenvectors

X ∈ RN×K , we can project its rows onto almost every3 one-dimensional subspace of RK and the

segmentation into n clusters is preserved. Since choosing a particular projection is equivalent to

choosing a vector λ ∈ RK and defining a new (projected) data set Xλ ∈ RN , one can now apply

Polysegment with K = 1 to the new single eigenvector x = Xλ and obtain the segmentation of the

data. Similarly, we can choose a matrix Λ ∈ RK×2 and project the rows of X onto a 2-dimensional

subspace to obtain two eigenvectors XΛ ∈ RN×2. We can then apply the Polysegment with K = 2

to the data, by embedding it into the complex plane.

In order to make the segmentation less dependent on a particular choice of the projection,

we choose a collection of projections. For example, we can choose to project along each one of

the axis in RK , which gives the original eigenvectors x1, . . . ,xK .4 Then one can apply polynomial

segmentation with K = 1 to each one of them to obtain their corresponding “ideal” eigenvectors

x̃1, x̃2, . . . , x̃K ∈ RN . Since the entries of each x̃j ∈ RN take on at most n different values, many

of the rows of X̃ = [x̃1, x̃2, . . . , x̃K ] ∈ RN×K will be repeated. In fact, the n different rows of

X̃ should correspond to the cluster centers {µi}ni=1. Therefore, the segmentation of the data can be

achieved by sorting the rows of X̃ .

Algorithm 1 summarizes the overall algorithm.

3Except when the one-dimensional subspace is perpendicular to the line connecting any pair of cluster centers.
4Notice that projecting along one of the axis may not preserve the segmentation of the data, as illustrated in Figure 2.4

However, at least one of the r projections has to preserve the segmentation of the data into n groups, otherwise the number
of groups is less than n.
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Algorithm 1 (Polysegment: Polynomial segmentation algorithm)

Let x1,x2, . . . ,xK ∈ RN be a given collection of eigenvectors of a similarity matrix S ∈ RN×N .

Alternatively, let the N rows of X=[x1, . . . ,xK ]∈RN×K be a set of points in RK to be clustered.

1. For ` = 1, . . . ,K

(a) Compute the number of groups n` ≤ n for eigenvector x` from (2.12).

(b) Given n`, compute the vector of coefficients c ∈ Rn`+1 from the linear system (2.3).

(c) Given c, compute the roots µ1, . . . , µn` of the polynomial
∑n`

k=0 ckx
k.

(d) Compute the jth entry of the “ideal” eigenvector (x̃`)j as arg min{µi}((x`)j − µi)2.

2. Set the number of groups n as the number of distinct rows in the matrix of ideal eigenvectors

X̃ = [x̃1, . . . , x̃r] ∈ RN×K .

3. Set {µi ∈ RK}ni=1 to be the n different rows in X̃ .

4. Sort the rows of X̃ according to {µi}ni=1 to obtain the segmentation of the N data points.

Remark 5 (Multiple cues) Notice that the multiple eigenvector algorithm can be naturally used to

simultaneously incorporate many cues. In image segmentation, for example, one could have one

similarity matrix for each cue (motion, intensity, color, texture, etc.) and obtain their eigenvectors.

Then Polysegment can be applied to the collection of all eigenvectors obtained from all cues. Al-

ternatively, one can combine the individual similarity matrices into a single matrix, as proposed

in [45], and then apply Polysegment to the eigenvectors of the combined similarity matrix.

Remark 6 (Number of groups) According to Algorithm 1, in the absence of noise the number of

groups n contained in all the eigenvectors will be given by the number of distinct rows in the matrix

X̃ . In fact, except for the degenerate case mentioned in footnote 3, each column of X̃ should give

the correct number of groups. In the presence of noise, however, each individual eigenvector will

provide a possibly different segmentation of the data, hence the number of different rows in X̃ will

be much larger than the number of different entries in each column of X̃ . Therefore, Algorithm 1

will tend to overestimate the number of groups and some post-processing will be needed to reduce

the number of groups. In Section 2.6.2 we will discuss a particular strategy for reducing the number

of groups in the case of texture-based image segmentation.
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2.5 Initialization of iterative algorithms in the presence of noise

In this section, we briefly describe two iterative algorithms for piecewise constant data

segmentation and model estimation,5 K-means and Expectation Maximization (EM), and show how

to use Polysegment to initialize them. Since both K-means and EM can be applied to the segmen-

tation of multiple eigenvectors, as in the previous section, we assume that we are given a matrix

X = [x1, . . . ,xK ] ∈ RN×K containing K eigenvectors. We will denote the jth row of X as

yj ∈ RK and consider it as one of the data points to be clustered. Also we let {µi ∈ RK}ni=1 be

the collection of cluster centers.

2.5.1 The K-means algorithm

The K-means algorithm minimizes a weighted square distance from point yj to the cluster

center µi which is defined as
N∑

j=1

n∑

i=1

wij‖yj − µi‖2, (2.19)

where the weights wij represent the membership of the data to each one of the clusters. The K-

means algorithm starts by initializing the cluster centers, which can be done randomly or by choos-

ing a subset of the data points {yj}Nj=1. Then, the algorithm minimizes the error function (2.19)

using a coordinate descent algorithm that iterates between two steps. In the first step it minimizes

over {wij} with {µi} held constant, which gives the following formula for the weights

wij =





1 i = arg min`=1,...,n ‖yj − µ`‖2

0 otherwise
. (2.20)

In the second step it minimizes over the cluster centers {µi}ni=1 with the weights {wij} held con-

stant, which leads to the following formula for the cluster centers

µi =

∑N
j=1wijyj∑N
i=1wij

. (2.21)

Notice that the Polysegment algorithm also gives an estimate of the cluster centers {µi}ni=1,

but it does not require initialization. One can therefore use the solution of Polysegment to initialize

K-means, thus replacing the random initialization of the cluster centers.

5We refer the readers to [30] for more details.
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2.5.2 The Expectation Maximization algorithm

For the EM algorithm, we assume that the data points are generated by firstly choosing

one of the clusters according to a multinomial distribution with parameters {0 ≤ πi ≤ 1}ni=1,
∑n

i=1 πi = 1, and secondly choosing a point yj from one of the clusters, say cluster i, according to

a Gaussian distribution with mean µi ∈ RK and covariance σ2
i I ∈ RK×K . Let zij = 1 denote the

event that point j corresponds to cluster i. Then the complete log-likelihood (neglecting constant

factors) on both the data yj and the latent variables zij is given by

log
N∏

j=1

n∏

i=1

(
πi
σi

exp

(
−‖yj − µi‖

2

2σ2
i

))zij
=

N∑

j=1

n∑

i=1

zij(log(πi)− log(σi))− zij
‖yj − µi‖2

2σ2
i

.

The EM algorithm maximizes the complete log-likelihood using a coordinate ascent algorithm that

iterates between the following two steps, starting from an initial estimate for the model parameters

{(µi, σi, πi)}ni=1.

E-step: Computing the expected log-likelihood. Given a current estimate for the model parame-

ters θ = {(µi, σi, πi)}ni=1, one can compute the expected value of the latent variables

wij
.
= E[zij |yj , θ] = P (zij = 1|yj , θ) =

πi
σi

exp(−‖yj−µi‖
2

2σ2
i

)

∑n
i=1

πi
σi

exp(−‖yj−µi‖
2

2σ2
i

)
.

Then the expected complete log-likelihood is given by

N∑

j=1

n∑

i=1

wij(log(πi)− log(σi))− wij
‖yj − µi‖2

2σ2
i

.

M-step: Maximizing the expected log-likelihood. The Lagrangian for πi is

n∑

i=1

N∑

j=1

wij log(πi) + λ(1−
n∑

i=1

πi) ⇒ πi =

∑N
j=1wij

N
.

The first order condition for µi is

N∑

j=1

wij(yj − µi) = 0 ⇒ µi =

∑N
j=1wijyj∑N
i=1wij

.

Finally, after taking derivatives of the expected log-likelihood with respect to σi one obtains

σ2
i =

∑N
j=1 wij‖yj − µi‖2∑N

j=1 wij
.
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If all clusters have the same covariance, i.e., if for all i = 1, . . . , n we have σi = σ, then we have

σ2 =

∑n
i=1

∑N
j=1 wij‖yj − µi‖2

N
.

Therefore, from an optimization point of view, the K-means and EM algorithms are very

similar (at least in the case of Gaussian noise for EM). They both minimize a weighted distance

function, and the only difference is in the computation of the weights. While the K-means algorithm

uses a “hard” assignment wij ∈ {0, 1}, the EM algorithm uses a “soft” assignment wij ∈ [0, 1].

However, from an statistical point of view the K-means algorithm does not have any probabilis-

tic model in mind, while the EM algorithm can be shown to converge to a local maxima of the

log-likelihood. However, convergence to the global maximum is not guaranteed and depends on

initialization. Since the Polynomial Segmentation (Polysegment) algorithm proposed in the previ-

ous section does not need initialization, it can be naturally used to to initialize the cluster centers

{µi}ni=1 in K-means, EM, or any other iterative algorithm.

2.6 Applications of Polysegment in computer vision

In this section, we present examples of the application of Polysegment to various problems

in computer vision, such as image segmentation based on intensity and texture, 2-D and 3-D motion

segmentation, and face clustering with varying expressions.

2.6.1 Image segmentation based on intensity

Image segmentation refers to the problem of separating the pixels of an image (or those

of an image sequence) into a collection of groups, where each group is defined by similarity of one

or more of a collection of features such as intensity, motion, texture, color, etc.

In this section, we apply Polysegment to the problem of segmenting an image based on

intensity. Instead of computing the eigenvectors of the standard similarity matrix defined by

Sij = exp
(
−(Ii − Ij)2/2σ2

)
, (2.22)

where Ii is the intensity of pixel i, we apply Polysegment directly to the image intensities. That is,

we form a single vector x ∈ RN , where N is the number of pixels, with its jth entry defined as

xj = Ij , for j = 1, . . . , N . This choice of x has the advantage of avoiding the computation of the

eigenvectors of a large N ×N matrix and, as we will see in short, it produces a visually appealing

segmentation of the image intensities.
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We applied the K-means, Expectation Maximization (EM) and Polynomial Segmentation

(Polysegment) algorithms to the penguin, dancer and baseball images shown in Figure 2.5. In all

cases the number of groups is obtained from the Polysegment algorithm as n = 3. This number is

given as an input to K-means and EM, because they need to know the number of groups in advance.

The K-means algorithm is randomly initialized with 3 intensity values uniformly chosen on the

interval [0, 1]. The EM algorithm is initialized with K-means, unless otherwise stated.

(a) Penguin (b) Dancer (c) Baseball

Figure 2.5: Input images for intensity-based image segmentation.

Figures 2.6(a)-(c) plot the segmentation results given by each algorithm for the penguin

image. Each one of the three groups is plotted in white. We observe that K-means and EM converge

to a local minima, while Polysegment gives a good segmentation and is about 5 times faster than

K-means and 35 times faster than EM, as shown in Table 2.1. In Figures 2.6(d)-(e) the solution of

Polysegment is used to re-initialize K-means and EM. They now give a good segmentation, although

the solution of Polysegment is still slightly better. Notice that the execution time of K-means and

EM reduces around 40% and 20%, respectively, when initialized with Polysegment.

Figure 2.7 plots the segmentation results for the dancer image. Notice that all the algo-

rithms give a very similar segmentation of the image. However, Polysegment is approximately 5

times faster than K-means and 20 times faster than EM. When re-initialized with Polysegment, the

execution time of K-means reduces by about 40%, while the execution time of EM does not change.

Figure 2.8 plots the segmentation results for the baseball image. As before, all algorithms

give a similar segmentation, but Polysegment is at approximately 5 times faster.

In summary, these examples show that Polysegment produces a segmentation of 1-D data

that is similar to the ones given by K-means and EM, though in about 20% of the execution time.

This is because for N pixels and n groups, Polysegment only needs to solve one N × (n+ 1) linear

system, and then find the roots of a polynomial of degre n.
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(a) K-means (b) EM (c) Polysegment

(d) Polysegment + K-means (e) Polysegment + EM

Figure 2.6: Intensity-based segmentation of the penguin image. From top to down: group 1, group
2, group 3 and overall segmentation computed by assigning each pixel to the closest gray level.
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Table 2.1: Execution time (seconds) of each algorithm for a MATLAB implementation, running on
a 400 MHz Pentium II PC.

Image Size K-means EM Polysegment Polysegment Polysegment

+ K-means K-means + EM

Penguin 117× 180 1.74 10.9 0.31 1.10 8.0

Dancer 67× 104 0.53 2.37 0.12 0.37 2.37

Baseball 147× 221 2.11 9.72 0.47 1.50 9.45

(a) K-means (b) EM (c) Polysegment

Figure 2.7: Intensity-based segmentation of the dancer image. From top to down: group 1, group 2,
group 3 and overall segmentation computed by assigning each pixel to the closest gray level.
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(a) K-means (b) EM (c) Polysegment

Figure 2.8: Intensity-based segmentation of the baseball image. From top to down: group 1, group
2, group 3 and overall segmentation computed by assigning each pixel to the closest gray level.
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2.6.2 Image segmentation based on texture

In this section, we apply Polysegment to the problem of segmenting an image based on

texture. We propose a simple algorithm that uses Polysegment to compute textons based on quan-

tized image intensities (no color information is used), and then segments the image by applying

Polysegment in each dimension of the texton space. The algorithm proceeds as follows.

1. Intensity-based segmentation. The original image is segmented into nt groups by applying

Polysegment to the vector of image intensities x ∈ RN . Figures 2.9(b), 2.10(b) and 2.11(b)

show examples of applying Polysegment based on intensity to images with texture.

2. Texton computation. As expected, the “quantized” image obtained in the previous step is

approximately constant in regions with little texture and has a larger variability in regions with

a lot of texture. Therefore, we can use the distribution of the quantized image intensities in a

neighborhood of each pixel as a measure of the texturedness of a region. More specifically,

we compute a histogram of quantized intensity values in a w×w neighborhood of each pixel.

We interpret such a histogram as a vector in Rnt and call it texton, since it defines a measure

of the texturedness around each pixel. We then form a matrix of textons X ∈ RN×nt whose

jth row is equal to the texton associated with pixel j. We interpret each column of X as an

eigenvector of some similarity matrix.6

3. Texton segmentation. The textons computed in the previous step are segmented into groups

by applying Polysegment to the matrix of textons X ∈ RN×nt , as described in Algorithm 1.

4. Reducing the number of groups. As discussed at the end of Section 2.4, Polysegment can

produce a large number of groups when applied to multiple eigenvectors. In order to reduce

the number of groups, we associate a new image to the output of the previous step and attempt

to segment it into a smaller number of groups. More specifically, for each one of the group

of pixels obtained in the previous step, we compute the average value of their intensity in the

original image and generate a new quantized image containing those values. Figures 2.9(c),

2.10(c) and 2.11(c) show some examples of these new quantized images.

5. Final segmentation. Apply Polysegment based on intensity to the image obtained in the

previous step. The result corresponds to the final texture-based segmentation of the original

image. Figures 2.9(d), 2.10(d) and 2.11(d) show some examples of applying Polysegment

based on intensity to the images in Figures 2.9(c), 2.10(c) and 2.11(c), respectively.
6In principle one could consider each texton as a feature vector associated with each pixel, form a similarity matrix

from the distance between pairs of features, and compute a set of eigenvectors of such a similarity matrix. This second
approach is however very computationally intensive when N is large.
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(a) Original image (b) Intensity segmentation (c) Initial texture segmentation

(d) Final texture segmentation (e) Final segmentation overlay (f) Human segmentation

Figure 2.9: Texture-based segmentation results for the tiger image. (a) Original 321×481 image. (b)
The original image is segmented into 4 groups by applying Polysegment to the image intensities.
(c) A 4-dimensional texton is associated with each pixel by computing a histogram of quantized
intensities in a 23 × 23 window around each pixel. Polysegment is applied in each dimension
in texton space to separate the textons into 10 groups. The image in (c) is generated with the
average intensity of the pixels belonging to each group of textons. (d) Polysegment is applied to the
intensity of the image in (c) to obtain the final segmentation into 6 groups. (e) The overall texture-
based segmentation is overlayed onto the original image. (f) Human segmentation results from the
Berkeley segmentation dataset [38]. The overall execution time is 24 seconds.

The above algorithm for texture computation and segmentation was implemented in MAT-

LAB and runs in approximately 20-30 seconds for 321×481 images, and 5-10 seconds for 128×192

images7. We tested the algorithm on some images from the Corel database and the Berkeley seg-

mentation dataset [38]. Figure 2.9 shows segmentation results for the image of a tiger. The water

is separated into two groups due to variations of intensity. The tiger is segmented into four groups.

The largest group corresponds to the body of the tiger and the others correspond to smaller parts in

the body that have a different texture. The tail and the bushes are not segmented properly because

they are averaged out when computing textons in a 31 × 31 window. Notice that the segmentation

7Computation times are for a MATLAB implementation running on a 400 MHz Pentium II PC.
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results are similar to those obtained by human subjects.

Figure 2.10 shows segmentation results for the image of a marmot lying on a rock with

some other rocks on the background. The algorithm gives a nice segmentation of the image, espe-

cially for the rocks in the front and in the upper right corner. The front of the marmot is correctly

segmented, but its back is not separated from the big rock in the center, because there is no clear

texture boundary. The algorithm could not segment the two large rocks on the top left of the image.

Figure 2.11 shows segmentation results for the image of a zebra with grass on the back-

ground. Our algorithm gives a nice segmentation of the image into two groups: the zebra and the

grass. These results outperform those reported in [45] that apply the normalized cuts algorithm to

the eigenvectors of a similarity matrix computed from the output of a bank of filters.

2.6.3 Segmentation of 2-D translational motions from feature points or optical flow

A classic problem in visual motion analysis is to estimate a motion model for a set of 2-D

feature points as they move in a video sequence. Ideally, one would like to fit a single model that

describes the motion of all the feature points in the image. In practice, however, different regions

of the image will obey different motion models due to depth discontinuities, perspective effects,

multiple moving objects, etc. Therefore, one is faced with the problem of fitting multiple motion

models to the image, without knowing which pixels are moving according to the same model.

The typical solution to the above problem is problem is to consider a local approach in

which one considers a window around each pixel (or the K-nearest neighbors of each feature point)

and assumes that within each window there is a single motion model. Choosing a small window

ensures that there is a single model in the window, though in the presence of noise the estimation

of the model is poor. Choosing a large window does improve the estimates of the motion model.

However, it is more likely that the window will contain more than one motion model.

In this section, we consider the 2-D motion segmentation problem in the case of 2-D

translational motions and show that it is a direct application of Polysegment with K = 2.8 We

demonstrate that one can globally fit multiple motion models by applying Polysegment to all the

features, without having to choose a window (neighborhood) around each pixel (feature point).

Alternatively, one can also apply Polysegment within a window. However, since Polysegment is not

restricted to estimating a single motion model, one can choose a large window to obtain a robust

estimate of the models, without having to worry about crossing motion boundaries.

8We will discuss more complex motion models later in the thesis. For example, see Section 3.9.3 for the segmentation
of affine motion models also from feature points.
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(a) Original image (b) Intensity segmentation (c) Initial texture segmentation

(d) Final texture segmentation (e) Final segmentation overlay (f) Human segmentation

Figure 2.10: Texture-based segmentation results for the 321 × 481 marmot image. Five groups are
obtained by segmenting 4-D textons computed in a 31× 31 window. The execution time is 25 sec.

(a) Original image (b) Intensity segmentation (c) Initial texture segmentation

(d) Final texture segmentation (e) Final segmentation overlay

Figure 2.11: Texture-based segmentation results for the 128 × 192 zebra image. Two groups are
obtained from 5-D textons computed in a 11× 11 window. The execution time is 25 sec.
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2-D Motion segmentation from feature points

We let {xj1 ∈ R2}Nj=1 and {xj2 ∈ R2}Nj=1 be a collection of N feature points in two

frames from a sequence. Under the 2-D translational motion model each feature moves according

to one out of n possible 2-D displacement vectors {di ∈ R2}ni=1. That is, for each feature pair

(xj1,x
j
2) there exist a 2-D displacement di such that

xj2 = xj1 + di. (2.23)

The problem is now to estimate the n motion models {di ∈ R2}ni=1 from the collection of N

feature pairs {(xj1,xj2)}Nj=1. To this end, we define a set of complex data points {zj ∈ C}Nj=1 from

the displacement of the features in the image plane between the two views {xj2 − xj1 ∈ R2}Nj=1.

Then, the motion models {di ∈ R2}ni=1 can be immediately obtained by applying Polysegment to

the complex data {zj ∈ C}Nj=1.

2-D Motion segmentation from optical flow

Imagine now that rather than a collection of feature points we are given the optical flow

{uj ∈ R2}Nj=1 between two consecutive views of a video sequence. If we assume that the optical

flow is piecewise constant, i.e., the optical flow of every pixel in the image takes only n possible

values {di ∈ R2}ni=1, then at each pixel j we have that there exists a motion di such that

uj = di. (2.24)

The problem is now to estimate the n motion models {di ∈ R2}ni=1 from the optical flow {uj}Nj=1.

Notice that this problem is equivalent to the problem of segmenting the image into n regions with

constant flow within the region. We solve this problem by applying Polysegment with K = 2 to the

optical flow data {uj}Nj=1 interpreted as a collection of points in the complex plane C.

We tested the proposed approach by segmenting 12 frames of a real sequence consisting

of an aerial view of two robots moving on the ground. At each frame, we apply the Polysegment

algorithm withK = 2 to the optical flow9 of allN = 240×352 pixels in the image and segment the

image measurements according to the n = 3 estimated translational motion models corresponding

to the two robots and the background. Figure 2.12 shows the results of applying our algorithm to

segmenting the pixels in frames 1, 4, 7, and 10 of the sequence. Notice that the three different

motion models are correctly estimated, and the two moving robots are correctly segmented.

9We compute optical flow using Black’s code at http://www.cs.brown.edu/people/black/ignc.html.
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Figure 2.12: Segmenting the optical flow of a video sequence using Polysegment with K = 2. At
each frame, we use the optical flow of all N = 240 × 352 pixels to build the data matrix Ln ∈
CN×(n+1) corresponding to n = 3 motions: the two robots and the background. We then obtain
a vector c ∈ Cn+1 such that Lnc = 0, and compute {di ∈ C2}ni=1 as the roots of the polynomial∑n

k=0 ckz
k. We then assign each pixel j to motion model di ∈ R2 if i = arg min` ‖uj − d`‖.
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2.6.4 Segmentation of 3-D infinitesimal motions from optical flow in multiple views

In this section, we apply Polysegment to the problem of segmenting the 3-D infinitesimal

motion of n independently and rigidly moving objects observed by a moving perspective camera in

multiple frames. We let (uij , v
i
j) be the optical flow of pixel i in frame j relative to frame 0, with

i = 1, . . . , N and j = 1, . . . , f . Let U and V be the multi-frame optical flow matrices

U =




u1
1 · · · u1

f
...

...

uN1 · · · uNf


 and V =




v1
1 · · · v1

f
...

...

vN1 · · · vNf


 .

We showed in [63] (see also [37]) that the matrix S = [U, V ][U, V ]T ∈ RN×N defines

a similarity matrix for the 3-D motion of the objects. Since the eigenvectors of S are the singular

vectors of W = [U, V ] ∈ RN×2f , we will apply our segmentation algorithm to the singular vectors

of W , since it is computationally more efficient when 2f << N .

Figure 2.13 shows the street sequence10, which contains two independent motions: the

car translating to the right and the camera panning to the right. Figure 2.13(a) shows frames 3, 8,

12 and 16 of the sequence with the corresponding optical flow superimposed. The optical flow is

computed using Black’s algorithm11. Figures 2.13(b)-(c) show the segmentation results. In frame 3

the car is partially occluded, thus only the frontal part of the car is segmented from the background.

The door is incorrectly segmented because it is in a region with low texture. As time proceeds,

motion information is integrated over time by incorporating optical flow from many frames in the

optical flow matrix, thus the door is correctly segmented. In frame 16 the car is fully visible and

correctly segmented from the moving background.

Figure 2.14 shows the sphere-cube sequence, which contains a sphere rotating along a

vertical axis and translating to the right, a cube rotating counter clock-wise and translating to the

left, and a static background. Even though the optical flow of the sphere appears to be noisy, its

motion is correctly segmented. The top left (when visible), top and right sides of the square are also

correctly segmented in spite of the fact that only normal flow is available. The left bottom side of the

cube is merged with the background, because its optical flow is small, since the translational motion

of the cube cancels its rotational motion. The center of the cube is never segmented correctly since

it corresponds to a region with low texture. Integrating motion information over many frames does

not help here since those pixels are in a region with low texture during the whole sequence.

10http://www.cs.otago.ac.nz/research/vision/Research/OpticalFlow/opticalflow.html#Sequences
11http://www.cs.brown.edu/people/black/ignc.html
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(a) Optical flow (b) Group 1 (c) Group 2

Figure 2.13: Motion-based segmentation results for the street sequence. The sequence has 18 frames
and 200×200 pixels. The camera is panning to the right while the car is also moving to the right. (a)
Frames 3, 8, 12 and 16 of the sequence with their optical flow superimposed. (b) Group 1: motion
of the camera. (c) Group 2: motion of the car.
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(a) Optical flow (b) Group 1 (c) Group 2 (d) Group 3

Figure 2.14: Motion-based segmentation results for the sphere-cube sequence. The sequence con-
tains 10 frames and 400 × 300 pixels. The sphere is rotating along a vertical axis and translating
to the right. The cube is rotating counter clock-wise and translating to the left. The background is
static. (a) Frames 2-7 with their optical flow superimposed. (b) Group 1: cube motion. (c) Group 2:
sphere motion. (d) Group 3: static background.
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2.6.5 Face clustering with varying expressions

A fundamental problem in face recognition is to cluster a collection of images of faces

taken under varying illumination, pose, expression, etc. This is a very challenging problem, because

images of the same face may differ significantly under varying conditions. Conversely, it is easy to

build examples in which the images of two different faces appear similar from image data only.

In this section, we apply Polysegment to the problem of clustering faces with varying

expressions. We assume that the images {Ij ∈ RK}Nj=1 cluster around n cluster centers in the

image space RK , with each cluster center corresponding to a different individual. Since in practice

the number of pixels K is large, we first apply PCA to project the images onto RK′ with K ′ << K.

More specifically, we compute the SVD of the data [I1, I2, . . . , IN ]K×N = UΣV T and generate

a new data matrix X ∈ RN×K′ consisting of the first K ′ columns of V . As before, we interpret the

rows of X as a new set of data points in RK′ , so that we can avoid building a similarity matrix.

We apply Polysegment to the subset of the ORL Database of Faces (AT&T Cambridge)

shown in Figure 2.15 which consists of N = 10n images of n = 4 faces (subjects 21-24). Each

individual has 10 different facial expressions, and in some cases there is also a small change in

pose. All the images are taken with the same illumination. For computational efficiency, we first

project each image from RK , where K = 92 × 112 = 10, 304 pixels, to the first K ′ = 2 principal

components using PCA. Figure 2.16(a) shows the 40 images as data points in R2. Notice that the

faces of different individuals indeed cluster around 4 cluster centers. We then apply Polysegment to

the 2-dimensional data and obtain the corresponding 4 cluster centers shown in Figure 2.16(a) with

a “◦”. Figure 2.16(b) shows the clustering of the faces. Notice that there is only one mismatch.

Figure 2.15: A subset of the ORL Database of Faces (AT&T Cambridge) consisting of N = 40
images of n = 4 faces (subjects 21-24) with varying expressions.
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(a) Images of the N = 40 faces projected onto the two principal

components, and the cluster centers (“◦”) estimated by Polysegment.

(b) Segmentation results obtained by assigning each image to the

closest cluster center. There is only one mismatch.

Figure 2.16: Clustering faces with varying expressions using Polysegment with K = 2.



43

2.7 Conclusions, discussions and future work

We have proposed a simple analytic solution to the problem of segmenting piecewise

constant data from the eigenvectors of a similarity matrix.

In the absence of noise, we derived a rank constraint on the entries of each eigenvector,

from which one can determine the number of groups n contained in the data. Given n, the segmen-

tation of a single eigenvector is equivalent to solving a linear system in n variables plus computing

the roots of a polynomial of degree n in one variable. In the presence of noise, we showed that the

purely algebraic solution is robust since it minimizes the algebraic error obtained in the noise free

case. Furthermore, we derived the optimal error function for the case of zero-mean Gaussian noise

in the entries of the eigenvector. We also generalized our polynomial segmentation technique to the

case of multiple eigenvectors by reducing it to the single eigenvector case. We then showed how our

technique can be naturally used to initialize iterative algorithms such as K-means and Expectation

Maximization (EM).

We applied our algebraic algorithm (Polysegment) to the problem of segmenting an image

based on different cues such as intensity, texture or motion. Our experiments on intensity-based seg-

mentation showed that Polysegment performs similarly to K-means and EM, but is computationally

lest costly. Our experiments on texture-based image segmentation showed that Polysegment is very

efficient at computing textures and gives a visually appealing segmentation of natural scenes. Our

experiments on motion segmentation showed that Polysegment gives a good segmentation of both

static and dynamic scenes. We also applied Polysegment to the problem of clustering faces with

varying expressions. Our experiments showed the possibility of applying Polysegment to high-

dimensional data after a suitable projection. It is important to notice that none of our experiments

required the use of any of the nonlinear optimization algorithms. In all cases, a simple linear alge-

braic technique was enough to segment real noisy image data. We therefore believe that the results

presented in this chapter are quite encouraging and we look forward to applying Polysegment to

a wider variety of segmentation problems involving piecewise constant data. We are particularly

interested in image segmentation from multiple cues.

Future work will hence concentrate on improving the simultaneous segmentation of mul-

tiple eigenvectors. Our current algorithm obtains the overall segmentation by combining individual

segmentations given by each eigenvector. This usually produces a segmentation of the scene con-

taining too many groups. We showed how to reduce the number of groups in the case of texture-

based image segmentation and expect to generalize that technique to arbitrary data in the near future.
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Chapter 3

Generalized Principal Component

Analysis (GPCA)

3.1 Introduction

Principal Component Analysis (PCA) [29] refers to the problem of identifying a linear

subspace S ⊂ RK of unknown dimension k < K from N sample points xj ∈ S, j = 1, 2, . . . , N .

This problem shows up in a variety of applications in many fields, e.g., pattern recognition, data

compression, image analysis, regression, etc., and can be solved in a remarkably simple way from

the singular value decomposition (SVD) of the data matrix [x1,x2, . . . ,xN ] ∈ RK×N . In the

presence of noise, this purely algebraic solution has the geometric interpretation of minimizing the

sum of the squared distances from the (noisy) data points xj to their projections x̃j in S.

In addition to this algebraic-geometric interpretation, PCA can also be understood in a

probabilistic manner. In Probabilistic PCA [53] (PPCA), the noises are assumed to be independent

samples drawn from an unknown distribution, and the problem becomes one of identifying the sub-

space and the parameters of the distribution in a maximum likelihood sense. When the underlying

noise distribution is Gaussian, the algebraic-geometric and probabilistic interpretations coincide [9].

However, when the underlying distribution is non Gaussian the solution to PPCA is no longer lin-

ear. For example, in [9] PCA is generalized to arbitrary distributions in the exponential family.

The authors use Bregman distances to derive the log-likelihood as a nonlinear function of the nat-

ural parameter of the distribution. The log-likelihood is then minimized using standard nonlinear

optimization techniques.
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Another extension of PCA is nonlinear principal components (NLPCA) or Kernel PCA

(KPCA), which is the problem of identifying a nonlinear manifold from sample data points. The

standard solution to NLPCA [41] is based on first embedding the data into a higher-dimensional

feature space F and then applying standard PCA to the embedded data. That is, one assumes that

there exists an embedding of the data such that the embedded data points lie on a linear subspace

of a higher-dimensional space. Since in practice the dimension of F can be large, a more practical

solution is obtained from the eigenvalue decomposition of the so-called kernel matrix, hence the

name KPCA. One of the disadvantages of KPCA is that it is unclear what kernel to use for a given

problem, since the choice of the kernel naturally depends on the nonlinear structure of the manifold

to be identified. In fact, learning kernels is an active topic of research in the KPCA community.

In this chapter, we consider the following (alternative) extension of PCA to the case of

mixtures of subspaces, which we call Generalized Principal Component Analysis (GPCA):

Problem 2 (Generalized Principal Component Analysis (GPCA))

Given a set of sample points X = {xj ∈ RK}Nj=1 drawn from n > 1 different linear subspaces

{Si ⊆ RK}ni=1 of dimension ki=dim(Si), 0 < ki < K, identify each subspace Si without knowing

which points belong to which subspace. By identifying the subspaces we mean the following:

1. Identify the number of subspaces n and their dimensions {ki}ni=1;

2. Identify a basis (or a set of principal components) for each subspace Si (or equivalently S⊥i );

3. Group or segment the given N data points into the subspace(s) to which they belong.

Figure 3.1 illustrates the case of n = 3 subspaces of R3 of dimensions k1 = k2 = k3 = 2.

PSfrag replacements
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Figure 3.1: Three (n = 3) 2-dimensional subspaces S1, S2, S3 in R3. The objective of GPCA is to
identify all three subspaces from samples {x} drawn from these subspaces.
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3.1.1 Previous work on mixtures of principal components

Geometric approaches to mixtures of principal components have been proposed in the

computer vision community on the context of 3-D motion segmentation. The main idea is to

first segment the data associated with each subspace, and then apply standard PCA to each group.

Kanatani [31] (see also [7, 11]) demonstrated that when the pairwise intersection of the subspaces is

trivial, which implies that K ≥ nk, one can use the SVD of all the data to build a similarity matrix

from which the segmentation can be easily extracted. In the presence of noise the segmentation of

the data becomes a quite challenging problem which can be solved using a time-consuming graph-

theoretic approach as demonstrated in [11]. When the intersection of the subspaces in nontrivial, the

segmentation of the data is usually done in an ad-hoc fashion using clustering algorithms such as K-

means. The only existing geometric solution is for the case of two planes in R3 and was developed

by Shizawa and Mase [46] in the context of 2-D segmentation of transparent motions.1 To the best

of our knowledge, our work is the first one to provide a geometric solution for an arbitrary number

n of different subspaces of any dimensions k1, · · · , kn and with arbitrary intersections among them.

Probabilistic approaches to mixtures of principal components [52] assume that sample

points within each subspace are drawn from an unknown probability distribution. The membership

of the data points to each one of the subspaces is modeled with a multinomial distribution whose

parameters are referred to as the mixing proportions. The parameters of this mixture model are esti-

mated in a Maximum Likelihood or Maximum a Posteriori framework as follows: one first estimates

the membership of the data given a current estimate of the model parameters, and then estimates the

model parameters given a current estimate of the membership of the data. This is usually done in an

iterative manner using the Expectation Maximization (EM) algorithm. However, the probabilistic

approach to mixtures of principal components suffers from the following disadvantages:

1. It is hard to analyze some theoretical questions such as the existence and uniqueness of a

solution to the problem.

2. It relies on a probabilistic model for the data, which is restricted to certain classes of distribu-

tions or independence assumptions.

3. The convergence of EM is in general very sensitive to initialization, hence there is no guar-

antee that it will converge to the optimal solution. To the best of our knowledge, there is no

global initialization irrespective of the distribution of the data.

1We thank Dr. David Fleet for pointing out this reference.
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4. There are many cases in which it is very hard to solve the grouping problem correctly, and

yet it is possible to obtain a quite precise estimate of the subspaces. In those cases, a direct

estimation of the subspaces (without grouping) seems more appropriate than an estimation

based on incorrectly segmented data.

One may therefore ask

1. Is there an algebraic way of initializing statistical approaches to subspace segmentation?

2. Is is possible to find algebraic constraints that do not depend on the segmentation of the data?

3. If yes, can one use these constraints to estimate all the subspaces directly from all the data?

4. Furthermore, since some information about the number of subspaces must also be contained

in the data, is there an algebraic way of obtaining an initial estimate for the number of

subspaces?

3.1.2 Our approach to mixtures of principal components: GPCA

In this chapter, we propose a novel algebraic-geometric approach to modeling mixtures of

subspaces called Generalized Principal Component Analysis (GPCA), which under mild assump-

tions guarantees a unique global solution to clustering of subspaces based on simple linear algebraic

techniques.2 The key to our approach is to view the mixture of subspaces as a projective algebraic

variety. Estimating the variety from sample data points becomes a particular case of NLPCA for

which one can derive the embedding of the data analytically. Then, estimating the individual sub-

spaces is equivalent to estimating the components of the algebraic variety. Unlike previous work,

our approach allows arbitrary intersections among the subspaces (as long as they are different) and

does not require previous segmentation of the data in order to estimate the subspaces. Instead, the

subspaces are estimated directly by using segmentation independent constraints that are satisfied by

all data points, regardless of the subspace to which they belong.

More specifically, the main aspects behind our approach are the following:

1. Algebraic sets and varieties: We show in Section 3.2 that the union of n linear subspaces of

RK corresponds to the (projective) algebraic set defined by one or more homogeneous poly-

nomials of degree n in K variables. Estimating a collection of subspaces is then equivalent

to estimating the algebraic variety defined by such a set of polynomials.

2Part of the results presented in this chapter were published in [58].
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2. Mixtures of (K − 1)-dimensional subspaces: We show in Section 3.3 that the union of n sub-

spaces of dimension k = K − 1 is defined by a unique homogeneous polynomial pn(x). The

degree of pn(x) turns out to be the number of hyperplanes n and each one of the n factors

of pn(x) corresponds to each one of the n hyperplanes. Hence the problem of identifying

a collection of hyperplanes boils down to estimating and factoring pn(x). Since every sam-

ple point x must satisfy pn(x) = 0, one can retrieve pn(x) directly from the given samples

without knowing the segmentation of the data. In fact, the number n of subspaces is exactly

the lowest degree of pn(x) such that pn(x) = 0 for all sample points. This leads to a simple

matrix rank condition which determines the number of hyperplanes n. Given n, the polyno-

mial pn(x) can be determined from the solution of a set of linear equations. Given pn(x),

the estimation of the hyperplanes is essentially equivalent to factoring pn(x) into a product

of n linear factors. We present two algorithms for solving the factorization problem. The

polynomial factorization algorithm (PFA) obtains a normal to each hyperplane from the roots

of a polynomial of degree n in one variable and from the solution of K − 2 linear systems in

n variables. Thus the problem has a closed form solution if and only if n ≤ 4. The polyno-

mial differentiation algorithm obtains the normals to each hyperplane from the derivatives of

pn(x) evaluated at a collection of n points lying on each one of the hyperplanes.

3. Mixtures of k-dimensional subspaces (k < (K−1)): We show in Section 3.4 that even though

the union of n subspaces of dimension k < K − 1 is defined by more than one homogeneous

polynomial, one can still reduce it to the case of a single polynomial by projecting the data

onto a (k + 1)-dimensional subspace of RK . However, in order to project the data we need

to know the dimension of the subspaces k. In standard PCA, where n = 1, one can always

estimate k from the rank of the data matrix. In the case of n subspaces, we derive rank

constraints from which one can simultaneously estimate n and k, after embedding the data

into a higher-dimensional space. Given n and k, one can use the equations of the projected

subspaces to first segment the data using GPCA for hyperplanes and then estimate a basis for

the original subspaces using standard PCA. Although a single generic projection is sufficient,

we also derive a generalization of the polynomial differentiation algorithm that uses multiple

projections to estimate each subspace.

4. Mixtures of subspaces of arbitrary dimensions: We show in Section 3.5 that in the case of

subspaces of arbitrary dimensions one cannot recover a set of factorable polynomials rep-

resenting the algebraic variety. Instead, one can only recover a basis for such polynomials
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whose elements may not be factorable. However, we show that one can still recover a set of

vectors normal to the subspaces by evaluating the derivatives of these polynomials at points

on the subspaces, regardless of whether they are factorable or not. Given such normal vectors,

the estimation of a basis for the the subspaces and their dimensions can be done by applying

standard PCA to the set of normal vectors. This algorithm is in essence a generalization of

the polynomial differentiation algorithm to subspaces of arbitrary dimensions.

5. Maximum likelihood estimation: In Section 3.6 consider the GPCA problem in the presence

of noisy data. We assume a simple probabilistic model in which the data points are corrupted

by zero-mean Gaussian noise and cast GPCA as a constrained nonlinear least squares problem

which minimizes the error between noisy points and their projections subject to all mixture

constraints. By converting this constrained problem into an unconstrained one, we obtain an

optimal function from which the subspaces can be directly recovered using standard nonlinear

optimization techniques. We show that the optimal objective function is just a normalized

version of the algebraic error minimized by our analytic solution to GPCA. Although this

means that the algebraic solution to GPCA may be sub-optimal in the presence of noise, we

can still use it as a global initializer for any of the existing iterative algorithms for clustering

mixtures of subspaces. For example, in Section 3.7 we derive the equations of the K-subspace

and EM algorithms for mixtures of subspaces, and show how to use GPCA to initialize them.

Our theory can be applied to a variety of estimation problems in which the data comes

simultaneously from multiple (approximately) linear models. In Section 3.8 we present experiments

on low-dimensional data showing that the polynomial differentiation algorithm gives about half

of the error of the polynomial factorization algorithm and improves the performance of iterative

techniques, such as K-subspace and EM, by about 50% with respect to random initialization. In

Section 3.9 we present applications of GPCA in computer vision problems, such as detection of

vanishing points, 2-D and 3-D motion segmentation, and face clustering under varying illumination.

Remark 7 (Higher order SVD) It is natural to ask if an algebraic solution to the GPCA problem

can be obtained by using some generalization of the SVD to higher-order tensors. It turns out

that although the SVD has a multi-linear counterpart, the so-called higher order singular value

decomposition (HOSVD) [13], such a generalization is not unique. Furthermore, while the SVD of

a matrix A = UΣV T produces a diagonal matrix Σ, the HOSVD of a tensor A produces a tensor

S which is in general not diagonal. Thus, it is not possible to directly apply HOSVD to the mixture

of PCAs problem.
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3.2 Representing mixtures of subspaces as algebraic sets and varieties

We represent each subspace Si by choosing a basis

Bi
.
= [bi1, . . . , bi(K−ki)] ∈ RK×(K−ki) (3.1)

for its orthogonal complement3 S⊥i . With this representation, each subspace is described as

Si = {x ∈ RK : BT
i x = 0} = {x ∈ RK :

K−ki∧

j=1

(bTijx = 0)}. (3.2)

Therefore, an arbitrary point x lies on one of the subspaces if and only if

(x ∈ S1) ∨ · · · ∨ (x ∈ Sn) ≡
n∨

i=1

(x ∈ Si) ≡
n∨

i=1

K−ki∧

j=1

(bTijx = 0) ≡
∧

σ

n∨

i=1

(bTiσ(i)x = 0), (3.3)

where the right hand side (RHS) of (3.3) is obtained by exchanging ands and ors using De Morgan’s

laws, and σ represents a particular choice of one normal vector biσ(i) from each basis Bi. Notice

that each one of the
∏n
i=1(K − ki) equations in the RHS is of the form

n∨

i=1

(bTi σ(i)x = 0) ≡
(
pnσ(x) =

n∏

i=1

(bTi σ(i)x) = 0

)
, (3.4)

which is simply a homogeneous polynomial of degree n in K variables, i.e., an element of the ring

Rn(K) = Rn[x1, . . . , xK ], that is factorable4 as a product of n linear expressions in x, i.e., an

element of RFn (K) ⊂ Rn(K). Therefore, the collection of subspaces Z = ∪ni=1Si is an algebraic

set that can be represented with a set of up to m ≤ ∏n
i=1(K − ki) independent homogeneous

polynomials of the form (3.4).

Example 1 (Representing the x− y plane and the z axis) Consider the case of n = 2 subspaces

of R3 of dimension dim(S1) = 2 and dim(S2) = 1 represented as:

S1 = {x ∈ R3 : x3 = 0} and S2 = {x ∈ R3 : x1 = 0 ∧ x2 = 0}.

A point x = (x1, x2, x3)T belongs to S1 ∪ S2 if an only if

(
((x1 = 0) ∨ (x3 = 0)) ∧ ((x2 = 0) ∨ (x3 = 0))

)
≡
(
(x1x3 = 0) ∧ (x2x3 = 0)

)
.

Therefore, we can represent Z = S1 ∪ S2 as the zero set of the two polynomials

p21(x) = x1x3 and p22(x) = x2x3.

3One could also choose a basis for Si directly, especially if k << K. However, we will show later in the chapter that
GPCA can always be reduced to the case K ′ = max{ki}+ 1, hence the orthogonal representation is more convenient.

4From now on, we will use the word factorable as a shorthand for factorable into a product of linear forms.
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Remark 8 From an algebraic point of view, determining the algebraic set Z is equivalent to deter-

mining the ideal I(Z) of Z, i.e., the set of polynomials that vanish on Z [23]. In this case, the ideal

I(Z) is a homogeneous ideal that can be graded by degree as I = Id ⊕ · · · ⊕ In ⊕ In+1 ⊕ · · · .
Then it is clear that In is spanned by the set of polynomials of degree n, {pnσ(x)}. Furthermore, if

we let I ′ be the sub-ideal of I generated by the polynomials {pnσ(x)}, then I is exactly the radical

ideal5 of the ideal I ′, i.e., I = rad[I ′].

The problem of identifying each subspace Si is then equivalent to one of solving for the

normal bases {Bi}n1=1 from the set of nonlinear equations in (3.4). A standard technique used in

algebra to render a nonlinear problem into a linear one is to find an embedding that lifts the problem

into a higher-dimensional space. To this end, notice that the set of all homogeneous polynomials of

degree n inK variables,Rn(K), can be made into a vector space under the usual addition and scalar

multiplication. Furthermore, Rn(K) is generated by the set of monomials xn = xn1
1 xn2

2 · · ·xnKK ,

with 0 ≤ nj ≤ n, j = 1, . . . ,K, and n1 + n2 + · · · + nK = n. It is readily seen that there are a

total of

Mn(K) =


n+K − 1

K − 1


 =


n+K − 1

n


 (3.5)

different monomials, thus the dimension of Rn(K) as a vector space is Mn(K).6 Therefore, we

can define the following embedding (or lifting) from RK into RMn .

Definition 1 (Veronese map) Given n and K, the Veronese map of degree n, νn : RK → RMn , is

defined as:

νn : [x1, . . . , xK ]T 7→ [. . . ,xn, . . .]T , (3.6)

where xn is a monomial of the form xn1
1 xn2

2 · · ·xnKK with n chosen in the degree-lexicographic

order.

Remark 9 (Polynomial embedding) In the context of Kernel methods, the Veronese map is usually

referred to as the polynomial embedding and the ambient space RMn is called the feature space.

Example 2 (The Veronese map in two variables) If x ∈ R2, the Veronese map of degree n is

given by:

νn(x1, x2) = [xn1 , x
n−1
1 x2, x

n−2
1 x2

2, . . . , x
n
2 ]T . (3.7)

5An ideal I is called a radical ideal if f is in I as long as f s is in I for some integer s.
6From now on, we will use Mn

.
= Mn(K) whenever the dimension K of the ambient space is understood.
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Thanks to the Veronese map, each polynomial in (3.4) becomes the following linear ex-

pression in the vector coefficients cn ∈ RMn

pn(x) = νn(x)Tcn =
∑

cn1,...,nKx
n1
1 · · ·xnKK = 0, (3.8)

where cn1,...,nK ∈ R represents the coefficient of monomial xn. Therefore, if we apply (3.8) to

the given collection of N sample points X = {xj}Nj=1, we obtain the following system of linear

equations on the vector of coefficients cn ∈ RMn

Ln(K) cn
.
=




νn(x1)T

νn(x2)T

...

νn(xN )T



cn = 0 ∈ RN , (3.9)

where Ln(K) ∈ RN×Mn is the matrix of embedded data points.7

Remark 10 (Kernel Matrix) In the context of Kernel PCA, if the polynomial embedding is used,

then C = LTnLn ∈ RMn×Mn is exactly the covariance matrix in feature space and K = LnL
T
n ∈

RN×N is the kernel matrix associated with the N embedded samples.

Remark 11 (GPCA and KPCA) The basic modeling assumption in KPCA is that there exists an

embedding of the data into a higher-dimensional feature space F such that the features live in a

linear subspace of F . However, there is no general methodology for finding the correct embedding

for a particular problem. Equation (3.9) shows analytically that the commonly used polynomial

embedding νn is the right one to use in KPCA when the data lives in a collection of subspaces,

because the embedded data points {νn(xj)}Nj=1 live in a (Mn−m)-dimensional subspace of RMn .

We notice from equation (3.9) that the vector of coefficients cn of each one of the poly-

nomials in the ideal In = span{pn(x)} must lie in the null space of the embedded data matrix Ln.

Therefore, if m = dim(In) ≤∏n
i=1(K − ki) is the number of independent polynomials generating

In and we are given sufficient sample points {xj}Nj=1 in general position8 in Z = ∪ni=1Si, then

Mn −
n∏

i=1

(K − ki) ≤ rank(Ln) = Mn −m ≤Mn − 1. (3.10)

7From now on, we will use Ln
.
= Ln(K) whenever the dimension K of the ambient space is understood.

8In principle, we need to have N ≥ ∑n
i=1 ki sample points in ∪ni=1Si, with at least ki points in general position

within each subspace Si, i.e., the ki points must span Si. However, because we are representing each polynomial pn(x)
linearly via the vector of coefficients cn we need a number of samples such that a basis for In can be uniquely recovered
from the null space of Ln. Therefore, by a sufficient number of sample points in general position we mean a number of
samples such that rank(Ln) = Mn −m, where m = dim(In).
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In principle, given sufficient sample points in general configuration in ∪ni=1Si, one should

be able to recover a set of generators for the polynomials in In by computing the null space of

Ln. However, we can not do so because an arbitrary vector in the null space of Ln corresponds to

an arbitrary polynomial in Rn(K) that may not be factorable as a product of n linear forms. For

example, both x2
1 + x1x2 and x2

2 − x1x2 are factorable, but their linear combination (sum) x2
1 + x2

2

is not. One way of avoiding this problem is to find a basis for the null space of Ln whose elements

correspond to coefficients of factorable polynomials. This is in general a daunting task, since it is

equivalent to solving a set of polynomials of degree n in several variables.9

In the following sections, we propose an alternative solution to the above problem. In

Section 3.3, we consider the case of subspaces of dimension k1 = · · · = kn = k = K − 1, i.e.,

hyperplanes, and show that it can be solved by recovering a single (hence factorable) polynomial.

In Section 3.4, we consider the case of subspaces of equal dimension k1 = · · · = kn = k < K − 1

and show that it can be reduced to the case of hyperplanes after projecting the data onto a (k + 1)-

dimensional subspace of RK . In Section 3.5, we consider the most general case of subspaces of

arbitrary dimensions and propose a solution to the GPCA problem that computes a basis for each

subspace in spite of the fact that the polynomials estimated from the null space ofLn may not be

factorable.

3.3 Estimating a mixture of hyperplanes of dimension K − 1

In this section, we consider a particular case of the GPCA problem in which all the sub-

spaces have equal dimension k1 = · · · = kn = k = K − 1. In Section 3.3.1, we show that the

collection of hyperplanes can be represented with a unique (factorable) polynomial pn(x) whose

degree n, the number of hyperplanes, can be recovered from a rank constraint on the embedded data

matrix Ln and whose coefficients cn can be recovered by solving a linear system. In Section 3.3.2,

we propose an algorithm for estimating the hyperplanes based on polynomial factorization that com-

putes a normal to each hyperplane from the roots of a polynomial of degree n in one variable plus

the solution of a collection of K − 2 linear systems in n variables. In Section 3.3.3, we propose

a second algorithm for estimating the subspaces based on polynomial differentiation and division,

which computes a normal to each hyperplane from the derivatives of pn(x) evaluated at n points

each one lying on each one of the hyperplanes.

9To the best of our knowledge, although it has been shown that a polynomial-time algorithm exists, the algorithm is
not yet known [47].
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3.3.1 Estimating the number of hyperplanes n and the vector of coefficients cn

We start by noticing that every (K − 1)-dimensional subspace Si ⊂ RK can be defined

in terms of a nonzero normal vector bi ∈ RK as follows:10

Si = {x ∈ RK : bTi x = bi1x1 + bi2x2 + . . .+ biKxK = 0}. (3.11)

Therefore, a point x ∈ RK lying on one of the hyperplanes Si must satisfy the formula:

(bT1 x = 0) ∨ (bT2 x = 0) ∨ · · · ∨ (bTnx = 0), (3.12)

which is equivalent to the following homogeneous polynomial of degree n in x with real coeffi-

cients:

pn(x) =
n∏

i=1

(bTi x) = 0. (3.13)

The problem of identifying each subspace Si is then equivalent to one of solving for the

vectors {bi}ni=1 from the nonlinear equation (3.13). A standard technique used in algebra to render

a nonlinear problem into a linear one is to find an embedding that lifts the problem into a higher-

dimensional space. As demonstrated in Section 3.2, we can use the Veronese map of degree, νn, to

convert equation (3.13) into the following linear expression in the vector of coefficients cn ∈ RMn :

pn(x) = νn(x)Tcn =
∑

cn1,n2,...,nKx
n1
1 xn2

2 · · ·xnKK = 0, (3.14)

where cn1,...,nK ∈ R represents the coefficient of monomial xn.

Example 3 (Representing two planes in R3) If n = 2 and K = 3, then we have

p2(x) = (b11x1 + b12x2 + b13x3)(b21x1 + b22x2 + b23x3)

ν2(x) = [x2
1, x1x2, x1x3, x

2
2, x2x3, x

2
3]T

c2 = [b11b21︸ ︷︷ ︸
c2,0,0

, b11b22+b12b21︸ ︷︷ ︸
c1,1,0

, b11b23+b13b21︸ ︷︷ ︸
c1,0,1

, b12b22︸ ︷︷ ︸
c0,2,0

, b12b23+b13b22︸ ︷︷ ︸
c0,1,1

, b13b23︸ ︷︷ ︸
c0,0,2

]T .

Remark 12 Notice that each cn1,...,nK is a symmetric multilinear function of (b1, b2, . . . , bn), that

is cn1,...,nK is linear in each bi and:

cn1,...,nK (b1, b2, . . . , bn) = cn1,...,nK (bσ(1), bσ(2), . . . , bσ(n)) for all σ ∈ Sn, (3.15)

where Sn is the permutation group of n elements.

10Since the subspaces Si are all different from each other, we assume that the normal vectors {bi}ni=1 are pairwise
linearly independent.
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Remark 13 (Symmetric Tensors) Any homogeneous polynomial of degree n in K variables is

also a symmetric n-th order tensor in K variables, i.e., an element of Symn(RK). Furthermore, the

vector of coefficients cn of the polynomial pn(x) can be interpreted as the symmetric tensor product

of the coefficients bi’s of each polynomial of degree 1, that is:

cn ' Sym(b1 ⊗ b2 ⊗ . . .⊗ bn) =
∑

σ∈Sn

bσ(1) ⊗ bσ(2) ⊗ . . .⊗ bσ(n)

where⊗ represents the tensor or Kronecker product and' represents the homeomorphism between

the symmetric tensor Sym(b1 ⊗ b2 ⊗ . . . ⊗ bn) in Symn(RK) and its symmetric part written as a

vector cn in RMn .

As demonstrated in Section 3.2 (see equation (3.9)), after applying (3.14) to the given

collection of N sample points {xj}Nj=1, we obtain the following system of linear equations on the

vector of coefficients cn

Ln cn
.
=




νn(x1)T

νn(x2)T

...

νn(xN )T



cn = 0 ∈ RN . (3.16)

Remark 14 (Brill’s equations on the entries of cn) Given n, one can solve for cn from (3.16) in

a linear fashion. However, notice that the entries of cn cannot be independent from each other,

because the polynomial pn(x) must be factorable as a product of linear forms. The factorability

of pn(x) enforces constraints on the entries of cn, which are polynomials of degree (n + 1) on

Mn variables, the so-called Brill’s equations [19]. In Example 3, where n = 2 and K = 3, Brill’s

equations are c2
1,0,1c0,2,0−c1,1,0c1,0,1c0,1,1 +c2

1,1,0c0,0,2 +c2,0,0(c2
0,1,1−4c0,2,0c0,0,2) = 0. However,

if we are given enough sample pointsN and there is no noise on the data, then the solution of (3.16)

will automatically satisfy Brill’s equations. Understanding how to use Brill’s equations to improve

the estimation of cn in the case of noisy data will be a subject of future research.

We now study under what conditions we can solve for n and cn from equation (3.16). To

this end, notice that if the number of hyperplanes n was known, we could immediately recover cn

as the eigenvector of LTnLn associated with its smallest eigenvalue. However, since the above linear

system (3.16) depends explicitly on the number of hyperplanes n, we cannot estimate cn directly

without knowing n in advance. It turns out that the estimation of the number of hyperplanes n is

very much related to the conditions under which the solution for cn is unique (up to a scale factor),

as stated by the following theorem.
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Theorem 2 (Number of hyperplanes) Assume that a collection of N ≥ Mn − 1 sample points

{xj}Nj=1 on n different (K − 1)-dimensional subspaces of RK is given. Let Li ∈ RN×Mi be the

matrix defined in (3.16), but computed with the Veronese map νi(x) of degree i. If the sample points

are in general position and at least K − 1 points correspond to each hyperplane, then:

rank(Li)





> Mi − 1, i < n,

= Mi − 1, i = n,

< Mi − 1, i > n.

(3.17)

Therefore, the number n of hyperplanes is given by:

n = min{i : rank(Li) = Mi − 1}. (3.18)

Proof. Consider the polynomial pn(x) as a polynomial over the algebraically closed field C and

assume that each hyperplane bTi x = 0 is different from each other. Then the ideal I generated by

pn(x) is a radical ideal with pn(x) as its only generator. According to Hilbert’s Nullstellensatz (see

page 380, [34]), there is a one-to-one correspondence between such an ideal I and the algebraic set

(also called algebraic variety in Algebra)

Z(I)
.
= {x : ∀p ∈ I, p(x) = 0} ⊂ CK

associated with it. Hence its generator pn(x) is uniquely determined by points in this algebraic

set. By definition, pn(x) has the lowest degree among all the elements in the ideal I . Hence no

polynomial with lower degree would vanish on all points in these subspaces. Furthermore, since all

coefficients bi are real, if x +
√
−1y ∈ CK is in Z(I), both x ∈ RK and y ∈ RK are in the set

of (real) subspaces, because bTi (x +
√
−1y) = 0 ⇔ bTi x = 0 ∧ bTi y = 0. Hence all points on

the (real) subspaces determine the polynomial pn(x) uniquely and vice-versa. Therefore, there is

no polynomial of degree i < n that is satisfied by all the data, hence rank(Li) = Mi for i < n.

Conversely, there are multiple polynomials of degree i > n, namely any multiple of pn(x), which

are satisfied by all the data, hence rank(Li) < Mi − 1 for i > n. Thus the case i = n is the only

one in which the linear system (3.16) has a unique solution (up to a scale factor), namely the vector

of coefficients cn of the polynomial pn(x).

Remark 15 In the presence of noise, one cannot directly estimate n from (3.18), because the matrix

Li is always full rank. In practice we declare the rank of Li to be r if σr+1/(σ1 + · · · + σr) < ε,

where σk is the k-th singular value of Li and ε > 0 is a pre-specified threshold. We have found this

simple criterion to work well in our experiments.
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Theorem 2 and the linear system in equation (3.16) allow us to determine the number of

hyperplanes n and the vector of coefficients cn, respectively, from sample points {xj}Ni=1. The rest

of the problem becomes now how to recover the normal vectors {bi}ni=1 from cn. Sections 3.3.2

and 3.3.3 present two algorithms for recovering the normal vectors based on polynomial factoriza-

tion and polynomial differentiation and division, respectively.

3.3.2 Estimating the hyperplanes: the polynomial factorization algorithm (PFA)

In this section, we give a constructive solution to the GPCA problem in the case of hyper-

planes based on polynomial factorization. More specifically, we prove the following theorem:

Theorem 3 (GPCA for mixtures of hyperplanes by polynomial factorization) The GPCA prob-

lem with k1 = · · · = kn = k = K − 1 is algebraically equivalent to the factorization of a homo-

geneous polynomial of degree n in K variables into a product of n polynomials of degree 1. This is

in turn algebraically equivalent to solving for the roots of a polynomial of degree n in one variable

plus solving K − 2 linear systems in n variables. Thus the GPCA problem for k = K − 1 has a

unique solution which can be obtained in closed form when n ≤ 4.

GPCA as a polynomial factorization problem

From equations (3.13) and (3.14) we have that:

pn(x) =
∑

cn1,n2,...,nKx
n1
1 xn2

2 · · ·xnKK =
n∏

i=1




K∑

j=1

bijxj


 .

Therefore, the problem of recovering {bi}ni=1 from cn is equivalent to the following polynomial

factorization problem.

Problem 3 (Factorization of homogeneous polynomials)

Given a factorable homogeneous polynomial of degree n in K variables pn(x) ∈ RFn (K), factor it

into n different polynomials of degree one in K variables {(bTi x) ∈ R1(K)}ni=1.

Remark 16 (Factorization of symmetric tensors) The polynomial factorization problem can also

be interpreted as a tensor factorization problem: Given an n-th order symmetric tensor V in

Symn(RK), find vectors v1, v2, . . . , vn ∈ RK such that

V = Sym(v1 ⊗ v2 ⊗ . . .⊗ vn) =
∑

σ∈Sn

vσ(1) ⊗ vσ(2) ⊗ . . .⊗ vσ(n)
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Notice that

ν : RK×n → Symn(RK); (v1, v2, . . . , vn) 7→ Sym(v1 ⊗ v2 ⊗ . . .⊗ vn)

maps a K × n-dimensional space to an Mn-dimensional space. In general Mn is much larger than

(K ×n−n+ 1).11 Therefore, not all symmetric tensors in the space Symn(RK) can be factored in

the above way.

Notice that an arbitrary element of Rn(K) is not necessarily factorable into n distinct

elements of R1(K), e.g., the polynomial x2
1 + x1x2 + x2

2 is not. However, the existence of a

factorization for pn(x) is guaranteed by its definition as a product of linear functionals. In relation

to the uniqueness of the factorization, it is clear that each bi can be multiplied by an arbitrary scale

to obtain the same cn up to scale. Since we can fix the norm of cn to be 1 when solving (3.16),

we are actually free to choose the scale of n − 1 of the bi’s only. The following proposition is a

consequence of the well-known Gauss Lemma in Algebra (see page 181, [34]) and guarantees the

uniqueness of the factorization of pn(x) up to n− 1 scales:

Proposition 1 (Uniqueness of the factorization) SinceR is a factorial ring, the set of polynomials

in K variables R[x1, . . . , xK ] is also factorial, that is any polynomial p ∈ R[x1, . . . , xK ] has a

unique factorization into irreducible elements. In particular, any element of the set of homogeneous

polynomials Rn(K) ⊂ R[x1, . . . , xK ] has a unique factorization.

Solving the polynomial factorization problem

Knowing the existence and uniqueness of a solution to the polynomial factorization prob-

lem (Problem 3), we are now interested in finding an algorithm that recovers the bi’s from cn. For

ease of exposition, we will first present an example with the case n = 2 andK = 3, because it gives

most of the intuition about our general algorithm for arbitrary n and K.

Example 4 (Estimating two planes in R3) Consider the case n = 2 and K = 3 illustrated in

Example 3. Then

p2(x) = (bT1 x)(bT2 x) = (b11x1 + b12x2 + b13x3)(b21x1 + b22x2 + b23x3)

= (b11b21︸ ︷︷ ︸
c2,0,0

)x2
1 + (b11b22+b12b21︸ ︷︷ ︸

c1,1,0

)x1x2 + (b11b23+b13b21︸ ︷︷ ︸
c1,0,1

)x1x3 +

(b12b22︸ ︷︷ ︸
c0,2,0

)x2
2 + (b12b23+b13b22︸ ︷︷ ︸

c0,1,1

)x2x3 + (b13b23︸ ︷︷ ︸
c0,0,2

)x2
3.

11We here subtract n− 1 parameters on the right is because we only have to consider unit vectors.
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We notice that the last three terms correspond to a polynomial in x2 and x3 only, which is equal to

the product of the last two terms of the original factors, i.e.,

c0,2,0x
2
2 + c0,1,1x2x3 + c0,0,2x

2
3 = (b12x2 + b13x3)(b22x2 + b23x3).

After dividing by x2
3 and letting t = x2/x3 we obtain

q2(t) = c0,2,0t
2 + c0,1,1t+ c0,0,2 = (b12t+ b13)(b22t+ b23).

Since c2 ∈ R6 is known, so is the second order polynomial q2(t). Thus we can obtain b13
b12

and b23
b22

from the roots t1 and t2 of q2(t). Since b1 and b2 are only computable up to scale, we can actually

divide c2 by c0,2,0 (if nonzero) and set the last two entries of b1 and b2 to

b12 = 1, b13 = −t1, b22 = 1, b23 = −t2.

We are left with the computation of the first entry of b1 and b2. We notice that the coefficients c1,1,0

and c1,0,1 are linear functions of the unknowns b11 and b21. Thus we can obtain b11 and b21 from

 b22 b12

b23 b13




 b11

b21


 =


 c1,1,0

c1,0,1


 (3.19)

provided that b22b13 − b23b12 6= 0, i.e., if t1 6= t2.

We conclude from the Example 4 that, if c0,2,0 = b12b22 6= 0 and b22b13 − b23b12 6= 0,

then the factorization of a homogeneous polynomial of degree n = 2 in K = 3 variables can be

done in the following two steps: (1) solve for the last two entries of {bi}ni=1 from the roots of a

polynomial qn(t) associated with the last n+ 1 = 3 coefficients of pn(x); and (2) solve for the first

K − 2 entries of {bi}ni=1 from K − 2 linear systems in n variables.

We now generalize these two steps to arbitrary n and K.

1. Solving for the last two entries of each bi: Consider the last n+ 1 coefficients of pn(x):

[c0,...,0,n,0 , c0,...,0,n−1,1 , . . . , c0,...,0,0,n]T ∈ Rn+1, (3.20)

which define the following homogeneous polynomial of degree n in the two variables xK−1

and xK :

∑
c0,...,0,nK−1,nKx

nK−1

K−1 x
nK
K =

n∏

i=1

(biK−1xK−1 + biKxK) . (3.21)
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Letting t = xK−1/xK , we have that:

n∏

i=1

(biK−1xK−1 + biKxK) = 0⇔
n∏

i=1

(biK−1t+ biK) = 0.

Hence the n roots of the polynomial

qn(t) = c0,...,0,n,0t
n + c0,...,0,n−1,1t

n−1 + · · ·+ c0,...,0,0,n (3.22)

are exactly ti = −biK/biK−1, for all i = 1, . . . , n. Therefore, after dividing cn by c0,...,0,n,0

(if nonzero), we obtain the last two entries of each bi as:

(biK−1 , biK) = (1 , −ti) i = 1, . . . , n. (3.23)

If biK−1 = 0 for some i, then some of leading coefficients of qn(t) are zero and we cannot

proceed as before, because qn(t) has less than n roots. More specifically, assume that the first

` ≤ n coefficients of qn(t) are zero and divide cn by the (` + 1)-st coefficient. In this case,

we can choose (biK−1, biK) = (0, 1), for i = 1, . . . , `, and obtain {(biK−1, biK)}ni=n−`+1

from the n− ` roots of qn(t) using equation (3.23). Finally, if all the coefficients of qn(t) are

equal to zero, we set (biK−1, biK) = (0, 0), for all i = 1, . . . , n.

2. Solving for the first K − 2 entries of each bi: We have demonstrated how to obtain the last

two entries of each bi from the roots of a polynomial of degree n in one variable. We are

now left with the computation of the first K − 2 entries of each bi. We assume that we have

computed bij , i = 1, . . . , n, j = J + 1, . . .K for some J , starting with the case J = K − 2,

and show how to linearly solve for biJ , i = 1, . . . , n. As in Example 4, the key is to consider

the coefficients of pn(x) associated to monomials of the form xJ x
nJ+1

J+1 · · ·x
nK
K , which are

linear in xJ . These coefficients are of the form c0,...,0,1,nJ+1,...,nK and are linear in biJ . To see

this, we notice that the polynomial
∑
c0,...,0,1,nJ+1,...,nKx

nJ+1

J+1 · · ·x
nK
K is equal to the partial

of pn(x) with respect to xJ evaluated at x1 = x2 = · · · = xJ = 0. Since

∂pn(x)

∂xJ
=

∂

∂xJ

(
n∏

i=1

(bTi x)

)
=

n∑

i=1

biJ

(
i−1∏

`=1

(bTi x)
n∏

`=i+1

(bTi x)

)
, (3.24)

after evaluating at x1 = x2 = · · · = xJ = 0 we obtain

∑
c0,...,0,1,nJ+1,...,nKx

nJ+1

J+1 · · ·x
nK
K =

n∑

i=1

biJg
J
i (x), (3.25)
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where

gJi (x) =
i−1∏

`=1




K∑

j=J+1

b`jxj




n∏

`=i+1




K∑

j=J+1

b`jxj


 (3.26)

is a homogeneous polynomial of degree n− 1 in the last K − J variables in x. Let VJi be the

vector of coefficients of the polynomial gJi (x). From equation (3.25) we get

[
VJ1 VJ2 · · · VJn

]




b1J

b2J
...

bnJ




=




c0,...,0,1,n−1,0,...,0

c0,...,0,1,n−2,1,...,0

...

c0,...,0,1,0,0,...,n−1




(3.27)

from which we can linearly solve for the unknowns {biJ}ni=1. Notice that the vectors {VJi }ni=1

are known, because they are functions of the known {bij}ni=1, where j = J + 1, . . .K.

Uniqueness of the solution given by the factorization algorithm

According to Proposition 1, the polynomial factorization problem admits a unique so-

lution. However, the factorization algorithm that we have just proposed may not give a unique

solution. For example, the algorithm fails for p2(x) = x2x3 ∈ R2(3). This is because it does not

use all the entries of cn in order to obtain the factorization. In fact, it only uses the entries that are

linear in the unknowns.

We will now analyze the conditions under which the proposed algorithm does provide

a unique solution. From equation (3.27), we notice that this is the case if and only if the vectors

VJ1 , . . . ,VJn are linearly independent. The following proposition gives a more specific necessary

and sufficient condition for the uniqueness in terms of the normal vectors {bi}ni=1:

Proposition 2 (Uniqueness of the solution given by the algorithm) The vectors {VJi }ni=1 are lin-

early independent if and only if for all r 6= s, 1 ≤ r, s ≤ n, the vectors (brJ+1, brJ+2, . . . , brK) and

(bsJ+1, bsJ+2, . . . , bsK) are pairwise linearly independent. Furthermore, the vectors {VK−2
i }ni=1

are linearly independent if and only if the polynomial qn(t) has distinct roots and at most one of its

leading coefficients is zero.

Proof. We do the proof by induction on n. Let hJi (x)
.
=
∑K

j=J+1 bijxj . By definition, the vectors

VJi are linearly independent if

hJ
.
=

n∑

i=1

αih
J
1 · · ·hJi−1h

J
i+1 · · ·hJn = 0 (3.28)
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if and only if αi = 0, αi ∈ R, i = 1, . . . , n. If n = 2, (3.28) reduces to:

α1h
J
2 + α2h

J
1 = 0. (3.29)

Therefore VJ1 is independent from VJ2 if and only if hJ1 is independent from hJ2 , which happens if and

only if (b1J+1, b1J+2, . . . , b1K) is independent from (b2J+1, b2J+2, . . . , b2K). Thus the proposition

is true for n = 2. Now assume the that the proposition is true for n− 1. After dividing (3.28) by hJ1

we obtain:
hJ

hJ1
= α1

hJ2 · · ·hJn
hJ1

+
n∑

i=2

αi h
J
2 · · ·hJi−1h

J
i+1 · · ·hJn︸ ︷︷ ︸

polynomial in Rn−1(K−J)

= 0. (3.30)

If α1 = 0, then the proof reduces to the case n − 1, which is true by the induction hypothesis. If

α1 6= 0, then hJ2 ···hJn
hJ1

must belong toRn−1(K−J), which happens only if hJ1 is proportional to some

hJi , i = 2, . . . , n, i.e., if (b1J+1, b1J+2, . . . , b1K) is proportional to some (biJ+1, biJ+2, . . . , biK).

The fact that the choice of hJ1 as a divisor was arbitrary completes the proof of the first part. As for

the second part, by construction the vectors (brK−1, brK) and (bsK−1, bsK) are independent if and

only if the roots of qn(t) are distinct and qn(t) has at most one leading coefficient equal to zero.

Obtaining a unique solution for the degenerate cases

Proposition 2 states that in order for the K − 2 linear systems in (3.27) to have a unique

solution, we must make sure that the polynomial qn(t) is non-degenerate, i.e., qn(t) has no repeated

roots and at most one of its leading coefficients is zero. One possible approach to avoid non-

uniqueness is to choose a pair of variables (xj , xj′) for which the corresponding polynomial qn(t)

is non-degenerate. The following proposition guarantees that we can do so if n = 2. Unfortunately

the result is not true for n > 2 as shown by Example 5.

Proposition 3 (Choosing a good pair of variables when n = 2)

Given a factorable polynomial p2(x), there exist a pair of variables (xj , xj′) such that the associ-

ated polynomial q2(t) is non-degenerate.

Proof. For the sake of contradiction, assume that for any pair of variables (xj , xj′) the associated

polynomial q2(t) has a repeated root or the first two leading coefficients are zero. Proposition 2

implies that for all j 6= j ′, (b1j , b1j′) is parallel to (b2j , b2j′), hence, all the 2 × 2 minors of the

matrix B = [b1 b2]T ∈ R2×K are equal to zero. This implies that b1 is parallel to b2, violating the

assumption of different subspaces.
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Example 5 (A polynomial with repeated roots) Consider the following polynomial in R3(3):

p3(x) = (x1 + x2 + x3)(x1 + 2x2 + 2x3)(x1 + 2x2 + x3).

The associated polynomials in two variables are 4x3
2 + 10x2

2x3 + 8x2x
2
3 + 2x2

3, x3
1 + 4x2

1x3 +

5x1x
2
3 + 2x2

3 and x3
1 + 5x2

1x2 + 8x1x
2
2 + 4x2

2, and all of them have repeated roots.

We conclude that, even though the uniqueness of the factorization is guaranteed by Propo-

sition 1, there are some cases for n > 2 for which our factorization algorithm (based on solving for

the roots a polynomial of degree n in one variable plus K−2 linear systems in n variables) will not

be able to provide the unique solution. The reason for this is that our algorithm is not using all the

coefficients in cn, but only the ones for which the problem is linear.

One possible algorithm to obtain a unique solution for these degenerate cases is to con-

sider the coefficients of pn(x) which have not been used. Since the equations associated to those

coefficients are polynomials of degree d ≥ 2 in the unknowns {biJ}ni=1, we will not pursue this

direction here. Instead, we will try to find a linear transformation on x, hence on the bij’s, that gives

a new vector of coefficients c′n whose associated polynomial q′n(t) is non-degenerate. It is clear that

we only need to modify the entries of each bi associated to the last two variables. Thus, we consider

the following linear transformation T : RK → RK :

x = Ty =




1 0 · · · 0 t t

0 1 0 t t
...

. . .
...

1 t

0 0 · · · 0 1




y. (3.31)

Under this transformation, the polynomial pn(x) becomes:

p′n(y) = pn(Ty) =
n∏

i=1

bTi (Ty) =
n∏

i=1

(K−1∑

j=1

bijyj +


t

K−2∑

j=1

bij + biK−1




︸ ︷︷ ︸
b′iK−1(t)

yK−1 +


t

K−1∑

j=1

bij + biK




︸ ︷︷ ︸
b′iK(t)

yK

)
.

Therefore, the polynomial associated to yK−1 and yK will have distinct roots for all t ∈ R, except

for the t’s which are roots of the following second order polynomial:

b′rK−1(t)b′sK(t) = b′sK−1(t)b′rK(t) (3.32)

for some r 6= s, 1 ≤ r, s ≤ n. Since there are a total of n(n+ 1)/2 such polynomials, each of them

having at most 2 roots, we can choose t arbitrarily, except for n(n+ 1) values.
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Once t has been chosen, we need to compute the coefficients c′n of the new polynomial

p′n(y). The following proposition establishes the relationship between cn and c′n:

Proposition 4 Let cn and c′n be the coefficients of the polynomials pn(x) ∈ Rn(K) and p′n(y) =

pn(Tx) ∈ Rn(K), respectively, where T : RK → RK is a non-singular linear map. Then T

induces a linear transformation T̃ : RMn → RMn , cn 7→ c′n = T̃cn. Furthermore, the column of

T̃ associated to cn1,n2,...,nK is given by the coefficients of the polynomial:

(`T1 y)n1 (`T2 y)n2 · · · (`TKy)nK , (3.33)

where `Tj is the j-th row of T .

Proof. Let p1
n(x), p2

n(x) ∈ RFn (K) and α, β ∈ R. Then the polynomial αp1
n(x) + βp2

n(x) is

transformed by T into αp1
n(Ly) + βp2

n(Ly). Therefore T̃ is linear. Now in order to find the

column of T̃ associated to cn1,n2,...,nK , we just need to apply the transformation T̃ to the monomial

xn1
1 xn2

2 · · ·xnKK = (eT1 x)n1(eT2 x)n2 · · · (eTKx)nK , where {ej}Kj=1 is the standard basis for RK . We

obtain (eT1 Ty)n1(eT2 Ty)n2 · · · (eTKTy)nK , or equivalently (`T1 y)n1 (`T2 y)n2 · · · (`TKy)nK .

Remark 17 Due to the upper triangular structure of T in (3.31), the matrix T̃ will be lower trian-

gular. Furthermore, since each entry of T is a polynomial of degree at most 1 in t, the entries of T̃

will be polynomials of degree at most n in t.

By construction, the polynomial q′n(t) associated to the last two variables of p′n(y) will

have no repeated roots. Therefore, we can apply the previously described factorization algorithm

to the coefficients c′n of p′n(y) to obtain the set of transformed normal vectors {b′i}ni=1. Since by

definition of p′n(y) we have b
′T
i = bTi T , the original normal vectors are given by bi = T−T b′i. It

turns out that, due to the particular structure of T , we do not actually need to compute T−T . We can

obtain {bi}ni=1 directly from {b′i}ni=1 and t as follows:

bij = b′ij , i = 1, . . . , n, j = 1, . . . ,K − 2

biK−1 = b′iK−1 − t
∑K−2

j=1 bij , i = 1, . . . , n

biK = b′iK − t
∑K−1

j=1 bij , i = 1, . . . , n.

(3.34)

We illustrate the proposed transformation with the following example:

Example 6 Let n = 3 and K = 3. Then T and T̃ are given by:

T =




1 t t

0 1 t

0 0 1


 (3.35)
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and

T̃ =




1 0 0 0 0 0 0 0 0 0

3t 1 0 0 0 0 0 0 0 0

3t t 1 0 0 0 0 0 0 0

3t2 2t 0 1 0 0 0 0 0 0

6t2 2t2 + 2t 2t 2t 1 0 0 0 0 0

3t2 2t2 2t t2 t 1 0 0 0 0

t3 t2 0 t 0 0 1 0 0 0

3t3 t3 + 2t2 t2 2t2 + t t 0 3t 1 0 0

3t3 2t3 + t2 2t2 t3 + 2t2 t2 + t t 3t2 2t 1 0

t3 t3 t2 t3 t2 t t3 t2 t 1




. (3.36)

We summarize the results of this section with the polynomial factorization algorithm

(PFA) for mixtures of hyperplanes, a GPCA problem with k1 = · · · = kn = K − 1.

Algorithm 2 (Polynomial Factorization Algorithm (PFA) for Mixtures of Hyperplanes)

Given sample points {xj}Nj=1 lying on a collection of hyperplanes {Si ⊂ RK}ni=1, find the number

of hyperplanes n and the normal vector to each hyperplane {bi ∈ RK}ni=1 as follows:

1. Apply the Veronese map of order i, for i = 1, 2, . . ., to the vectors {xj}Nj=1 and form the

matrix Li in (3.16). Stop when rank(Li) = Mi − 1 and set the number of hyperplanes n to

be the current i. Then solve for cn from Lncn = 0 and normalize so that ‖cn‖ = 1.

2. (a) Get the coefficients of the univariate polynomial qn(t) from the last n+ 1 entries of cn.

(b) If the first `, 0 ≤ ` ≤ n, coefficients of qn(t) are equal to zero, set (biK−1, biK) = (0, 1)

for i = 1, . . . , `. Then use (3.23) to compute {(biK−1, biK)}ni=n−`+1 from the n − `
roots of qn(t).

(c) If all the coefficients of qn(t) are zero, set (biK−1, biK) = (0, 0), for i = 1, . . . , n.

(d) If (brK−1, brK) is parallel to (bsK−1, bsK) for some r 6= s, apply the transformation

x = Ty in (3.31) and repeat 2(a), 2(b) and 2(c) for the transformed polynomial p′n(y)

to obtain {(b′iK−1, b
′
iK)}ni=1.

3. Given (biK−1, biK), i = 1, . . . , n, solve for {biJ}ni=1 from (3.27) for J = K − 2, . . . , 1. If a

transformation T was used in 2(d), then compute bi from b′i and t using equation (3.34).
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3.3.3 Estimating the hyperplanes: the polynomial differentiation algorithm (PDA)

The main attraction of the polynomial factorization algorithm (PFA) (Algorithm 2) is that

it shows that one can estimate a collection of hyperplanes in a purely algebraic fashion. Furthermore,

the PFA does not requires initialization for the normal vectors or the clustering of the data, and the

solution can be obtained in closed form for n ≤ 4 hyperplanes.

However, the PFA presents some disadvantages when applied to noisy data. For instance,

there are some degenerate cases for which some of the K − 2 linear systems have more than one

solution, namely whenever the polynomial qn(t) has repeated roots. Furthermore, even when the

true roots of qn(t) are different, as long as two of them are close to each other the estimated roots

may become complex if cn is computed from noisy data points. In this case, one cannot proceed

with the rest of the algorithm (solving the K − 2 linear systems), because it assumes that the roots

of qn(t) are real and non-repeated. One may be tempted to choose the real part of such complex

solutions when they occur, however this leads to the degenerate case of repeated roots described

before. Alternatively, since choosing the last two variables to build the polynomial qn(t) is arbitrary,

one could try choosing a different pair of variables such that the corresponding roots are real and

distinct. However, we saw in example 5, that the are polynomials that are factorable, yet every pair

of variables has repeated roots. Furthermore, even if there was a pair of variables such that the

associated univariate polynomial qn(t) had non-repeated roots, it is not clear how to choose such a

pair without considering all possible pairwise combinations, because the bi’s are unknown

In this section, we propose a new algorithm for estimating the normal vectors {bi}ni=1

which is based on polynomial differentiation rather than polynomial factorization. We show that

given cn one can recover {bi}ni=1 by evaluating the derivatives of pn(x) at points on the hyperplanes.

Therefore, the polynomial differentiation algorithm does not the have problems of complex roots

or degenerate configuration present in the PFA. More specifically, the polynomial differentiation

algorithm (PDA) consists of the following two steps:

1. Compute the number of hyperplanes n and the vector of coefficients cn from the linear system

Lncn = 0, as described in Section 3.3.1.

2. Compute the normal vectors {bi}ni=1 as the derivative of pn(x) evaluated at the n points

{yi ∈ Si}ni=1, with each point lying on only one of the hyperplanes.

Therefore, the problem of clustering hyperplanes will be reduced to first finding one point

per hyperplane, and then evaluating the derivative of pn(x), as we describe below.
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Obtaining normal vectors by differentiation

Imagine, for the time being, that we were given a set of n points {yi}ni=1, each one lying

on only one of the n hyperplanes, that is yi ∈ Si for i = 1, . . . , n. This corresponds to a particular

supervised learning setting in which we are given only one example per cluster. Now let us consider

the derivative of pn(x) evaluated at each yi. We have:

Dpn(x) =
∂pn(x)

∂x
=

∂

∂x

n∏

i=1

(bTi x) =
n∑

i=1

(bi)
∏

` 6=i
(bT` x). (3.37)

Because
∏
6̀=i(b

T
` yj) = 0 for j 6= i, one can obtain each one of the normal vectors as

bi =
Dpn(yi)

‖Dpn(yi)‖
i = 1, . . . , n. (3.38)

Therefore, in the supervised learning setting in which we know one point in each one of

the hyperplanes, the clustering problem can be solved analytically by simply evaluating the partials

of pn(x) at each one the points with known labels.

Let us now consider the unsupervised learning scenario in which we do not know the

membership of any of the data points. We first present an algebraic algorithm for finding one point

in each one of the hyperplanes, based on intersecting a random line with each one of the hyperplanes.

We then present a simple algorithm that finds one point in each hyperplane from the points in the

dataset that minimize a certain distance function.

Obtaining one point per hyperplane: an algebraic solution

Consider a random line L .
= {tv + x0, t ∈ R} with direction v and base point x0.

We can always obtain one point in each hyperplane by intersecting L with the union of all the

hyperplanes, except when the chosen line is parallel to one of the hyperplanes, which corresponds

to a zero-measure set of lines. Since at the intersection points we must have pn(tv + x0) = 0, the

n points {yi}ni=1 can be obtained as

yi = tiv + x0 i = 1, . . . , n, (3.39)

where {ti}ni=1 are the roots of the univariate polynomial of degree n

qn(t) = pn(tv + x0) =
n∏

i=1

(tbTi v + bTi x0). (3.40)
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The problem is now how to choose v and x0. In the absence of noise, one can choose a

line at random, because the set of lines that intersect a collection of n hyperplanes into n distinct

points is an open set. However, there is a zero measure set of lines for which the roots of qn(t) are

not real and distinct. For example, if x0 = 0 or if x0 is parallel to v, then the number of roots is

either one or infinity. These two cases can be obviously avoided. Another degenerate configuration

happens when the direction v is parallel to one of the hyperplanes. In this case the polynomial qn(t)

has less than n roots, because at least one of them is at infinity. Since v is parallel to one of the

hyperplanes if and only if bTi v = 0 for some i = 1, . . . , n, this degenerate case can be avoided by

choosing v such that pn(v) 6= 0. Therefore, in the absence of noise, we randomly choose x0 and

v on the unit sphere and if the above conditions are met, we proceed with the computation of ti, yi

and bi, else we randomly choose a new line. Of course, in the presence of noise, different choices of

L would give rise to different normal vectors. In order to make the process more robust, we choose

multiple lines {L`}m`=1 and compute the set of normal vectors {bi`} corresponding to each line. For

each set of normal vectors we reconstruct their corresponding collection of hyperplanes {Si`}, and

then project each data point in X onto the closest hyperplane. We then choose the set of subspaces

that gives the smallest reconstruction error. In our experiments, choosing m = 3 random lines was

enough to obtain a small reconstruction error.

Remark 18 (Connection with PFA) Notice that the first step of the PFA (solving for the roots of

a univariate polynomial) is a special case of the above algorithm in which the line L is chosen as

x0 = [0, . . . , 0, 0, 1]T and v = [0, . . . , 0, 1, 0]T . Therefore, we can summarize together the PFA

discussed in the preceding section and the PDA described in this section in the following algorithm.

Algorithm 3 (PFA and Algebraic PDA for Mixtures of Hyperplanes)

solve Lncn = 0;

set pn(x) = cTnνn(x);

compute the n roots t1, . . . , tn of the univariate polynomial qn(t) = pn(tv + x0) with:

• PFA: x0 =[0, . . . , 0, 0, 1]T and v=[0, . . . , 0, 1, 0]T ;

• PDA: x0 and v chosen randomly;

obtain the hyperplane normal vectors bi:

• PFA: solve K − 2 linear systems of equations to find the normal vectors bi;

• PDA: differentiate pn(x) to obtain bi = Dpn(yi)
‖Dpn(yi)‖ at yi = x0 + vti.
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Obtaining one point per hyperplane: a recursive solution

As we will see in Section 3.5, the technique of intersecting a line with each one of the

hyperplanes does not generalize to subspaces of arbitrary dimensions. We therefore propose an

alternative algorithm for computing one point per hyperplane. The idea is that we can always

choose a point yn lying on one of the hyperplanes by checking that pn(yn) = 0. Since we are given

a set of data points X = {xj}nj=1 lying on the hyperplanes, in principle we can choose yn to be

any of the data points. However, in the presence of noise and outliers a random choice of yn may be

far from the true hyperplanes. Another possibility is to choose yn as the point inX that minimizes

|pn(x)|. However, the above choice has the following problems in the presence of noise:

1. The value |pn(x)| is merely an algebraic error, i.e., it does not really represent the geomet-

ric distance from x to the closest subspace. Furthermore, notice that finding the geometric

distance to each subspace is in principle hard, because we do not know the normal vectors

{bi}ni=1.

2. Points x lying close to the intersection of two or more subspaces are more likely to be chosen,

because two or more factors in pn(x) = (bT1 x) · · · (bTnx) are approximately zero, which

yields a smaller value for |pn(x)|. Furthermore, since Dpn(x) = 0 for x in the intersection

of two or more subspaces, one should avoid choosing points close to the intersections, because

they will give very noisy estimates of the normal vectors. In fact, we can see from (3.37) that

for arbitrary x the vectorDpn(x) is a linear combination of the normal vectors {bi}ni=1. Thus

if x is close to two subspaces the derivative will be a linear combination of both normals.

It turns out that one can avoid both of these problems thanks to the following lemma.

Lemma 2 Let x̃ ∈ Si be the projection of a point x ∈ RK onto its closest hyperplane Si. Then the

Euclidean distance from x to Si is given by

‖x− x̃‖ = n
|pn(x)|
‖Dpn(x)‖ +O

(
‖x− x̃‖2

)
. (3.41)

Proof. Replace m = 1 in the proof of Lemma 3.

The importance of Lemma 2 is that it allows us to compute a first order approximation

of the distance from each point in X to its closest hyperplane without having to first compute the

normal vectors. In fact the geometric distance (3.41) depends only on the polynomial pn(x) and

is obtained by normalizing the algebraic error |pn(x)| by the norm of the derivative ‖Dpn(x)‖.
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Therefore, we can use this geometric distance to choose a point in the data set close to one of the

subspaces as:

yn = arg min
x∈X:Dpn(x)6=0

|pn(x)|
‖Dpn(x)‖ , (3.42)

and then compute the normal vector at yn as bn = Dpn(yn)/‖Dpn(yn)‖. Notice that points x

close to the intersection of two or more hyperplanes are immediately avoided, becauseDpn(x) ≈ 0.

In order to find a point yn−1 in one of the other (n−1) hyperplanes, we could just remove

the points on the subspace Sn = {x : bTnx = 0} fromX and compute yn−1 similarly to (3.42), but

minimizing overX \Sn. However, in the presence of noise we would have to choose a threshold in

order to determine which points correspond to Sn, and the algorithm would depend on the choice of

such a threshold. Alternatively, we notice that a point x lying on one of the other (n−1) hyperplanes

should satisfy

pn−1(x)
.
= pn(x)/(bTnx) = (bT1 x) · · · (bTn−1x) = 0. (3.43)

Therefore, similarly to (3.42), we can choose a point on (close to) ∪n−1
i=1 Si as the point in the

data set that minimizes |pn−1(x)|/‖Dpn−1(x)‖. By applying the same reasoning to the remaining

hyperplanes, we obtain the following recursive polynomial differentiation algorithm (PDA-rec) for

finding one point per hyperplane and computing the normal vectors.

Algorithm 4 (Polynomial Differentiation Algorithm (PDA) for Mixtures of Hyperplanes)

solve Lncn = 0;

set pn(x) = cTnνn(x);

for i = n : 1,

yi = arg min
x∈X:Dpi(x)6=0

|pi(x)|
‖Dpi(x)‖ , (3.44)

bi =
Dpi(yi)

‖Dpi(yi)‖
, (3.45)

pi−1(x) =
pi(x)

bTi x
, (3.46)

end;

assign point xj to subspace Si if i = arg min`=1,...,n |bT` xj |.

Remark 19 (Polynomial division) Notice that the last step of the PDA is to divide pi(x) by bTi x to

obtain pi−1(x). Given the vector of coefficients of pi(x), ci∈RMi , and the normal vector bi∈RK ,

solving for the vector of coefficients of pi−1(x), ci−1 ∈ RMi−1 , is simply a linear problem of the

form Di(bi)ci−1 = ci, with Di(bi)∈RMi×Mi−1 .



71

Remark 20 Notice that one can avoid computing pi(x) in each step of the PDA and choose yi−1

by a heuristic distance function (therefore not optimal). Since a point in ∪n`=iSi must satisfy

(bTi x) · · · (bTnx) = 0, we can choose a point yi−1 in ∪i−1
`=1Si by as

yi−1 = arg min
x∈X:Dpn(x)6=0

|pn(x)|
‖Dpn(x)‖ + δ

|(bTi x) · · · (bTnx)|+ δ
, (3.47)

where we add a small positive number δ > 0 to both the numerator and denominator in order to

avoid the case in which both of them are zero (e.g. with perfect data).

Remark 21 (Merging PDA-alg and PDA-rec) Notice that, in the presence of noise, PDA-rec finds

points that are close to but not necessarily in the hyperplanes. To resolve this problem, we may add

an additional computation from the first step of PDA-alg to each iteration of PDA-rec as follows:

First choose yi and obtain bi from Dpi(yi) according to PDA-rec; then set x0 = yi and v = bi

and solve for the roots of qn(t) = pn(tv + x0). Choose the root t∗ = min(|ti|) and obtain a new

point lying on one of the hyperplanes as yi ← t∗v + x0.

3.4 Estimating a mixture of subspaces of equal dimension k < K

We showed in Section 3.2 that estimating a collection of subspaces of arbitrary dimensions

is equivalent to estimating and factoring a collection of homogeneous polynomials from sample data

points. However, we also showed that in general one can only recover a basis for those factorable

polynomials, and that each element in the basis may not be factorable.

In Section 3.3 we considered the particular case of data lying on hyperplanes, and showed

that in this case there is a single polynomial representing the data, which is automatically factorable.

In this section, we extend the results of Section 3.3 to the case of subspaces of equal

dimension 0 < k1 = · · · = kn = k < K. In Section 3.4.1 we show that if the dimension of the

subspaces k is known, then it is possible to recover a factorable polynomial by first projecting the

data onto a generic (k + 1)-dimensional subspace of RK . Since in practice the dimension of the

subspaces could be unknown, in Section 3.4.2 we derive rank constraints on the data matrix that

allow us to simultaneously estimate the number of subspaces n and their dimension k. Given n and

k, in Section 3.4.3 we present two algorithms for recovering the subspaces. The first one uses a

single projection followed by either PFA or PDA to segment the data, and then obtains a basis for

each one of the original subspaces by applying PCA to the segmented data. The second one uses

multiple projections followed by a generalization of PDA that deals with multiple polynomials.
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3.4.1 Projecting samples onto a (k + 1)-dimensional subspace

In this section, we show that the segmentation of a sample set X drawn from n k-

dimensional subspaces of a space of dimension K > k is preserved after projecting the sample

set X onto a generic subspace Q of dimension k + 1 (≤ K). An example is shown in Figure 3.2,

where two lines L1 and L2 inR3 are projected onto a planeQ not orthogonal to the plane containing

the lines.
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Figure 3.2: Two 1-dimensional subspaces L1, L2 in R3 projected onto a 2-dimensional plane Q.
Clearly, the membership of each sample (labeled as “+”on the lines) is preserved through the
projection.

More generally, let us denote the projection onto a (k + 1)-dimensional subspace Q as

πQ : RK → Q x 7→ x′, (3.48)

and the projection of Si as S′i
.
= πQ(Si). Also let X ′ .= πQ(X) be the set of projected data points

lying on the collection of projected subspaces Z ′ .= πQ(Z) = ∪ni=1S
′
i.

From a geometric point of view, we notice that if the subspace Q is in general position12,

then dim(S′i) remains to be k – no reduction in the dimension of each subspace13, and there is a one-

to-one correspondence between S ′i and Si – no reduction in the number of subspaces14 n. In other

words, if the subspace Q is in general position, then segmenting the original collection of subspaces

Z = ∪ni=1Si is equivalent to segmenting the collection of projected subspaces Z ′ = ∪ni=1S
′
i.

12As defined by the transversality conditions in footnotes 12 and 13.
13This requires that Q be transversal to each S⊥i , i.e., span{Q,S⊥i } = RK for i = 1, 2, . . . , n. Since n is finite, this

transversality condition can be easily satisfied. Furthermore, the set of positions for Q which violate the transversality
condition is only a zero-measure closed set [25].

14This requires that all S′i be transversal to each other inQ, which is guaranteed if we further requireQ to be transversal
to S⊥i ∩ S⊥j for i, j = 1, . . . , n. All Q’s which violate this condition form a zero-measure set.
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The effect of such a projection can also be explained from an algebraic viewpoint. As we

discussed in Sections 3.2, when 0<k<K−1 determining the ideal I(Z) requires the identification

of all its generators. However, after projecting the data onto the subspaceQ the ideal I(Z ′) becomes

a principal ideal which is generated by a unique homogeneous polynomial p′n(x′), as demonstrated

in Section 3.3. Therefore, when k is known, identifying Z is equivalent to identifying p′n(x′), and

the GPCA problem for subspaces of equal dimension k, where 0<k<K, can always be reduced

to the case of hyperplanes. Furthermore, since p′n(x′)∈I(Z ′) is factorable and x′=πQ(x), then

pn(x) = p′n(x′) ∈ I(Z) is also factorable. Therefore, each projection onto a (k + 1)-dimensional

subspace Q produces a factorable polynomial pn(x) ∈ I(Z). Thus, we can obtain a basis of fac-

torable polynomials of degree n in I(Z) by choosing a large enough collection of projections {πQ}.
The projection of samples onto a (k + 1)-dimensional space also reveals an interesting

duality between the two cases dim(Si) = k and dim(Si) = K−k. If Si is a 1-dimensional subspace

of RK , i.e., a line through the origin, then for every sample point x ∈ Si we can choose K − 1

vectors {y1,y2, . . . ,yK−1} which together with x form an orthogonal basis of RK . Then each

point yj lies in the subspace S⊥i orthogonal to Si, which we simply denote as the co-subspace

of Si. Thus, the problem of segmenting samples from n 1-dimensional subspaces Z = ∪ni=1Si

is equivalent one of segmenting a corresponding set of co-samples from n (K − 1)-dimensional

co-subspaces ∪ni=1S
⊥
i . At first sight, this construction of duality does not apply to subspaces Si of

dimension k > 1, because it is impossible to compute co-samples y ∈ S⊥ associated to a sample

x ∈ Si without knowing Si. However, if we apply one of the GPCA algorithms in Section 3.3 (PFA

or PDA) to the projected data X ′, we obtain a collection of vectors {b′i ∈ Rk+1}ni=1 normal to the

subspaces {S ′i ⊂ Q}ni=1 in Q, respectively. If we now embed each vector b′i back into the space RK

through the inclusion ιQ : Q → RK and call bi = ι(b′i), then we have bi ⊥ S′i and bi ⊥ Q⊥, thus

bi ⊥ Si is a vector orthogonal to the original subspace Si. The overall process can be summarized

by the following diagram:

{x ∈ ∪Si}
πQ−→ {x′ ∈ ∪S′i}

PFA−→
PDA

{b′ ∈ ∪S′i
⊥} ιP−→ {b ∈ ∪Si⊥}. (3.49)

Through this process, a different choice for the subspace Q will give rise to a different set of vectors

{b} in the co-subspaces ∪S⊥i . The more projection subspaces Q we use, the more co-samples we

draw from these co-subspaces. Notice that if we do not segment the data right after we obtain the

normal vectors {b′i}ni=1 from eachQ, we will not know the co-subspace S⊥i with which each normal

vector b is associated. Therefore, we will be facing exactly the dual problem to the original GPCA

problem: Segmentation of samples {x} drawn from the subspaces ∪Si versus segmentation of
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(induced) co-samples {b} drawn from the co-subspaces∪S⊥i . Therefore, the two cases dim(Si) = k

and dim(Si) = K − k are indeed dual to each other, hence computationally equivalent.

3.4.2 Estimating the number of subspaces n and their dimension k

In order to be able to project samples onto a (k+ 1)-dimensional space, we need to know

the dimension of the original subspaces k. If we were estimating a single subspace, as in standard

PCA we could obtain k directly as the rank of the data matrix [29]. However, since we are studying

the case of n subspaces, whenever k is unknown we need to know how to compute it from data.

In this section, we study under what conditions the problem of recovering n and k from data is

well-posed, and derive rank conditions on the data from which one can estimate n and k.

First of all, we notice that a simultaneous recovery of n and k may be ambiguous if we

are not clear about what we are asking for. For example, in the extreme cases, one may interpret

the sample set X as N 1-dimensional subspaces, with each subspace spanned by each one of the

sample points x ∈X , or one may view the wholeX as belonging to one K-dimensional subspace,

i.e., RK itself. Besides these two trivial interpretations, ambiguity may also arise in cases such as

that of Figure 3.3, in which a collection of lines can also be interpreted as a collection of planes.
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Figure 3.3: A set of samples that can be interpreted as coming either from four 1-dimensional
subspaces L1, L2, L3, L4 in R3, or from two 2-dimensional subspaces P1, P2 in R3.

A formal way of resolving such ambiguous interpretations in the absence of noise is by

looking at the algebraic structure of the GPCA problem. We notice that the sample points are

drawn from a collection of subspaces {Si}ni=1, which can always be interpreted as an algebraic

set Z = ∪ni=1Si generated by irreducible subsets Si’s (irreducible algebraic sets are also called

varieties). The decomposition of Z into {Si}ni=1 is always unique [23]. Therefore, the k = dim(Si)

and the number of subspaces n are always uniquely defined in a purely algebraic fashion. In this

sense, for the case shown in Figure 3.3, the first interpretation (4 lines) would be the right one and

the second one (2 planes) would be incorrect since, e.g., L1 ∪L2 is not an irreducible algebraic set.
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Having established that the problem of simultaneously estimating n and k is well-posed,

we are left with deriving an actual formula to compute them. We consider the following three cases.

Case 1: k known

Imagine for a moment that k was known, and that we wanted to compute n only. Since k

is known, we can first project the data onto a (k + 1)-dimensional space and then form the matrix

Li(k+ 1) in (3.9) by applying the Veronese map of degree i = 1, 2, . . . to the projected data. From

our analysis in Sections 3.2 and 3.4.1, there is a unique polynomial of degree n generating I(Z ′)

whose coefficients are in the null space of Ln(k + 1). Thus rank(Ln(k + 1)) = Mn(k + 1) − 1.

Furthermore, there cannot be a polynomial of lower degree that is satisfied by all the data, hence

rank(Li(k + 1)) = Mi(k + 1) for i < n. Similarly, there are infinitely many polynomials of

degree more than n that are satisfied by all the data, namely any multiple of pn(x). Therefore,

rank(Li(k + 1)) < Mi(k + 1) − 1 for i > n. Consequently, if k is known and a generic set

of N ≥ Mn − 1 sample points are given, we can compute n by first projecting the data onto a

(k + 1)-dimensional space and then setting

n = min{i : rank(Li(k + 1)) = Mi(k + 1)− 1}. (3.50)

Case 2: n known

Consider now the opposite case in which n is known, but k is unknown. Let Ln(` + 1)

be defined as in (3.9), but computed from the data projected onto an (`+ 1)-dimensional subspace.

When ` < k, we have a collection of (`+ 1)-dimensional subspaces in a (`+ 1)-dimensional space,

which implies that Ln(`+1) is full rank. If ` = k, then from (3.54) we have that rank(Ln(`+1)) =

Mn(`+1)−1. When ` > k, then equation (3.9) has more than one solution, thus rank(Ln(`+1)) <

Mn(`+ 1)− 1. Therefore, if n is known, we can compute k as

k = min{` : rank(Ln(`+ 1)) = Mn(`+ 1)− 1}. (3.51)

Case 3: n and k unknown

We are left with the case in which both n and k are unknown. Let Li(` + 1) be defined

as in (3.9), but computed by applying the Veronese map of degree i to the data projected onto an

(`+ 1)-dimensional subspace. As before, if ` < k then Li(`+ 1) is full rank for all i. When ` = k,

Li(` + 1) is full rank for i < n, drops rank by one if i = n and drops rank by more than one if
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i > n. Thus one can set k to be the smallest integer ` for which there exist an i such that Li(`+ 1)

drops rank, that is

k = min{` : ∃i ≥ 1 such that rank(Li(`+ 1)) < Mi(`+ 1)}. (3.52)

Given k one can compute n as in equation (3.54).

More formally, we have shown the following.

Theorem 4 (Number of subspaces n and their dimension k) Assume that a collection of N ≥
Mn(k + 1)− 1 sample points {xj}Nj=1 on n different k-dimensional subspaces of RK is given. Let

Li(` + 1) ∈ RN×Mi(k+1) be the matrix defined in (3.9), but computed with the Veronese map νi of

degree i applied to the data projected onto a generic (` + 1)-dimensional subspace of RK . If the

sample points are in general position and at least k points correspond to each subspace, then the

dimension of the subspaces k can be obtained as:

k = min{` : ∃i ≥ 1 such that rank(Li(`+ 1)) < Mi(`+ 1)}, (3.53)

and the number n of subspaces is given by:

n = min{i : rank(Li(k + 1)) = Mi(k + 1)− 1}. (3.54)

Proof. Since the theorem deals with the case of data projected onto RK′ , with K ′ = k + 1, and

the projected data points live on hyperplanes, equation (3.54) is a direct consequence of Theorem 2.

The rest of the theorem follows from the analysis given in this section.

Corollary 1 The vector of coefficients cn ∈ RMn(k+1) of the homogeneous polynomial pn(x) can

be uniquely determined (up to a scale factor) as the kernel of the matrix Ln(k+ 1) ∈ RN×Mn(k+1)

from at least Mn(k + 1)− 1 points on the subspaces, with at least k points on each subspace.

Remark 22 The above statement indirectly claims that in order to linearly estimate the polynomial

pn(x), one needs as many sample points as the dimension of the feature space. It is therefore

unclear whether one could apply the kernel trick to reduce the dimensionality of the problem.

Remark 23 Although we have derived rank conditions on the data from which n and k can be

estimated, in practice this requires to search for up to possibly (K−1) values for k and dN/(K−1)e
values for n. The problem becomes even harder in the presence of noise, since one needs to threshold

the singular values of Li(`+ 1) to determine its rank (see Remark 15). In our experience, the rank

conditions work well when either k or n are known. It remains open to find a good search strategy

for n and k when both of them are unknown.
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3.4.3 Estimating the subspaces: the polynomial differentiation algorithm (PDA)

As we discussed in Section 3.4.1, when k < K−1, there are both geometric and algebraic

reasons that suggest that we should first project the sample set X onto a (k + 1)-dimensional

subspace, say Q, of RK . In many practical applications the dimension of the subspaces k is small

compared to the dimensionality of the data K. Therefore, we can choose Q so that the variance of

the projected data is maximized, which is equivalent to choosing Q as the subspace spanned by the

first k+1 principal components of the data. Given the projected data, we can apply one of the GPCA

algorithms given in Section 3.3 (PFA or PDA) to obtain a normal vector to each one of the projected

subspaces restricted toQ. In the absence of noise, we can use the (projected) normals to segment the

projected data points, which automatically induces a segmentation of the original data into different

groups. Given the segmentation of the data, we can estimate a basis for the original subspaces in

RK by applying PCA to each group. This leads to the following algorithm for estimating subspaces

of equal dimension based on a single projection computed using PCA.

Algorithm 5 (PCA-GPCA Algorithm for Mixtures of Subspaces of Equal Dimension k<K−1)

1. Obtain the number of subspaces n and their dimension k as in Theorem 4.

2. Apply PCA with k+1 principal components to the original data points [x1, . . . ,xN ] ∈ RK×N

to obtain the projected data points [x′1, . . . ,x′N ] ∈ R(k+1)×N .

3. Apply GPCA for hyperplanes (PFA or PDA) to the projected data [x′1, . . . ,x
′
N ] ∈ Rk+1×N

to obtain a collection of normal vectors {b′i ∈ Rk+1}ni=1.

4. Cluster the original data by assigning point xj to subspace Si if

i = arg min
`=1,...,n

|b′T` x′
j |. (3.55)

5. Obtain a basis for Si by applying PCA to the points in Si, for i = 1, . . . , n.

However, it is important to notice that Algorithm 5 can fail to give the correct segmenta-

tion. For example, consider the case of data in R3 lying on n = 3 lines along the x, y and z axis.

If the data is such that the covariance matrix is the identity, then in the first step of the algorithm

we could obtain the x − y plane as the two principal components. Hence the segmentation of the

data would not be preserved, because one of the lines (the z-axis) is projected onto the origin. Even
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though cases like this are rare,15 in the presence of noise one could choose a projection Q that is

close to a degenerate configuration, thus affecting the quality of the segmentation. Furthermore, the

algorithm also has the disadvantage of having to cluster the data before estimating a basis for each

subspace, which further increases the dependency of its performance on the choice of Q.

In the rest of the section, we propose an alternative solution that uses multiple randomly

chosen projections. The algorithm is a generalization of the polynomial differentiation algorithm

(PDA) that uses multiple randomly chosen projections to determine a basis for each subspace.

Let {Q`}m`=1 be a collection of m randomly chosen (k + 1)-dimensional subspaces of

RK . For each `, let p′n`(x
′) be the polynomial representing the collection of projected subspaces

{S′i = πQ`(Si)}ni=1, and let pn`(x) = p′n`(πQ`(x)) be its corresponding polynomial in I(Z). Then,

from the analysis of Section 3.3.3 we have that if yi ∈ Si then

∂pn`(x)

∂x

∣∣∣∣
x=yi

∈ S⊥i for all ` = 1, . . . ,m. (3.56)

In other words, if we are given a collection of n points {yi ∈ Si}, with each point lying on only one

of the subspaces, then we can estimate a collection of vectors normal to each one of the subspaces

from the partial derivatives of the m polynomials {pn`(x)}m`=1. The question is now how to obtain

a collection of n points {yi ∈ Si}ni=1, each one lying on only one of the subspaces. As in the case

of hyperplanes, we can choose points x in the data set X that minimize a certain distance from x

to its closest subspace. The following lemma tells us how to compute such a distance.

Lemma 3 The Euclidean distance from point x to its closest subspace is given by

‖x− x̃‖ = n

√
Pn(x)

(
DPn(x)TDPn(x)

)†
Pn(x)T +O

(
‖x− x̃‖2

)
, (3.57)

where Pn(x) = [pn1(x) · · · pnm(x)] ∈ R1×m, DPn(x) = [Dpn1(x) · · ·Dpnm(x)] ∈ RK×m, and

A† is the Moore-Penrose inverse of A.

Proof. The projection x̃ of a point x onto the zero set of the polynomials {pn`}m`=1 can be obtained

as the solution of the following constrained optimization problem

min ‖x̃− x‖2

subject to pn`(x̃) = 0 ` = 1, . . . ,m.
(3.58)

By using Lagrange multipliers λ ∈ Rm, we can convert this problem into the unconstrained opti-

mization problem

min
x̃,λ
‖x̃− x‖2 + Pn(x̃)λ. (3.59)

15Recall from Section 3.2 that the set of subspaces Q that fail to preserve the segmentation is a zero-measure set.
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From the first order conditions with respect to x̃ we have

2(x̃− x) +DPn(x̃)λ. (3.60)

After multiplying on the left by (DPn(x̃))T and (x̃− x)T , respectively, we obtain

λ = 2
(
DPn(x̃)TDPn(x̃)

)†
DPn(x̃)Tx (3.61)

‖x̃− x‖2 =
1

2
xTDPn(x̃)λ, (3.62)

where we have used the fact that (DPn(x̃))T x̃ = nPn(x̃) = 0. After replacing (3.61) on (3.62) we

obtain that the squared distance from x to its closest subspace can be expressed as

‖x̃− x‖2 = xTDPn(x̃)
(
DPn(x̃)TDPn(x̃)

)†
DPn(x̃)Tx. (3.63)

After expanding in Taylor series about x̃ = x, and noticing thatDPn(x)Tx = nPn(x)T we obtain

‖x̃− x‖2 ≈ n2Pn(x)
(
DPn(x)TDPn(x)

)†
Pn(x)T , (3.64)

which completes the proof.

Thanks to Lemma 3, we can choose a point yn in the datasetX that lies on (close to) one

of the subspaces as:

yn = arg min
x∈X:DPn(x)6=0

Pn(x)
(
DPn(x)TDPn(x)

)†
Pn(x)T . (3.65)

Given yn, we can compute the collection of normal vectors {bn` ∈ S⊥n }m`=1 from the derivatives

of pn`(x) at yn. In order to find a point yn−1 in one of the remaining (n − 1) subspaces, but

not in Sn, we find a new set of polynomials {p(n−1)`(x)} in the ideal of the algebraic set ∪n−1
i=1 Si.

Since the polynomial pn`(x) is factorable and one of its factors is precisely bTn`x, as in the case of

hyperplanes, we can obtain the polynomials {p(n−1)`(x)} by polynomial division as

pn,`−1(x) =
pn`(x)

bTn`x
. (3.66)

By applying the same reasoning to the remaining subspaces, we obtain a set of normal

vectors {bi`} to each subspace Si, i = 1, . . . , n, from each projection Q`, ` = 1, . . . ,m. If m ≥
K−k and the subspaces {Q`}m`=1 are in general position, then we can immediately obtain a basisBi

for S⊥i by applying PCA to the matrix of normal vectors [bn1, . . . , bnm] ∈ RK×m. If not, the matrix

Bi still allows us to segment the data into different groups. Then, we can obtain a basis for Si by

applying PCA to the data points in Si. We therefore have the following polynomial differentiation

algorithm (PDA) for mixtures of subspaces of equal dimension k < K − 1.
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Algorithm 6 (PDA for Mixtures of Subspaces of Equal Dimension k < K − 1)

obtain the number of subspaces n and their dimension k as in Theorem 4.

for ` = 1 : m,

choose a (k + 1)-dimensional subspace Q` ⊂ RK ;

build the data matrix L′n` ∈ RN×Mn(k+1) from the projected data X ′ = πQm(X);

solve for the vector of coefficients c′n` ∈ RMn(k+1) from L′n`c
′
n` = 0;

set pn`(x) = c′Tn`νn(πQ`(x));

end;

for i = n : 1,

do

Pi(x) = [pi1(x), . . . , pim(x)] ∈ R1×m, (3.67)

yi = arg min
x∈X:DPi(x)6=0

Pi(x)
(
DPi(x)TDPi(x)

)†
Pi(x)T , (3.68)

bi` =
Dpi`(x)

‖Dpi`(x)‖ , for ` = 1, . . . ,m, (3.69)

pi−1,` =
pi`(x)

bTi`x
, for ` = 1, . . . ,m, (3.70)

Bi = PCA([bi1, . . . , bim]) (3.71)

end;

end;

assign point xj to subspace Si if i = arg min`=1,...,n ‖BT
` x

j‖.

if m < K − k, then

obtain a basis for Si by applying PCA to the data in Si, for i = 1, . . . , n.

end.
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3.5 Estimating a mixture of subspaces of arbitrary dimensions {ki}ni=1

Our analysis in Sections 3.3 and 3.4 shows that for subspaces of equal dimension k ≤
K − 1 one can always estimate a set of factorable polynomials from the data, either directly as in

the case of hyperplanes where k = K − 1, or after a suitable projection onto a (k+ 1)-dimensional

subspace when k < K − 1.

In this section, we consider the most general case in which each subspace can have a

possibly different dimension, hence we cannot obtain a collection of factorable polynomials repre-

senting the data. Instead, as described in Section 3.2, we can only obtain a basis {pn`(x)} for those

factorable polynomials and each element in the basis may not be factorable. In Section 3.5.1 we

show that it is still possible to obtain a collection of normal vectors to one of the subspaces from

the derivatives of the given polynomials {pn`(x)}, even when they are not factorable. Given the

normals to that subspace {bn` ∈ S⊥n } the rest of the problem is to divide the original polynomials

by the linear forms defined by the normals in order to obtain the polynomials pn−1,`(x) defining

the remaining n − 1 subspaces. However, in this case we cannot perform polynomial division,

because the given polynomials {pn`(x)}may not be factorable. In Section 3.5.2, we derive an algo-

rithm that uses the data and the estimated normals to estimate the polynomials {pn−1,`(x)}, without

performing polynomial division.

3.5.1 Obtaining subspace bases by polynomial differentiation

Recall from Section 3.2 that given a set of points X = {xj}Nj=1 lying on a collection of

subspaces {Si ⊂ RK}ni=1, the algebraic set Z = ∪ni=1Si can be represented with a collection of

polynomials {pn`(x) = cTn`νn(x)} whose coefficients lie in the
(
m = dim(I(Z))

)
-dimensional

null space of the embedded data matrix Ln ∈ RN×Mn , i.e., Lncn` = 0 for ` = 1, . . . ,m. The

GPCA problem is then equivalent to estimating a basis Bi for S⊥i , where i = 1, . . . , n from the set

of not necessarily factorable polynomials {pn`(x)}m`=1.

As we also hinted in Section 3.2, one could first try to find a change of basis for the null

space of Ln that gives a set of factorable polynomials, and then apply some variation of the PDA

to obtain the bases {Bi}ni=1. However, this amounts to solving a set of polynomials of degree n in

several variables. Fortunately, similarly to the case of subspaces of equal dimension, we can exploit

the local linear structure of the algebraic set Z to first obtain a basis for the orthogonal complement

to each subspace by differentiating all the polynomials obtained from null(Ln) (factorable or not).

We can do so thanks to the following (even more general) statement.
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Lemma 4 Let p be any polynomial in the ideal I of an algebraic set Z, i.e., p(x) = 0,∀x ∈ Z.

If Tx0Z is the (Zariski) tangent space to Z at a smooth point x0, then the derivative of p(x) at x0

satisfies:

tT
∂p(x)

∂x

∣∣∣
x0

= 0, ∀t ∈ Tx0Z. (3.72)

Furthermore, (Tx0Z)⊥ = span
{
∂p(x)
∂x

∣∣∣
x0

,∀p ∈ I
}

.

Proof. Equation (3.72) is obvious since p(x) ≡ 0 on Z and the left hand side is merely a directional

derivative along t at the regular point x0. The fact that the derivatives span the entire normal space

is the consequence of the general dimension theory for algebraic varieties [6, 22, 15].

Notice that, for a particular p(x) in one of the homogeneous components, say In′ (n′ ≥
n), of the ideal I , its derivative could be zero at x0.16 Nevertheless, if we evaluate the derivatives

for all the polynomials in the ideal I , they will span the entire orthogonal complement to the tangent

space. In fact, we can do better than this since, as we will show in the case with n subspaces, we

only have to evaluate the derivatives for polynomials in I up to degree n.

The above lemma is particularly useful to the GPCA problem. Since the algebraic set Z

that we are dealing with here is (locally) flat, the tangent space T and its orthogonal complement

T⊥ will be independent of the point at which they are evaluated.17 To see this more clearly, let

{yi ∈ Si}ni=1 be a set of n points each one lying on only one of the subspaces. Also let cn be a

vector in the null space of Ln. By construction, even though cn may not correspond to a factorable

polynomial, it can be written as a linear combination of vectors cn` which correspond to factorable

polynomials, i.e., cn =
∑
α`cn`. Then

∂

∂x
cTnνn(x)

∣∣∣∣
x=yi

=
∂

∂x

∑

`

α`c
T
n`νn(x)

∣∣∣∣∣
x=yi

=
∑

`

α`bi`, (3.73)

where bi` ∈ S⊥i is a normal vector to subspace Si. Therefore, although cTnνn(x) may not be

factorable, its derivative at yi still gives a vector normal to Si. Combining this with the analysis in

the preceding subsection, we have essentially proven the following theorem.

Theorem 5 (Polynomial differentiation) For the GPCA problem, if the given sample set X is

such that dim(null(Ln)) = dim(In) and one generic point yi is given for each subspace Si, then

we have

S⊥i = span
{ ∂

∂x
cTnνn(x)

∣∣∣
x=yi

, ∀cn ∈ null(Ln)
}
. (3.74)

16For instance, for g(x) ∈ In, let f(x) = g2(x) ∈ I2n, and its derivative will be zero everywhere.
17For points in the same subspace Si, T is in fact Si itself; and T⊥ is S⊥i .
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Theorem 5 states a useful fact about the ideal I associated with a union of subspaces. If

we know the number of subspaces n and we are given a set of points {yi ∈ Si}, then in order to

obtain the bases {Bi} we do not have to evaluate the derivatives for all polynomials in I . It suffices

to evaluate the derivatives of polynomials in In only. Therefore, as a consequence of the theorem

we already have the sketch of an algorithm for computing a basis for S⊥i (hence for Si), given {yi}:

• Compute a basis for the null space null(Ln) using, for example, SVD.

• Evaluate the derivative of the (possibly nonfactorable) polynomial cTnνn(x) at yi for each cn

in the basis of null(Ln) to obtain a set of normal vectors in S⊥i .

• Compute a basis for S⊥i by applying PCA to the normal vectors obtained in step 2. PCA

should automatically give the dimension of each subspace ki = dim(Si) as:

ki = K − rank
(
DPn(yi)

)
, i = 1, . . . , n. (3.75)

Example 7 (The x− y plane and the z axis (revisited)) As in Example 1, let us consider the case

of n = 2 subspaces of R3 of dimension dim(S1) = 2 and dim(S2) = 1 represented as:

S1 = {x ∈ R3 : x3 = 0} and S2 = {x ∈ R3 : x1 = 0 ∧ x2 = 0}.

Then we can represent Z = S1 ∪ S2 as the zero set of the two polynomials

p21(x) = x1x3 and p22(x) = x2x3.

The derivatives of these two polynomials are:

Dp21(x) =




x3

0

x1


 and Dp22(x) =




0

x3

x2


 ,

which evaluated at y1 = (1, 1, 0)T ∈ S1 and y2 = (0, 0, 1)T ∈ S2 yield

DP2(y1) =




0 0

0 0

1 1


 and DP2(y2) =




1 0

0 1

0 0


 .

By applying PCA to DP2(y1) and DP2(y2) we obtain a basis for S⊥1 and S⊥2 as

B1 =




0

0

1


 and B2 =




1 0

0 1

0 0


 .
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Remark 24 (Overestimating the number of subspaces) Notice that one may replace n with any

n′ > n in Theorem 5 and the conclusion still holds. Therefore, at least in principle, choosing

a polynomial embedding of a higher degree n′ does not prevent us from correctly computing the

subspaces using the same method, as long as the given samples are sufficient for us to recover a

basis for In′ from the null space of Ln′ . In practice, we should try to use the lowest possible degree

to avoid the high computational cost associated with a redundant embedding.

Remark 25 (Underestimating the number of subspaces) Let S1 and S2 be the x and y axis in

R3, respectively. Then a basis for the set of polynomials of degree two that vanish on S1 ∪ S2 is

{x1x2, x1x3, x2x3, x
2
3}. However, since the two lines lie in the x − y plane, there is a polynomial

of degree one in null(L1), p1(x) = x3, that also vanishes on S1 ∪ S2. Furthermore, the derivative

of p1(x) at points on the lines gives a single normal vector [0, 0, 1]T , which is the normal to the

x − y plane. This example shows that in the case of subspaces of arbitrary dimensions one may

underestimate both the number of subspaces and the dimension of the orthogonal bases. As stated

in Remark 8, this situation happens whenever the ideal I(Z) contains polynomials of degree d < n.

However, one may still recover the correct structure by increasing the degree of the embedding

as follows: increase the degree of embedding incrementally from i = 1 until Li drops rank at

i = d ≤ n; for i ≥ d collect the derivatives (normal vectors) at every point in the data set; stop

when the derivatives no longer increase the dimension for the orthogonal complements.

Remark 26 (Duality) Recall from our analysis in Section 3.4.1 that a GPCA problem with sub-

spaces of equal dimension k1 = · · · = kn = k is dual to a GPCA problem with k1 = · · · = kn =

K − k. It turns out that Theorem 5 allows us to generalize this duality result to subspaces of arbi-

trary dimensions. To this end, we notice that the derivatives of the polynomials Pn evaluated at a

point x on a subspace Si gives a basis Bi = {bi`} for its orthogonal complement S⊥i :

DPn : x ∈ Si 7→ Bi ⊂ S⊥i . (3.76)

Each vector b ∈ Bi can be viewed as a co-sample, i.e., as a sample point drawn from the comple-

ment subspace S⊥i to Si. Therefore, if we evaluate the derivatives of Pn at all the sample points

X = {x}, we obtain a set of co-samples B = {b} for the union of all the complement subspaces

∪S⊥i . Obviously, identifying S⊥i from B is exactly a GPCA problem that is dual to the original

problem. If we apply again the PDA algorithm toB, then the output of the algorithm will be exactly

the bases for the subspaces (S⊥i )⊥ = Si.18

18This comes at no surprise at all once one realizes that the polynomials associated with the dual problem can be
viewed as polynomials in the coordinate ring for the original subspaces. According to [15], Chapter 16, their derivatives
are exactly tangent vectors on these subspaces.
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Remark 27 (Connection with spectral clustering) Although GPCA can be viewed as a special

clustering problem, many of the classical clustering algorithms such as spectral clustering cannot

be directly applied. This is because in order for spectral clustering techniques to work well, we

should be able to define a distance function that is small for pairs of points in the same subspace and

large for points in different subspaces. Such a distance should therefore depend only the geometry

of the subspaces but not on the locations of the points inside the subspaces. The Euclidean distance

between sample points in the sample setX clearly does not have this property.19

However, thanks to the duality equation (3.76), one can compute a basis for S⊥i at every

point xi in Si. A distance function between a point xi in Si and xj in Sj can be defined between

the two bases:

Dij = 〈S⊥i , S⊥j 〉, (3.77)

where we use 〈·, ·〉 to denote the largest subspace angle between the two subspaces. Notice that this

distance does not depend on the particular location of the point in each subspace. Based on this

distance function, one can define an N × N similarity matrix, e.g., Sij = exp(−D2
ij), for the N

samples in X . This allows one to apply the classical spectral clustering algorithms to group the

sample points according to their subspaces. Here the duality plays a crucial role of converting a

multilinear clustering problem to a standard spectral clustering problem.

3.5.2 Obtaining one point per subspace by polynomial division

From the results in the previous section, we notice that one can obtain a basis for each

S⊥i directly from the derivatives of the polynomials representing ∪ni=1Si. However, in order to pro-

ceed we need to have one point per subspace, i.e., we need to know the vectors {yi ∈ Si}ni=1. In

the case of hyperplanes, this could readily be done by intersecting a line L with each one of the

subspaces. However, this solution does not generalize to the case of subspaces of arbitrary dimen-

sions. Consider for example the case of data lying on three one-dimensional subspaces of R3. Then

a randomly chosen line L may not intersect any of the one-dimensional subspaces. Furthermore,

because polynomials in the null space of Ln are no longer factorable, their zero set is no longer a

union of subspaces, hence the points of intersection with L may not lie in any of the subspaces.

In this section, we propose a generalization of the recursive PDA for mixtures of hyper-

planes described in Section 3.3.3. To this end, let {pn`(x)}m`=1 be the set of m polynomials whose

coefficients are in the null space of the data matrix Ln. Also, let x̃ be the projection of a point

19This explains why spectral clustering algorithms typically do not work well when there is intersection among different
groups, which is unfortunately the case with mixtures of hyperplanes.
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x ∈ RK onto its closest subspace. From Lemma 3 we have that the Euclidean distance from point

x to its closest subspace is given by

‖x− x̃‖ = n

√
Pn(x)

(
DPn(x)TDPn(x)

)†
Pn(x)T +O

(
‖x− x̃‖2

)
, (3.78)

where Pn(x) = [pn1(x) · · · pnm(x)] ∈ R1×m, DPn(x) = [Dpn1(x) · · ·Dpnm(x)] ∈ RK×m, and

A† is the Moore-Penrose inverse of A. Therefore, we can choose a point yn lying on (close to) one

of the subspaces as:

yn = arg min
x∈X:DPn(x)6=0

Pn(x)
(
DPn(x)TDPn(x)

)†
Pn(x)T , (3.79)

and then compute the basis Bn ∈ RK×(K−kn) for S⊥n by applying PCA to DPn(yn).

In order to find a point yn−1 in one of the remaining (n − 1) subspaces, but not in Sn,

we need to find a new set of polynomials {p(n−1)`(x)} defining the algebraic set ∪n−1
i=1 Si. In the

case of hyperplanes this was done by polynomial division, which is equivalent to solving for a

vector cn−1 ∈ RMn−1 from a linear system of the form Dn(bn)cn−1 = cn, where bn ∈ S⊥I (see

Remark 19). In the case of subspaces of arbitrary dimensions, we cannot simply divide pn`(x) by

bTnx for bn ∈ S⊥i , because the polynomials {pn`(x)} may not be factorable. Furthermore, they

do not necessarily have bTnx as a common factor. The following theorem resolves this difficulty by

showing how to compute the polynomials associated to the remaining subspaces ∪n−1
i=1 Si.

Theorem 6 (Polynomial division) For the GPCA problem, if the given sample set X is such that

dim(null(Ln)) = dim(In), then the set of homogeneous polynomials of degree (n− 1) associated

with the remainder of algebraic set ∪n−1
i=1 Si are exactly {cTn−1νn−1(x)} for all cn−1 ∈ RMn−1 that

satisfy

LnDn(bn)cn−1 = 0, (3.80)

where bn can be any vector in S⊥n .

Proof. We first show the necessity. That is, any polynomial of degree n − 1, cTn−1νn−1(x), that

vanishes on ∪n−1
i=1 Si satisfies the above equation. Since a point x in the original algebraic set ∪ni=1Si

belongs to either ∪n−1
i=1 Si or Sn, we have cTn−1νn−1(x) = 0 or bTnx = 0 as long as bn ∈ S⊥n . Hence

p(x)
.
= (cTn−1νn−1(x))(bTnx) = 0, and p(x) must be a linear combination of polynomials in Pn.

If we denote p(x) as cTnνn(x), then the vector of coefficients cn must be in the null space of Ln.

From cTnνn(x) = (cTn−1νn−1(x))(bTnx), the relationship between cn and cn−1 can be written as

Dn(bn)cn−1 = cn. Since Lncn = 0, cn−1 needs to satisfy the following linear system of equations

LnDn(bn)cn−1 = 0. (3.81)
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We now show the sufficiency. That is, if cn−1 is a solution to (3.80), then cn=Dn(bn)cn−1 is in

the null space of Ln. From the construction of Dn, we have cTnνn(x) = (cTn−1νn−1(x))(bTnx).

Then for every x ∈ ∪n−1
i=1 Si not in Sn, we have cTn−1νn−1(x) = 0, because bTnx 6= 0. Therefore,

cTn−1νn−1(x) is a homogeneous polynomial of degree (n− 1) that vanishes on ∪n−1
i=1 Si.

Thus a collection of polynomials {p(n−1)`(x)} for ∪n−1
i=1 Si can be obtained from the null

space of LnDn(bn) ∈ RN×Mn−1 . By applying the same reasoning to the remaining subspaces, we

obtain the following recursive polynomial differentiation algorithm (PDA-rec) for finding one point

per subspace and computing the matrices of normal vectors.

Algorithm 7 (Polynomial Differentiation Algorithm (PDA) for Mixtures of Subspaces)

given the number of subspaces n, form the embedded data matrix Ln ∈ RN×Mn .

for i = n : 1,

solve Lic = 0 to obtain a basis {ci`}ri`=1 of null(Li);

set pi`(x) = cTi`νn(x) and Pi(x) = [pi1(x) · · · piri(x)] ∈ R1×ri ;

do
yi = arg min

x∈X:DPi(x)6=0
Pi(x)

(
DPi(x)TDPi(x)

)†
Pi(x)T , (3.82)

Bi = PCA
(
DPi(yi)

)
, (3.83)

Li−1 = LiDi(bi), with bi the first column of Bi, (3.84)

end;

end;

assign point xj to subspace Si if i = arg min`=1,...,n ‖BT
` x

j‖.

In the case in which all the subspaces are hyperplanes, Algorithm 7 reduces exactly to Algorithm 4.

Remark 28 (Avoiding polynomial division) Similarly to the case of hyperplanes (see Remark 6),

one may avoid computing Pi by choosing the points yi with a heuristic function. Since a point in

∪n`=iS` must satisfy ‖BT
i x‖ · · · ‖BT

nx‖ = 0, we can choose a point yi−1 on ∪i−1
`=1S` as:

yi−1 = arg min
x∈X:DPn(x)6=0

√
Pn(x)(DPn(x)TDPn(x))†Pn(x)T + δ

‖BT
i x‖ · · · ‖BT

nx‖+ δ
, (3.85)

where δ > 0 is chosen to avoid cases in which both the numerator and the denominator are zero

(e.g., with perfect data).
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3.6 Optimal GPCA in the presence of noise

In the previous sections, we addressed the GPCA problem in a purely algebraic fashion

and proposed various algorithms for estimating a collection of subspaces using polynomial factor-

ization or polynomial differentiation and division. In essence, all the algorithms we have presented

so far use linear algebraic techniques to solve for the bases Bi = [bi1, . . . , bi(K−ki)] of S⊥i , where

i = 1, . . . , n, from a set of nonlinear equations of the form (see equation (3.4))

pnσ(xj) =
n∏

i=1

(bTiσ(i)x
j) = 0 for j = 1, . . . , N, (3.86)

with σ representing a particular choice of one normal vector biσ(i) from basis Bi.

However, the algebraic algorithms provide a “linear” solution to the GPCA problem at the

cost of neglecting the nonlinear constraints that the entries of each one of the vector of coefficients

cn ∈ RMn must satisfy, the so-called Brill’s equations (see Remark 14). In the presence of noise,

one could set up an optimization problem that searches directly for the bases {Bi}, instead of the

searching first for the polynomials {pnσ}. This can be done by minimizing the violation of the

above algebraic equations (or some variation of them) in a least squares sense. For example, we

could minimize the algebraic error

EA(B1, . . . , Bn) =
N∑

j=1

n∏

i=1

‖BT
i x

j‖2, (3.87)

which should be zero if there was no noise. Minimizing this algebraic error in fact provides a more

robust estimate of the subspace bases, because it uses a minimal representation of the unknowns.

However, the solution to this optimization problem may be biased, because the algebraic error

in (3.87) does not coincide with the negative log-likelihood (up to constant factors) of the data given

the parameters.

In this section, we derive an optimal algorithm for reconstructing the subspaces when the

sample data points are corrupted with i.i.d. zero-mean Gaussian noise. We show that the optimal so-

lution can be obtained by minimizing a function similar to the algebraic error in (3.87), but properly

normalized. Since our derivation is based on segmentation independent constraints, we do not need

to model the membership of each data point with a probability distribution. This represents a great

advantage over EM-like techniques, because we do not need to iterate between the Expectation and

Maximization steps. In fact, our approach eliminates the Expectation step algebraically and solves

the GPCA problem by directly optimizing over the subspace parameters (Maximization step).
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Let X = {xj ∈ RK}Nj=1 be the given set of data points, which are generated by adding

i.i.d. zero-mean Gaussian noise to a set of noise free points {x̃j ∈ RK}Nj=1 lying on a collection

of subspaces {Si ⊂ RK}ni=1 of dimension ki = dim(Si), where 0 < ki < K, for i = 1, . . . , n.

Given the number of subspaces n, the subspace dimensions {ki}ni=1, and the collection of noisy data

points X , we would like to find a basis Bi ∈ RK×(K−ki) for S⊥i by minimizing the error between

the data and the noise free points
N∑

j=1

‖x̃j − xj‖2 (3.88)

subject to the fact that the noise free points {x̃j}Nj=1 must lie on one of the subspaces.

To this end, notice that for each noise free data point x̃j there exists a subspace Si such

that x̃j ∈ Si. In other words, there exists a matrix Bi such that BT
i x̃

j = 0. Therefore, a point xj

belongs to one of the subspaces if and only if

pn(x̃j) =
n∏

i=1

‖BT
i x̃

j‖ = 0. (3.89)

Therefore, we can estimate the basesB1, B2, . . . , Bn by solving the following constrained

optimization problem

min
∑N

j=1 ‖x̃j − xj‖2

subject to
∏n
i=1 ‖BT

i x̃
j‖ = 0 j = 1, . . . , N

BT
i Bi = I ∈ R(K−ki)×(K−ki) i = 1, . . . , n,

(3.90)

where the last constraint forces the columns of each basis Bi to be orthonormal.

By using Lagrangian multipliers λj for each constraint on x̃j and a matrix of Lagrange

multipliers Λi = ΛTi ∈ R(K−ki)×(K−ki) for each constraint on Bi, the above optimization problem

is equivalent to minimizing

N∑

j=1

‖x̃j − xj‖2 +
N∑

j=1

λj
n∏

i=1

‖BT
i x̃

j‖+
n∑

i=1

trace(Λi(I −BT
i Bi)). (3.91)

After taking partial derivatives with respect to x̃j and setting them to zero we obtain

2(x̃j − xj) + λjDpn(x̃j) = 0. (3.92)

After multiplying on the left by Dpn(x̃j)T and (x̃j − xj)T we obtain

λj = 2
Dpn(x̃j)Txj

‖Dpn(x̃j)‖2 (3.93)

‖x̃j − xj‖2 =
1

2
xjTDpn(x̃j)λj , (3.94)
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where we have used the fact that

x̃jTDpn(x̃j) = x̃jT
n∑

i=1

∏

6̀=i

‖BT
` x̃

j‖
‖BT

i x̃
j‖BiB

T
i x̃

j = n
n∏

i=1

‖BT
i x̃

j‖ = npn(x̃j) = 0. (3.95)

After substituting (3.93) and (3.94) on the objective function (3.88) we obtain

ẼO({x̃j}, {Bi}) =
N∑

j=1

(
xjTDpn(x̃j)

)2

‖Dpn(x̃j)‖2 . (3.96)

We can obtain an objective function on the bases only by considering first order statistics

of pn(xj). Since this is equivalent to setting x̃j = xj in (3.96) and xjTDpn(xj) = npn(xj), we

obtain the simplified objective function

EO(B1, . . . , Bn) =
N∑

j=1

(
npn(xj)

)2

‖Dpn(xj)‖2 =
N∑

j=1

n2
∏n
i=1 ‖BT

i x
j‖2

∥∥∑n
i=1

∏
`6=i
‖BT` xj‖
‖BTi xj‖

BiBT
i x

j
∥∥2
, (3.97)

which is essentially the same as the algebraic error (3.87), but properly normalized according to the

chosen noise model.

In summary, we can obtain an estimate of the bases {Bi}ni=1 by minimizing the objective

function EO(B1, . . . , Bn) subject to the constraints BT
i Bi = I , for i = 1, . . . , n. One can use

standard nonlinear optimization techniques to minimize EO starting from the solution given by

Algorithm 7, or any of the other GPCA algorithms depending on the case.

Remark 29 (Optimal error in the case of hyperplanes) In the particular case of data lying on

hyperplanes, we have that Bi = bi ∈ RK for i = 1, . . . , n. Therefore, the objective function

in (3.97) becomes

EO(b1, . . . , bn) =
N∑

j=1

(
npn(xj)

)2

‖Dpn(xj)‖2 =
N∑

j=1

n2
∏n
i=1(bTi x

j)2

∥∥∑n
i=1

∏
`6=i(b

T
` x

j)bi
∥∥2 , (3.98)

as demonstrated in [58].

3.7 Initialization of iterative algorithms in the presence of noise

In this section, we briefly describe two algorithms for clustering subspaces: K-subspace

and Expectation Maximization (EM). Both algorithms start with a random initialization for the

subspace bases, and then iterate between the segmentation of the data and the estimation of the

bases. Therefore, we can use either K-subspace or EM to improve the linear algebraic estimate

given by GPCA (PFA or PDA).
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3.7.1 The K-subspace algorithm

The K-subspace algorithm is an extension of the K-means algorithm described in Sec-

tion 2.5.1 to the case of mixtures of subspaces. K-subspace minimizes a weighted square distance

from point xj to subspace Si which is defined as

n∑

i=1

N∑

j=1

wij‖BT
i x

j‖2 =

n∑

i=1

N∑

j=1

wij trace(BT
i x

jxjTBi) =

n∑

i=1

trace(BT
i ΣiBi) (3.99)

where the weights wij represent the membership of the data point j to subspace i and Σi =
∑N

j=1 wijx
jxjT ∈ RK×K can be interpreted as the covariance matrix of the data points in sub-

space Si. The K-subspace algorithm starts by randomly initializing the bases {Bi}ni=1. Then, the

algorithm minimizes the error function (3.99) using a coordinate descent algorithm that iterates

between the following two steps.

In the first step it minimizes over {wij} with {Bi} held constant, which gives the follow-

ing formula for the weights

wij =





1 i = arg min`=1,...,n ‖BT
` x

j‖2

0 otherwise
. (3.100)

In the second step, K-subspace minimizes (3.99) over the bases {Bi}ni=1 with the weights

{wij} held constant. Since the bases are not uniquely defined, we impose the additional constraint

that the columns of Bi are orthonormal, i.e., BT
i Bi = I . By using a matrix of Lagrange multipliers

Λi = ΛTi ∈ R(K−ki)×(K−ki) we can minimize the Lagrangian
n∑

i=1

trace(BT
i ΣiBi) +

n∑

i=1

trace(Λi(I −BT
i Bi)). (3.101)

After taking partial derivatives with respect to Bi and setting them to zero we obtain

ΣiBi = BiΛi. (3.102)

After multiplying by BT
i on the left and noticing that BT

i Bi = I , we obtain BT
i ΣiBi = Λi. This

implies that Λi � 0, because Σi � 0. Furthermore, after replacing BT
i ΣiBi = Λi on the the

objective function (3.99) we obtain

n∑

i=1

N∑

j=1

wij‖BT
i x

j‖2 =
n∑

i=1

trace(Λi). (3.103)

Therefore, the objective function is minimized by choosing Λi as a diagonal matrix with the eigen-

values of Σi in the diagonal and Bi as the matrix of eigenvectors of Σi. Given the new Bi, one can

recompute the weights wij and then iterate until convergence.
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3.7.2 The Expectation Maximization algorithm

The EM algorithm assumes that the data points {xj}Nj=1 are generated by firstly choos-

ing one of the subspaces {Si}ni=1, say subspace Si, according to a multinomial distribution with

parameters {0 ≤ πi ≤ 1}ni=1,
∑n

i=1 πi = 1, and secondly choosing a point xj = x̃j + Bisij ,

where x̃j is a noise free point lying on Si, and sij is zero-mean Gaussian noise with covariance

σ2
i I ∈ R(K−ki)×(K−ki). Let zij = 1 denote the event that point j corresponds to subspace i. Then

the complete log-likelihood (neglecting constant factors) on both the data xj and the latent variables

zij is given by

log
N∏

j=1

n∏

i=1

(
πi
σi

exp

(
−‖B

T
i x

j‖2
2σ2

i

))zij
=

N∑

j=1

n∑

i=1

zij(log(πi)− log(σi))− zij
‖BT

i x
j‖2

2σ2
i

.

E-step: Computing the expected log-likelihood. Given a current estimate for the parameters

θ = {(Bi, σi, πi)}ni=1, we can compute the expected value of the latent variables

wij
.
= E[zij |xj , θ] = P (zij = 1|xj , θ) =

πi
σi

exp(−‖B
T
i x

j‖2
2σ2
i

)

∑n
i=1

πi
σi

exp(−‖B
T
i x

j‖2
2σ2
i

)
.

Then the expected complete log-likelihood is given by

N∑

j=1

n∑

i=1

wij(log(πi)− log(σi))− wij
‖BT

i x
j‖2

2σ2
i

.

M-step: Maximizing the expected log-likelihood. The Lagrangian for πi is

n∑

i=1

N∑

j=1

wij log(πi) + λ(1−
n∑

i=1

πi) ⇒ πi =

∑N
j=1wij

N
.

The Lagrangian for Bi is
n∑

i=1

−trace

(
BT
i ΣiBi
2σ2

i

)
+ trace(Λi(B

T
i Bi − I)) ⇒ ΣiBi = 2σ2

iBiΛi.

Similarly to the K-subspace algorithm, the objective function for Bi becomes −∑n
i=1 trace(Λi),

with Λi � 0. Thus Bi is a matrix whose columns are the eigenvectors of Σi associated with the

(K − ki) smallest eigenvalues. Finally, after taking derivatives of the expected log-likelihood with

respect to σi we obtain

σ2
i =

∑N
j=1 wij‖BT

i x
j‖2

∑N
j=1 wij

.

If for all i σi = σ, then we have

σ2 =

∑n
i=1

∑N
j=1wij‖BT

i x
j‖2

N
.
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3.8 Experiments on synthetic data

In this section, we evaluate the performance of PFA and PDA (algebraic and recursive) by

comparing them with K-subspace and EM on synthetically generated data. The experimental setup

consists of choosing n = 2, 3, 4 collections of N = 200n points lying on randomly chosen k = 2

dimensional subspaces of R3. Zero-mean Gaussian noise from with s.t.d. from 0% to 5% is added

to the sample points. We run 1000 trials for each noise level. For each trial the error between the

true (unit) normals {bi}ni=1 and the estimates {b̂i}ni=1 is computed as

error =
1

n

n∑

i=1

acos
(
bTi b̂i

)
(degrees). (3.104)

Error versus noise

Figure 3.4 (left) and Figure 3.4 (right) plot the mean error as a function of the noise level

for PFA, PDA, K-subspace, and EM for a number of subspaces of n = 4. Similar results were

obtained for n = 2, 3, though with smaller errors.

Notice that the estimates of PDA-alg with m = 1 line are only slightly better than those

of PFA, while the estimates of PDA-alg with m = 3 and PDA-rec with δ = 0.02 have an error

of about 50% compared to PFA. For PDA-alg we observed that the error decreases as m increases,

though the increase of performance was not significant for m > 3.

For PDA-rec the choice of δ was not important (results were similar for δ ∈ [0.001, 0.1]),

as long as it is a small number. The best performance (among the purely algebraic algorithms) is

obtained by PDA-rec, because it deals automatically with noisy data and outliers by choosing the

points in an optimal fashion.

Notice also that both K-subspace and EM have a nonzero error in the noiseless case, show-

ing that they frequently converge to a local minima when a single randomly chosen initialization

is used. When initialized with PDA-rec, both K-means and EM reduce the error to approximately

35-50% with respect to random initialization.

Error versus number of subspaces

Figure 3.5 plots the estimation error of PDA-rec as a function of the number of subspaces

n, for different levels of noise. As expected, the error increases as a function of n.
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Figure 3.4: Error versus noise for data lying on n = 4 subspaces of R3 of dimension k = 2. Left:
PFA, PDA-alg (m = 1 and m = 3) and PDA-rec (δ = 0.02). Right: PDA-rec, K-subspace and
EM randomly initialized, K-subspace and EM initialized with PDA-rec, and EM initialized with
K-subspace initialized with PDA-rec.
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Figure 3.5: Error versus noise for PDA-rec (δ = 0.02) for data lying on n = 1, . . . , 4 subspaces of
R3 of dimension k = 2.

Computing time

Table 3.1 shows the mean computing time and the mean number of iterations for a MAT-

LAB implementation of each one of the algorithms. Among the algebraic algorithms, the fastest

one is PFA which directly factors pn(x) given cn. The extra cost of PDA-alg and PDA-rec relative

to PFA is on building the polynomial qn(t) and computing Dpn(x) for all x ∈ X , respectively.

Overall, PDA-rec gives half of the error of PFA in about twice as much time. Notice also that

PDA-rec reduces the number of iterations of K-subspace and EM to approximately 1/3 and 1/2,

respectively. The computing times for K-subspace and EM are also reduced even if the extra time

spent on initialization with PDA-rec or PDA-rec + K-subspace is included.
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Table 3.1: Mean computing time and mean number of iterations for each one of the algorithms.

Algorithm Lnc = 0 PFA PDA-alg PDA-alg PDA-rec

Time (sec.) 0.0854 0.1025 0.1765 0.3588 0.1818

# Iterations 1 1 3 1

Algorithm K-sub
PDA-rec

+K-sub
EM

PDA-rec

+EM

PDA-rec+

K-sub+EM

Time (sec.) 0.4637 0.2525 1.0408 0.6636 0.7528

# Iterations 19.7 7.1 30.8 17.1 15.0

3.9 Applications of GPCA in computer vision

This section presents applications of GPCA in computer vision problems, such as vanish-

ing point detection, 2D and 3D motion segmentation, and face clustering with varying illumination.

3.9.1 Detection of vanishing points

Given a collection of parallel lines in 3D, it is well know that their perspective projections

intersect at the so-called vanishing point, which is located either in the image or at infinity. Given n

set of parallel lines, we represent their images in projective space as {`j ∈P2}Nj=1 and the vanishing

points as {vi ∈P2}ni=1. Since for each line j there exists a vanishing point vi such that vTi `j = 0,

the problem of estimating the n vanishing points from the set of N lines without knowing which

subsets of lines intersect in the same point, is equivalent to estimating a collection of n planes in

R3 with normal vectors {vi ∈ P2}ni=1 from sample data points {`j ∈ P2}Nj=1. Figure 3.6 (left)

shows an example from the Corel Database with n = 3 sets of N = 30 manually extracted parallel

lines. For each one of the three set of lines we computed their intersecting point (assuming known

segmentation) and regarded those intersection points as ground truth data. We then applied recursive

PDA to the set of lines assuming unknown segmentation and used the resulting vanishing points to

initialize K-subspace. The vanishing points estimated by PDA and PDA + K-subspace are shown in

Figure 3.6 (center) and compared with the ground truth. The error in the estimation of the vanishing

points with respect to the ground truth are 1.7◦, 11.1◦ and 1.5◦ for PDA and 0.4◦, 2.0◦, and 0.0◦ for

PDA+K-sub. Figure 3.6 (right) shows the segmentation of the lines obtained by PDA. There is only

one misclassified line, the top horizontal line in the image, because it approximately passes through

two of the vanishing points.
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Figure 3.6: Detecting vanishing points using GPCA. Left: Image #364081 from the Corel database
with 3 sets of 10 parallel lines superimposed. Center: Comparing the vanishing points estimated by
PDA and PDA followed by K-subspace with the ground truth. Right: Segmentation of the 30 lines
given by PDA.

3.9.2 Segmentation of 2-D translational motions from image intensities

In this section, we apply GPCA to the problem of segmenting the 2-D motion field of a

video sequence from measurements of the partial derivatives of the image intensities. We assume

that the scene can be modeled as a mixture of purely translational 2-D motion models.20 That is,

we assume that the optical flow at every pixel in the image sequence, u = [u, v, 1] ∈ P2, can take

one out of n possible values {ui}ni=1. Furthermore, we assume that the number of motion models is

unknown. If we assume that the surface of each object is Lambertian, then the optical flow of pixel

x = [x1, x2, 1]T ∈ P2 is related to the partials of the image intensity y = [Ix1 , Ix2 , It]
T ∈ R3 at x

by the well-known brightness constancy constraint

yTu = Ix1u + Ix2v + It = 0. (3.105)

Given the vector of partial derivatives y of an arbitrary pixel x in the scene, there exists an optical

flow ui such that yTui = 0. Thus the following multibody brightness constancy constraint must

be satisfied by all the pixels in the image

gn(y) = (uT1 y)(uT2 y) · · · (uTny) =
n∏

i=1

(uTi y) = ũT νn(y) = 0. (3.106)

The multibody brightness constancy constraint, gn(y), is a homogeneous polynomial of

degree n on y. We denote its vector of coefficients ũ ∈ RMn , where Mn = (n + 1)(n + 2)/2,

as the multibody optical flow associated with the scene. Therefore, the segmentation of purely

translational motion models from image intensities can be interpreted as a GPCA problem with

20We generalize to the affine motion model in Chapter 4.
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k = 2 and K = 3, i.e., the segmentation of planes in R3. The optical flows {ui}ni=1 correspond to

the normals to the planes, and the image partial derivatives {yj}Nj=1 are the data points. Therefore,

we can use any of the GPCA algorithms for hyperplanes (PFA or PDA) to determine the number of

motion models n and the motion models {ui}ni=1 from the image derivatives {yj}Nj=1.

Figure 3.7 shows a frame of the flower garden and the corresponding image data projected

onto the Ix1-It plane to facilitate visualization. We observe from 3.7(b) that the image partial

derivatives lie approximately on three planes passing through the origin. Notice that the image data

is quite noisy and contains many outliers.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
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(a) A frame from the flower garden sequence (b) Image data projected onto the Ix-Iz plane

Figure 3.7: The flower garden sequence and its image derivatives projected onto the Ix-Iz plane.

Figure 3.8 shows segmentation results for frames 1, 11, 21 and 31 of the flower garden se-

quence. This results are obtained by applying PFA (Algorithm 2) to the image data, followed by the

EM algorithm for mixtures of subspaces described in Section 3.7.2. The sequence is segmented into

three groups: the tree, the houses and the grass.21 Notice that even though the purely translational

motion model is fairly simplistic and clearly inappropriate for this sequence, the GPCA algorithm

gives a relatively good segmentation that can be easily improved with some post-processing that in-

corporates spatial constraints. A better segmentation can also be obtained by using a richer motion

model, such as the affine motion model, as we will describe in Chapter 4.

We now apply GPCA to the segmentation of dynamic scenes with translucent motions.

We consider a scene in which a semi-transparent screen is moving horizontally in front of a hand

that is moving vertically. In this case, there is no notion of a connected group of pixels moving
21We did not cluster pixels without texture, such as pixels in the sky, because the image derivatives are approximately

zero for those pixels, i.e., y ≈ 0., and hence they can be assigned to either of the three models.
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(a) Tree (b) Houses (c) Grass

Figure 3.8: Segmenting frames 1, 11, 21 and 31 of the the flower garden sequence using GPCA
applied to the image derivatives.

together. In fact, almost every pixel moves independently from its neighbors, yet there are two

groups of pixels moving together. Notice that any segmentation algorithm based on computing

either optical flow, or an affine model [65], or a motion profile [44], from a local neighborhood

would fail, since there is no local neighborhood containing a single motion model. Figure 3.9

shows the segmentation of the first five frames of the sequence using GPCA followed by EM. The

algorithm is able to segment out a reasonably good outline of the moving hand. Notice that it is not

possible to obtain the whole hand as a single group, because the hand has no texture.

3.9.3 Segmentation of 2-D affine motions from feature points or optical flow

In this section, we consider the problem of segmenting a collection of 2-D affine motions

from measurements of either the optical flow at each pixel, or the position of a set of feature points

in two frames of a video sequence, and show that they are GPCA problems with K = 5 and k = 3.
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Figure 3.9: Segmenting a sequence with a hand moving behind a moving semi-transparent screen
using GPCA applied to the image derivatives.

2-D Motion segmentation from optical flow

Let {uj ∈ P2}Nj=1 be N measurements of the optical flow at the N pixels {xj ∈ P2}Nj=1.

We assume that the optical flow field can be modeled as a collection of n 2-D affine motion models

{Ai ∈ R3×3}ni=1. That is, for each optical flow uj there exists an affine motion Ai such that

uj = Aixj =




a11 a12 a13

a21 a22 a23

0 0 1


xj . (3.107)

In other words, the optical flow u = [u, v, 1]T at pixel x = [x1, x2, 1] ∈ P2 is related to the affine

motion parameters a11, a12, . . . , a23 by

a11x1 + a12x2 + a13 − u = 0 (3.108)

a21x1 + a22x2 + a23 − v = 0. (3.109)
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Equations (3.108) and (3.109) define a three-dimensional subspace of a five-dimensional

space with coordinates [x1, x2, 1, u, v]T ∈ R5. The estimation of those subspaces from data points

[x1, x2, 1, u, v]T lying on those subspaces is simply a GPCA problem with k1 = · · · = kn = k = 3

and K = 5.

According to our discussion in Section 3.4.1, we can reduce this problem to a GPCA

problem with k = 3 and K = 4 by first projecting the data onto a four-dimensional space. The

particular structure of equations (3.108) and (3.109) with normal vectors [a11, a12, a13,−1, 0]T and

[a21, a22, a23, 0,−1]T suggests to project the data onto two four-dimensional subspaces with coor-

dinates [x1, x2, x3, u]T and [x1, x2, x3, v]T . Each one of these two projections allows us to compute

the first and second row of each affine motion model, respectively, by using any of the GPCA algo-

rithms for hyperplanes described in Section 3.3.

However, it could happen that, even though the affine motions {Ai}ni=1 are different from

each other, a particular row could be common to two or more affine motions. Therefore, in general

we will obtain n1 ≤ n first rows and n2 ≤ n second rows from each one of the two projections.

Furthermore, even if n1 = n2 = n, we still do not know which first and second rows correspond to

the same affine motion model.

Fortunately, we can exploit the structure of the problem in order to find the affine motions

{Ai}ni=1 from the collection of first and second rows, {a1i ∈ R3}n1
i=1 and {a2i ∈ R3}n2

i=1, respec-

tively. To this end, let `1 ∈ RN and `2 ∈ RN be vectors of labels giving the segmentation of the

data according to each projection, i.e.,

`1(j) = i if i = arg min
i=1,...,n1

|aT1ixj − uj | j = 1, . . . , N (3.110)

`2(j) = i if i = arg min
i=1,...,n2

|aT2ixj − vj | j = 1, . . . , N. (3.111)

Then the N rows of the matrix of labels [`1 `2] ∈ RN×2 will take on only n different values. Let

the rows of L = [`ij ] ∈ Rn×2 be the n different rows in [`1 `2]. Then the affine motion models can

be computed as

Ai =




aT1`i1

aT2`i2

eT3


 i = 1, . . . , n. (3.112)

We therefore have the following algorithm (Algorithm 8) for segmenting a collection of

2-D affine motion models from optical flow measurements.
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Algorithm 8 (Segmentation of 2-D affine motions from optical flow)

Given measurements of optical flow {uj}Nj=1 at the N pixels {xj}Nj=1, recover the number of affine

motion models n, the affine matrix Ai associated with motion i, and the segmentation of the image

measurements as follows:

1. Affine motions. Estimate the number of affine motions and the affine matrices as follows:

(a) Apply a GPCA algorithm with k = 3 andK = 4 to the data {[xj , uj ]T }Nj=1 to determine

the number of different first rows n1 ≤ n in the affine matrices {Ai}ni=1 and the n1

different first rows {a1i ∈ R3}n1
i=1. Cluster the data into n1 groups and define a vector

of labels `1 ∈ RN such that `1(j) = i if point xj belongs to group i.

(b) Repeat step 1(a) with data {[xj , vj ]T }Nj=1 to obtain n2 ≤ n different second rows {a2i ∈
R3}n2

i=1 and the corresponding vector of labels `2 ∈ RN .

(c) Extract the n different rows from the matrix of labels [`1 `2] ∈ RN×2 into the matrix

L = [`ij ] ∈ Rn×2 and use them to compute the affine motions {Ai}ni=1 as in (3.112).

2. Segmentation of the image measurements. Assign image measurement (xj ,uj) to the

affine motion Ai that minimizes ‖uj −Aixj‖2.

2-D Motion segmentation from feature points

Let {xj1 ∈ P2}Nj=1 and {xj2 ∈ P2}Nj=1 be a collection of N feature points in two frames

of a video sequence. We assume that the motion of those features can be modeled as a collection of

n 2-D affine motion models {Ai ∈ R3×3}ni=1. That is, for each feature pair (xj1,x
j
2) there exist a

2-D affine motion Ai such that

xj2 = Aix
j
1 =




a11 a12 a13

a21 a22 a23

0 0 1


x

j
1. (3.113)

We notice that if we replace x2 = u in the above equations, then the problem of segmenting 2-D

affine motion models from feature points becomes identical to the problem of segmenting 2-D affine

motion models from optical flow. We can therefore use Algorithm 8 to estimate the collection of

affine motion models from the given feature points.
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3.9.4 Segmentation of 3-D translational motions from feature points

In this section, we apply GPCA to the problem of segmenting the 3-D motion of multiple

objects undergoing a purely translational motion. We assume that the scene can be modeled as a

mixture of purely translational motion models,22 {Ti}ni=1, where Ti ∈ R3 represents the translation

of object i relative to the camera between the two consecutive frames.

Given the images x1 and x2 of a point in object i in the first and second frame, respec-

tively, the rays x1, x2 and Ti are coplanar, as illustrated in Figure 3.10. Therefore x1, x2 and Ti

must satisfy the well-known epipolar constraint for linear motions

xT2 (Ti × x1) = 0. (3.114)
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Figure 3.10: Epipolar geometry: Two projections x1,x2 ∈ R3 of a 3-D point p from two vantage
points. The relative Euclidean transformation between the two vantage points is given by Ti ∈ R3.
The intersection of the line (o1, o2) with each image plane is the so-called epipole ei. The epipolar
line ` is the intersection of the plane (p, o1, o2) with the first image plane.

In the case of an uncalibrated camera, the epipolar constraint reads xT2 (ei × x1) = 0,

where ei ∈ R3 is known as the epipole and is linearly related to the translation vector Ti ∈ R3.

Since the epipolar constraint can be conveniently rewritten as

eTi (x2 × x1) = 0, (3.115)

where ei ∈ R3 represents the epipole associated with the ith motion, i = 1, . . . , n, if we define the

vector ` = (x2×x1) ∈ R3 as a data point, then we have that eTi ` = 0. Therefore, given any image

pair (x1,x2) corresponding to one of the n moving objects, the vector ` = x2 × x1, the so-called

22We will generalize to the case of arbitrary rotation and translation in Chapter 5 where we consider the problem of
segmenting a mixture of fundamental matrices.
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epipolar line, satisfies the following homogeneous polynomial of degree n

gn(`) = (eT1 `)(e
T
2 `) · · · (eTn`) =

n∏

i=1

(eTi `) = ẽT νn(`) = 0. (3.116)

We denote the vector of coefficients ẽ ∈ RMn , where Mn = (n + 1)(n + 2)/2, as the multibody

epipole. We conclude that the segmentation of linearly moving objects can be interpreted as a GPCA

problem with k = 2 and K = 3, where the epipoles {ei}ni=1 correspond to the normal to the planes

and the epipolar lines {`j}Nj=1 are the data points.

Therefore, given a set of images {(xj1,xj2)}Nj=1 of a collection of N points in 3D under-

going n distinct linear motions e1, . . . , en ∈ R3, one can use the set of epipolar lines `j = xj2×xj1,

where j = 1, . . . , N , to estimate the number of motions n and the epipoles ei using the GPCA

algorithms for hyperplanes (PFA or PDA).

Figure 3.11 shows the performance of recursive PDA on synthetic image data. We choose

n = 2, 3, 4 collections of N = 100n image pairs undergoing a purely translational motion. Zero-

mean Gaussian noise from 0 to 1 pixel s.t.d. is added to the image data for an image size of

500 × 500. We run 1000 trials for each noise level. For each trial the error between the true (unit)

epipoles {ei}ni=1 and the estimates {êi}ni=1 is computed as

error =
1

n

n∑

i=1

acos
(
eTi êi

)
(degrees). (3.117)

As expected, the performance deteriorates as the level of noise or the number of motion increases.

The maximum error is of 12◦ for n = 4 motions. Notice also that the percentage of correctly

classified image pairs reduces as the noise or the number of motions increases. The percentage of

correct classification is always above 70%.

We now apply PFA and recursive PDA to a sequence with n=2 linearly moving objects (a

truck and a car) andN=92 features (44 for the truck and 48 for the car), as shown in Figure 3.12 (a).

When PFA is applied with an ordering of (3, 1, 2) for the coordinates of the data, then a perfect

segmentation is obtained (Figure 3.12 (c)), and the error in the translation estimates is 1.2◦ for the

truck and 3.3◦ for the car. However, if an ordering of (1, 2, 3) or (2, 3, 1) is chosen, PFA gives a very

poor segmentation of the data, as shown in Figures 3.12 (b) and (d), respectively. This shows that the

performance of PFA with noisy data depends on the choice of the ordering of the variables, because

the polynomial qn(t) is built from the last two coordinates only. On the other hand, if we apply

PDA to the data we obtain a perfect segmentation, regardless of the ordering of the coordinates, as

shown in Figure 3.12 (e). The mean error of PDA is 5.9◦ for the truck and 1.7◦ for the car.



104

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

Noise Standard Deviation [pixels]

M
ea

n 
T

ra
ns

la
tio

n 
E

rr
or

 (
de

gr
ee

s)

n=2
n=3
n=4

0 0.2 0.4 0.6 0.8 1
50

55

60

65

70

75

80

85

90

95

100

Noise Standard Deviation [pixels]

P
er

ce
nt

ag
e 

of
 C

or
re

ct
 C

la
ss

ifi
ca

tio
n

n=2
n=3
n=4

Figure 3.11: Performance of PDA on segmenting 3-D translational motions. Left: Estimation error
as a function of noise for n = 2, 3, 4 motions. Right: Percentage of correctly classified image pairs
as a function of noise for n = 2, 3, 4 motions.
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Figure 3.12: Segmenting 3-D translational motions using GPCA. Segmentation obtained by PFA
and PDA using different changes of coordinates.
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3.9.5 Face clustering under varying illumination

Given a collection of unlabeled images {Ij ∈ RK}Nj=1 of n different faces taken under

varying illumination, we would like to cluster the images corresponding to the same person. For a

Lambertian object, it has been shown that the set of all images taken under all lighting conditions

forms a cone in the image space, which can be well approximated by a low-dimensional subspace.

Therefore, we can cluster the collection of images by estimating a basis for each one of those

subspaces, because the images of different faces will live in different subspaces.

Since in practice the number of pixels K is large compared with the dimension of the

subspaces, we first apply PCA to project the images onto RK′ with K ′ << K. More specifically,

we compute the SVD of the data [I1 I2 · · · IN ]K×N = USV T and consider a matrix X ∈ RK′×N

consisting of the first K ′ columns of V . We obtain a new set of data points in RK′ from each

one of the rows of X . We use homogeneous coordinates {xj ∈ RK′+1}Nj=1 so that each subspace

goes through the origin.23 The new data set also lives in a collection of subspaces, because it is the

projection of the original set of subspaces onto a lower-dimensional linear space.

0 50 100 150 200

Face 10

Face 5

Face 8

Figure 3.13: Clustering a subset of the Yale Face Database B consisting of 64 frontal views under
varying lighting conditions for subjects 5, 8 and 10. Left: Image data projected onto the three
principal components. Right: Clustering of the images using PDA.

We consider a subset of the Yale Face Database B consisting of N = 64n frontal views

of n = 3 faces (subjects 5, 8 and 10) under 64 varying lighting conditions. For computational

efficiency, we downsampled each image to K = 30 × 40 pixels. Then we projected the data onto

the first K ′ = 3 principal components, as shown in Figure 3.13 (left). We applied GPCA to this

23The homogeneous coordinates of a vector x ∈ RK are [xT 1]T ∈ RK′+1.
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data set in homogeneous coordinates (R4). We fitted n = 3 (k = 3)-dimensional subspaces to the

data using the recursive PDA algorithm. Given the subspace normals, we clustered the images by

assigning each image to its closest subspace. Figure 3.13 (right) shows the segmentation results.

3.10 Application of GPCA to identification of linear hybrid systems

Hybrid systems are mathematical models that can be used to describe continuous phe-

nomena that exhibit discontinuous behavior due to sudden changes of dynamics. For instance, the

continuous trajectory of a bouncing ball results from the alternation between free fall and elas-

tic contact. However, hybrid dynamical models can also be used to approximate a phenomenon

that does not itself exhibit discontinuous behavior, by concatenating different models from a sim-

ple class. For instance, a non-linear dynamical system can be approximated by switching among

various linear dynamical models.

A particular but important class of hybrid systems is obtained by assuming that the dy-

namics between discrete events are linear. This class of systems is important not only because

the analysis and design of linear control systems is well understood, but also because many real

processes can be approximated arbitrarily well by models in this class.

In this section, we look at the problem of modeling input/output by a piecewise linear

(hybrid) dynamical models: Given input/output data, we want to simultaneously estimate the num-

ber of underlying linear models, the parameters of each model, the discrete state, and possibly the

switching mechanism that governs the transitions from one linear model to another.

For simplicity, we will concentrate on a class of discrete-time linear hybrid systems,

known as piecewise autoregresive exogenous systems (PWARX). The evolution of a PWARX sys-

tem is determined by a collection of n ARX models {Σi}ni=1 of the form

yt = a1yt−1 + a2yt−2 + · · ·+ anayt−na + c1ut−1 + c2ut−2 + · · ·+ cncut−nc (3.118)

where {ut, t = 1, 2, . . . } is the input, {yt, t = 1, 2, . . . } is the output, and {ai}nai=1 and {ci}nci=1

are the model parameters. The ARX models are connected by switches indexed by a number of

discrete states λt ∈ {1, 2, . . . , n}. The evolution of the discrete state λt can be described in a

variety of ways. In this section, we will restrict ourselves to the class of Jump-linear systems (JLS),

in which λ is a deterministic but unknown input that is piecewise constant and finite-valued.

We consider the following identification problem:
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Problem 4 (Identification of PWARX models)

Given input/output data {ut, yt}Tt=1 generated by a PWARX model with known dimensions na and

nc, estimate the number of discrete states n, the model parameters {ai}nai=1, {ci}nci=1 and the discrete

state {λt}Tt=0.

We now show that Problem 4 is simply a GPCA problem with K = na + nc + 1 and

k = na + nc, i.e., clustering of hyperplanes in RK .

We start by noticing that if we let

xt = (ut−nc , . . . , ut−1, yt−na , . . . yt−1,−yt)T ∈ Rna+nc+1 (3.119)

b = (cnc , · · · , c1, an, . . . a1, 1)T ∈ Rna+nc+1, (3.120)

then we can write equation (3.118) as

bTxt = 0 t ≥ n, (3.121)

which is simply the equation of a hyperplane in RK , where K = na + nc + 1. This implies that the

input/output data generated by a single ARX models lives in a hyperplane whose normal vector b

encodes the parameters of the ARX model. Therefore if we are given a PWARX model generated

with ARX models {Σi}ni=1, then we can represent the PWARX model as a collection of hyperplanes

with normal vectors {bi}ni=1 encoding the model parameters. Furthermore, the input/output data

generated by the PWARX model must live in the union of all the hyperplanes ∪ni=1Si, where Si =

{x : bTi x = 0}. In fact, when λt switches from λt = i to λt+1 = j, the input/output data jumps

from hyperplane Si to hyperplane Sj .

Notice also that if we are given input/output (dynamic) data {ut, yt}Tt=1 generated by a

PWARX model, then we can always generate a new set of (static) data points {xt}Tt=na . Therefore,

according to our analysis in Section 3.3, if T − na + 1 ≥ Mn(K) − 1, and the evolution of the

discrete state is such that the the discrete mode i = 1, . . . , n is visited at least k = na + nc times

in the time interval 1 ≤ t ≤ T , then one can estimate the number of discrete states n and the

model parameters {bi}ni=1 uniquely using either the polynomial factorization or the polynomial

differentiation algorithms. Then, given the model parameters, one can determine the discrete state

as

λt = arg min
i=1,...,n

(bTi xt)
2 for t ≥ n. (3.122)
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We present simulation results on the identification of PWARX systems with n = 3 dis-

crete states. Each ARX model has dimensions na = 2 and nc = 1 and is corrupted with i.i.d.

zero-mean Gaussian noise wt with standard deviation σ as

yt = a1(λt)yt−1 + a2(λt)yt−2 + c1(λt)ut−1 + wt. (3.123)

For each trial, the model parameters (a1, a2) for each discrete state are randomly chosen so that

the poles of each linear system are uniformly distributed on the annulus 0.8 ≤ ‖z‖ ≤ 1 ⊂ C.

The model parameter c1 for each discrete state is chosen according to a zero-mean unit variance

Gaussian distribution. The value of the discrete state was chosen as

λt =





1 1 ≤ t ≤ 30

2 31 ≤ t ≤ 60

3 61 ≤ t ≤ 100

(3.124)

The input sequence {ut} was drawn from a zero-mean unit variance Gaussian distribution. The

noise wt was drawn from a zero-mean Gaussian noise with standard deviation σ ∈ [0, 0.01], which

simulate a measurement error of about 1%. Figure 3.14 shows the mean error on the estimation of

the model parameters24 and the discrete state25, respectively, as a function of σ. Both the model pa-

rameters and the continuous state are correctly estimated with an error that increases approximately

linearly with the amount of noise. Notice that the discrete state is incorrectly estimated approxi-

mately 8% of the times for σ = 0.01. Notice also that there is no error for σ = 0. Figure 3.15

shows the reconstruction of the discrete trajectory for a particular trial with σ = 0.01. Notice that

there are 5 time instances in which the estimates of the discrete state are incorrect.

3.11 Conclusions and open issues

We have proposed a novel approach to the identification of mixtures of subspaces, the

so-called Generalized Principal Component Analysis (GPCA) problem.

In the absence of noise, we casted GPCA in an algebraic geometric framework in which

the collection of subspaces is represented by a set of homogeneous polynomials whose degree n

corresponds to the number of subspaces and whose factors (roots) encode the subspace parameters.

24The error between the estimated model parameters (â1, â2, ĉ1) and the true model parameters (a1, a2, c1) was com-
puted as ‖(â1, â2, ĉ1)− (a1, a2, c1)‖, averaged over the number of models and trials.

25The error between the estimated discrete state λ̂t and the true discrete state λt was computed as the number of times
in which λ̂t 6= λt, averaged over the number of trials.
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Figure 3.14: Mean error over 1000 trials for the identification of the model parameters (top) and the
discrete state (bottom) as a function of the standard deviation of the measurement error σ.

10 20 30 40 50 60 70 80 90 100
0.5

1

1.5

2

2.5

3

3.5

Figure 3.15: Evolution of the estimated discrete state λ̂t.
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In the case of n subspaces of equal dimension k, we derived rank constraints on the data from

which one can estimate the number of subspaces n and their dimension k. We then proposed two

algorithms for estimating the subspaces from sample data. The polynomial factorization algorithm

(PFA) is designed for subspaces of co-dimension one, i.e., hyperplanes, and obtains a basis for each

hyperplane from the roots of a polynomial of degree n in one variable and from the solution of

a collection of linear systems in n variables. The polynomial differentiation algorithm (PDA) is

designed for subspaces of arbitrary dimensions and obtains a basis for each subspace by evaluating

the derivatives of the set of polynomials representing the subspaces at a collection of n points in

each one of the subspaces. The points are chosen automatically from points in the dataset that

minimize a certain distance function.

In the presence of noise, we casted GPCA as a constrained nonlinear least squares problem

which minimizes the error between the noisy points and their projections subject to all mixture

constraints. By converting this constrained problem into an unconstrained one, we obtained an

optimal function from which the subspaces can be recovered using standard non-linear optimization

techniques.

We applied GPCA to a variety of estimation problems in which the data comes simul-

taneously from multiple (approximately) linear models. We first presented experiments on low-

dimensional data showing that the polynomial differentiation algorithm gives about half of the error

of the polynomial factorization algorithm. We also showed that the polynomial differentiation al-

gorithm improves the performance of iterative techniques, such as K-subspace and EM, by about

50% with respect to random initialization. We then presented various applications of GPCA on

computer vision problems such as vanishing point detection, 2-D and 3-D motion segmentation,

and face clustering under varying illumination.

Open issues include a detailed analysis of the robustness of all the GPCA algorithms in the

presence of noisy data. At present, the GPCA algorithms work well when the number and dimension

of the subspaces is small, but the performance deteriorates as the number of subspaces increases.

This is because all the algorithms start by estimating a collection of polynomials in a linear fashion,

thus neglecting the nonlinear constraints among the coefficients of those polynomials, the so-called

Brill’s equations. Another open issue has to do with the estimation of the number of subspaces n

and their dimensions {ki}ni=1. In the case of hyperplanes and/or subspaces of equal dimension k, we

derived formulas for estimating n and k in the absence of noise. However, the formulas are based

on rank constraints that are hard to verify in the presence of noise. In order to estimate n and k in a

robust fashion, one could for example combine our rank constraints with model selection techniques,
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similarly to [32]. Furthermore, in the case of subspaces of arbitrary dimensions, the estimation of

the number of subspaces is still an open question. In fact, as mentioned in Remark 25, it is possible

to underestimate the number of subspaces even in the noise free case. Finally, throughout the chapter

we hinted connections of GPCA with Kernel Methods, e.g., the Veronese map gives an embedding

that satisfies the modeling assumptions of KPCA (see Remark 11), and with spectral clustering

techniques, e.g., the polynomial differentiation algorithm allowed us to define a similarity matrix in

Remark 27. Further exploring these connections and others will be the subject of future research.
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Chapter 4

Segmentation of 2-D Affine Motions

from Image Intensities

4.1 Introduction

Motion estimation and segmentation refers to the problem of estimating multiple motion

models from the visual information collected by a moving or static camera. This is a challenging

problem in visual motion analysis, because it requires the simultaneous estimation of an unknown

number of motion models, without knowing which measurements correspond to which model.

The motion estimation and segmentation problem can be divided into two main categories.

2-D motion segmentation refers to the estimation of the 2-D motion field in the image plane, i.e.,

the optical flow, while 3-D motion segmentation refers to the estimation of the 3-D motion (rotation

and translation) of multiple rigidly moving objects relative to the camera. When the scene is static,

i.e., when either the camera or the 3-D world undergo a single 3-D motion, one can model the 2-D

motion of the scene as a mixture of 2-D motion models such as translational, affine or projective.

Even though a single 3-D motion is present, multiple 2-D motion models arise because of perspec-

tive effects, depth discontinuities, occlusions, transparent motions, etc. In this case, the task of 2-D

motion segmentation is to estimate these models from the image data. When the scene is dynamic,

i.e., when both the camera and multiple objects move, one can still model the scene with a mixture

of 2-D motion models. Some of these models are due to independent 3-D motions, e.g., when the

motion of an object relative to the camera can be well approximated by the affine motion model.

Others are due to perspective effects and/or depth discontinuities, e.g., when some of the 3-D mo-
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tions are broken into different 2-D motions. The task of 3-D motion segmentation is to obtain a

collection of 3-D motion models, in spite of perspective effects and/or depth discontinuities.

In this chapter, we will concentrate on the problem of segmenting 2-D affine motions from

image intensities. We covered the case of 2-D translational motions from feature points or optical

flow in Section 2.6.3, the case of 2-D translational motions from image intensities in Section 3.9.2,

the case of 2-D affine motions from feature points or optical flow in Section 3.9.3, and the case

of 3-D translational motions from feature points in Section 3.9.4. The problem of segmenting 3-D

rigid motions will be covered in Chapter 5.

4.1.1 Previous work

Classical approaches to 2-D motion segmentation are based on separating the image flow

into different regions by looking for flow discontinuities [50]. Due to the aperture problem, such

techniques have trouble dealing with noisy flow estimates, especially in regions with low texture.

Black and Anandan [4] deal with this problem by using some regularity constraints to interpolate

the flow field. However, since the location of motion discontinuities and occlusion boundaries is

unknown, these techniques often have the problem of smoothing across motion boundaries.

Alternative approaches model the scene as a mixture of 2-D parametric motion models,

such as translational, affine or projective. Irani et al. [27] propose to estimate such motion mod-

els through successive computation of dominant motions. That is, they use all the image data to

first extract one motion model (the dominant motion) using a least squares technique. Then, they

subdivide the misaligned regions by computing the next dominant motion and so on. Although this

technique can be improved by using robust M-estimators [5] and intensity information [3], it has the

disadvantage of erroneously assigning data to models, especially when there is no such a dominant

motion in the scene. It also fails in the presence of transparent motions.

To deal with this difficulties, Darrell and Pentland [12] proposed a new representation, the

so-called layered representation, based on multiple motion models with different layers of support.

They compute a translational model for each layer using robust M-estimation. Then they update

the regions of support based on the current estimation of the motion models. The number of layers

is obtained by minimizing a minimum description length (MDL)–like function. The layered repre-

sentation has also been formalized as a maximum likelihood estimation problem by modeling the

scene as a mixture of probabilistic motion models [28, 2, 66, 67, 55]. The estimation of the mod-

els and their regions of support is usually done using an iterative process, the so-called Expectation
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Maximization (EM) algorithm, that alternates between the segmentation of the image measurements

(E-step) and the estimation of the motion parameters (M-step). Jepson and Black [28] assume that

the number of models is known and estimate the motion parameters using least squares. Ayer and

Sawhney [2] use MDL to determine the number of models and robust M-estimation to estimate

the motion parameters. Weiss [66] incorporates spatial constraints in the E-step via a mean field

approximation of a Markov random field (MRF). The number of models is automatically estimated

by initializing the algorithm with more models than will be needed and then decreasing the num-

ber of models whenever two models are similar. Weiss [67] and Torr et al. [55] noticed that the

assumption of a parametric motion model (translational, affine or projective) is too restrictive for

scenes which are non planar. [67] proposes a non-parametric mixture model based on a probability

distribution that favors smooth motion fields. [55] proposes a parametric model that includes some

3-D information by associating a disparity with each pixel, similar to the plane+parallax model [26].

The model is initialized with using a Bayesian version of RANSAC.

While EM-like approaches have the advantage of providing robust motion estimates by

combining information over large regions in the image, they suffer from the disadvantage that the

convergence to the optimal solution strongly depends on correct initialization [44, 55]. To deal with

the initialization problem, various techniques have been proposed. [65] divides the image in small

patches and estimates an affine motion model for each patch using the optical flow of the patch. The

parameters of the affine models are then clustered using the K-means algorithm and the regions of

support of each motion model are computed by comparing the optical flow at each pixel with that

generated by the “clustered” affine motion models. The drawback of this algorithm is that it is based

on a local computation of optical flow which is subject to the aperture problem and to the estimation

of a single affine model across motion boundaries. Some of these problems can be partially solved

by incorporating multiple frames and a local process that forces the clusters to be connected [33].

Alternative approaches are based on first clustering the image data by using local features

that incorporate spatial and temporal motion information. Once the segmentation of the pixels has

been obtained, one can estimate a motion model for each cluster using, for example, the so-called

direct methods [26]. Shi and Malik [44] proposed the so-called motion profile as a measure of the

probability distribution of the image velocity at a given pixel. Such a motion profile is used to

build a similarity matrix from which pixels are clustered in two groups using the normalized cuts

(Ncut) algorithm. Each group is then further partitioned using recursive Ncuts. The drawback of this

approach are that it is unclear when to stop subdividing the clusters and that the two-way partitioning

is inappropriate in the presence of multiple motions, especially when no dominant motion is present.
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4.1.2 Contributions

In this chapter, we propose an algebraic geometric approach to the segmentation of affine

motion models from image intensities.1 We show that one can estimate the number of affine motion

models and their parameters analytically, without knowing the segmentation of the data. There-

fore, one can combine information over large regions of the image, without having the problem of

smoothing across motion boundaries or estimating one model from data coming from more than one

model. In our approach all the image data is used at once to simultaneously recover all the motion

models, without ever iterating between data segmentation and motion estimation.

In Section 4.2 we introduce the so-called multibody affine constraint, which is a geometric

relationship between the number of models, the affine model parameters, and the image intensities.

This constraint is satisfied by all the pixels in the image, regardless of the motion model associated

with each pixel, and combines all the motion parameters into a single algebraic structure, the so-

called multibody affine matrix.

In Section 4.3 we derive a rank constraint on the image measurements from which one can

estimate the number of affine motions n. Given n, we show how to linearly solve for the multibody

affine matrix after embedding all the image measurements into a higher-dimensional space.

In Section 4.4 we show how to recover individual affine motions from the multibody

affine matrix. In principle this problem is mathematically equivalent to factoring a bi-homogeneous

polynomial of degree n in three variables into a product of bilinear forms. However, by exploiting

the algebraic structure of the multibody affine matrix, we show that one can reduce the factorization

problem to simple polynomial differentiation plus two GPCA problems in R4 as follows. We first

show that one can compute the optical flow at each pixel in the image from the partial derivatives

of the multibody affine constraint. Given the optical flow field, we show that the estimation of the

affine motion models can be reduced to a collection of two GPCA problems in R4.

In Section 4.5 we show that, in the presence of zero-mean Gaussian noise in the image

measurements, using the algebraic error defined by the multibody affine constraint as an objective

function for motion segmentation is not optimal. Therefore, we cast the motion segmentation prob-

lem as a constrained nonlinear least squares problem which minimizes the negative log-likelihood

subject to all multibody affine constraints. By converting this constrained problem into an uncon-

strained one, we obtain an optimal objective function that depends on the motion parameters only

(the affine motions) and is independent on the segmentation of the image data.

1Part of the results in this chapter were published in [60].
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In Section 4.6 we present experiments on synthetic data that we evaluate the performance

of the proposed motion segmentation algorithm with respect to the number of motions n for different

levels of noise. We also present experimental results on the segmentation of an outdoor sequence.

4.2 Multibody affine geometry

In this section, we derive the basic equations of the affine motion segmentation problem.

We introduce the multibody affine constraint as a geometric relationship between the number of

models, the affine model parameters, and the image intensities generated by them. We also show

that this constraint can be written in bilinear form by combining all the motion parameters into a

single algebraic structure, the so-called multibody affine matrix.

4.2.1 The affine motion segmentation problem

We consider a static or dynamic scene whose 2-D motion field can be modeled as a mix-

ture of an unknown number n of different affine motion models. That is, we assume that the optical

flow u = [u, v, 1]T ∈ P2 at pixel x = [x1, x2, 1]T ∈ P2 can be described by the equations

u(x1, x2) = a11x1 + a12x2 + a13 (4.1)

v(x1, x2) = a21x1 + a22x2 + a23 (4.2)

where a11, . . . , a23 are the so-called affine motion parameters.

We also assume that the surface of each object is Lambertian, so that the optical flow of

pixel x can be related to the partials of the image intensity at pixel x by the well-known brightness

constancy constraint

Ix1u + Ix2v + It = 0. (4.3)

Combining (4.1), (4.2) and (4.3) we obtain the affine constraint

Ix1(a11x1 + a12x2 + a13) + Ix2(a21x1 + a22x2 + a23) + It = 0, (4.4)

which can be compactly written in bilinear form as

yTAx =
[
Ix1 Ix2 It

]



a11 a12 a13

a21 a22 a23

0 0 1







x1

x2

1


 = 0, (4.5)
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where y = [Ix1 , Ix2 , It]
T ∈ R3 is the vector of spatial and temporal image derivatives, A ∈ R3×3

is the affine motion, and x ∈ P2 is the vector of pixel coordinates.2

In the presence of n = 1 motion, the affine constraint yTAx = 0 is bilinear on the image

measurements (x,y) and linear on the affine motionA. Therefore, one can estimateA linearly from

a collection of N ≥ 6 image measurements {(xj ,yj)}Nj=1 using equation (4.5). In the presence of

n different affine motions, {Ai}ni=1, we cannot solve the problem linearly because we do not know

1. The affine motion associated with each image measurement (x,y).

2. The number of affine motion models n.

Therefore, we are faced with the following problem.

Problem 5 (Multibody affine motion segmentation)

Given a set of image measurements {(xj ,yj)}Nj=1 corresponding to an unknown number of affine

motions, estimate the number of motions n, the motion parameters {Ai}ni=1, and the segmentation

of the image measurements, i.e., the motion model associated with each image measurement.

Remark 30 (The translational motion model) When a11 = a21 = a12 = a22 = 0, the affine

motion model reduces to the translational motion model u = [a13, a23, 1]T that we discussed in

Section 3.9.2. In this case the affine constraint yTAx = 0 reduces to the brightness constancy

constraint yTu = 0. Therefore, the motion segmentation problem reduces to the estimation of a

mixture of translational flows {ui}ni=1 from the image data {yj}Nj=1. Since the brightness constancy

constraint is linear (rather than bilinear) on the image measurements, the motion segmentation

problem becomes a direct application of GPCA as discussed in Section 3.9.2.

4.2.2 The multibody affine constraint

Let (x,y) be an image measurement associated with any motion. Then, there exists

a matrix of motion parameters Ai such that the affine constraint yTAix = 0 holds. Therefore,

regardless of the motion associated with the image measurement (x,y), the following constraint

must be satisfied by the number of affine motions n, the motion parameters {Ai}ni=1 and the image

measurement (x,y)

E(x,y)
.
=

n∏

i=1

(yTAix) = 0. (4.6)

2For simplicity, we will representx as an homogeneous vectorx = [x1, x2, x3]T ∈ R3 from now on, unless otherwise
stated.
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We call this constraint the multibody affine constraint, since it is a natural generalization

of the affine constraint valid for n = 1. The main difference is that the multibody affine constraint is

defined for an arbitrary number of motion models, which is typically unknown. Furthermore, even

if n is known, the algebraic structure of the multibody affine constraint is neither bilinear in the

image measurements nor linear in the affine motions, as it is in the case of n = 1 motion. However,

we can still convert it into a bilinear constraint after embedding the data into a higher-dimensional

space, as we discuss in the next subsection.

4.2.3 The multibody affine matrix

The multibody affine constraint converts Problem 5 into one of solving for the number

of affine motions n and the motion parameters {Ai}ni=1 from the nonlinear equation (4.6). This

nonlinear constraint defines a bi-homogeneous polynomial of degree n in (x,y), i.e., a homoge-

neous polynomial of degree n in either x or y. For example, if we let x = [x1, x2, x3]T , then

equation (4.6) viewed as a function of x can be written as a linear combination of the following

monomials {xn1 , xn−1
1 x2, x

n−1
1 x3, . . . , x

n
3}. It is readily seen that there are Mn

.
= (n+ 1)(n+ 2)/2

different monomials. Therefore, we can use the Veronese map of degree n, νn : R3 → RMn ,

[x1, x2, x3]T 7→ [xn1 , x
n−1
1 x2, x

n−1
1 x3, . . . , x

n
3 ]T , to write the multibody affine constraint (4.6) in

bilinear form as stated by the following Theorem.

Theorem 7 (The bilinear multibody affine constraint) The multibody affine constraint (4.6) can

be written in bilinear form as

νn(y)TAνn(x) = 0, (4.7)

where A ∈ RMn×Mn is a matrix representation of the symmetric tensor product of all the affine

matrices {Ai}ni=1.

Proof. Let ui = Aix ∈ R3, for i = 1, . . . , n. Then, the multibody affine constraint

E(x,y) =
n∏

i=1

(yTui)

is a homogeneous polynomial of degree n in y = [y1, y2, y3]T , i.e.,

E(x,y) =
∑

cn1,n2,n3y
n1
1 yn2

2 yn3
3

.
= νn(y)Tcn,

where cn ∈ RMn is the vector of coefficients. From the properties of polynomial multiplication,

each entry of cn, cn1,n2,n3 , must be a symmetric multilinear function of (u1, . . . ,un), i.e., it is
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linear in each ui and cn1,n2,n3(u1, . . . ,un) = cn1,n2,n3(uσ(1), . . . ,uσ(n)) for all σ ∈ Sn, where

Sn is the permutation group of n elements. Since each ui is linear in x, then each cn1,n2,n3 must

be a homogeneous polynomial of degree n in x, i.e., cn1,n2,n3 = aTn1,n2,n3
νn(x), where each entry

of an1,n2,n3 ∈ RMn is a symmetric multilinear function of the entries of the Ai’s. Letting

A .
= [an,0,0 , an−1,1,0 , . . . , a0,0,n]T ∈ RMn×Mn ,

we obtain

E(x,y) = νn(y)TAνn(x) = 0.

Remark 31 (Multibody affine tensor) The multibody affine matrix is a matrix representation of

the symmetric tensor product of all the affine matrices
∑

σ∈Sn

Aσ(1) ⊗Aσ(2) ⊗ · · · ⊗Aσ(n), (4.8)

where Sn is the permutation group of n elements and ⊗ represents the tensor product.

We call the matrix A the multibody affine matrix since it is a natural generalization of the

affine matrix to the case of multiple affine motion models. Since equation (4.7) clearly resembles

the bilinear form of the affine constraint for a single affine motion, we will refer to both equations

(4.6) and (4.7) as the multibody affine constraint from now on.

Example 8 (The two-body affine motion) In the case of n = 2 affine motions A1 = [bij ] ∈ R3×3

and A2 = [cij ] ∈ R3×3, the multibody affine motion A ∈ R6×6 is given by:

A =




b11c11 A12 b11c13 + b13c11 b12c12 b12c13 + b13c12 b13c13

A21 A22 A23 A24 A25 A26

0 0 b11 + c11 0 b12 + c12 b13 + c13

b21c21 A42 b21c23 + b23c21 b22c22 b22c23 + b23c22 b23c23

0 0 b21 + c21 0 b22 + c22 b23 + c23

0 0 0 0 0 1




,

where

A12 = b11c12 + b12c11 , A42 = b21c22 + b22c21,

A22 = b11c22 + b21c12 + b12c21 + b22c11, A21 = b11c21 + b21c11,

A23 = b11c23 + b21c13 + b13c21 + b23c11, A24 = b12c22 + b22c12,

A25 = b12c23 + b22c13 + b13c22 + b23c12, A26 = b13c23 + b23c13.
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4.3 Estimating the number of affine motions n and the multibody

affine matrix A

Notice that, by definition, the multibody affine matrixA depends explicitly on the number

of affine motions n. Therefore, even though the multibody affine constraint (4.7) is linear in A, we

cannot use it to estimate A without knowing n in advance. Fortunately, we can derive a rank

constraint on the image measurements from which one can estimate n, hence A. We rewrite the

multibody affine constraint (4.7) as (νn(y) ⊗ νn(x))Ta = 0, where a ∈ RM2
n is the stack of the

rows of A and ⊗ represents the Kronecker product. Given a collection of image measurements

{(xj ,yj)}Nj=1, the vector a satisfies the system of linear equations

Lna = 0, (4.9)

where the jth row of Ln ∈ RN×M2
n is (νn(yj)⊗ νn(xj))

T , for j = 1, . . . , N .

In addition to equation (4.9), the matrix A has to satisfy other constraints due to the fact

that the 3rd row of each Ai equals eT3 = [0, 0, 1]. In order to determine these additional constraints,

consider the polynomial E(x,y) in (4.6), where x = [x1, x2, x3]T and y = [y1, y2, y3]T . We

observe that the monomials of yTAix involving y3 must also involve x3. Therefore, the coefficients

of monomials in E(x,y) which are multiples of yi3x
j
3 with 0 ≤ j < i ≤ n must be zero. Since the

number of monomials which are multiples of yi3x
j
3 is the number of polynomials of degree (n− i)

in two variables (y1 and y2) times the number of polynomials of degree (n− j) in two variables (x1

and x2), i.e., (n− i+ 1)(n− j + 1), the number of zeros in A is given by

Zn =
n∑

i=1

i−1∑

j=0

(n− i+ 1)(n− j + 1) =
n∑

i=1

(n− i+ 1)(2n+ 3− i)i
2

(4.10)

=
(n+ 1)(2n+ 3)

2

n∑

i=1

i− 3n+ 4

2

n∑

i=1

i2 +
1

2

n∑

i=1

i3 (4.11)

=
n(n+ 1)

2

[
(n+ 1)(2n+ 3)

2
− (3n+ 4)(2n+ 1)

2
+
n(n+ 1)

4

]
(4.12)

which reduces to

Zn =
n(n+ 1)(n+ 2)(3n+ 5)

24
. (4.13)

Now, in order to obtain the entries of A that are zero, we proceed as follows. For each row of A
associated to yi3, i = 1, . . . , n, we look for the columns of A associated to xj3, for j = 0, . . . , i− 1.
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Finally, notice that the last monomial of E(x,y) is exactly (y3x3)n, hence the entry (Mn,Mn) of

A is one. Therefore, in order to determine a we solve the homogeneous equation

L̃nã = 0, (4.14)

where ã ∈ RM2
n−Zn is the same as a with the zero entries removed and L̃n ∈ RN×(M2

n−Zn) is the

same as Ln with the columns associated to zero entries of a removed. The scale of a is obtained by

enforcing the additional constraint aM2
n

= 1.

In order for the solution of (4.14) to be unique, we must have

rank(L̃n) = M2
n − Zn − 1. (4.15)

This rank constraint on L̃n provides an effective criterion for determining the number of affine

motions n from the given image intensities, as stated by the following Theorem.

Theorem 8 (Number of affine motion models) Let L̃i ∈ RN×(M2
i −Zi) be the matrix in (4.14), but

computed with the Veronese map νi of degree i ≥ 1. If rank(Ai) ≥ 2 for all i = 1, . . . , n, and a

large enough set of N image measurements in general configuration is given (N ≥ M 2
n − Zn − 1

when n is known), with at least 6 measurements corresponding to each motion model, then

rank(L̃i)





> M2
i − Zi − 1, if i < n,

= M2
i − Zi − 1, if i = n,

< M2
i − Zi − 1, if i > n.

(4.16)

Therefore, the number of affine motions n is given by

n
.
= min{i : rank(L̃i) = M2

i − Zi − 1}. (4.17)

Proof. The proof for the case of fundamental matrices can be found in Section 5.3, Theorem 11.

Since the proof requires that the polynomial yTAix be irreducible, and this is indeed the case when

rank(Ai) ≥ 2, the proof is also valid for affine matrices.

In summary, we can use Theorem 8 to estimate the number of affine motions n incre-

mentally from equation (4.17). Given n, we can linearly solve for the multibody affine motion A
from (4.14). Notice however that the minimum number of image pixels needed isN ≥M 2

n−Zn−1,

which grows in the order of O(n4) for large n. Since in practice the number of motions is small,

say n ≤ 10, this is not a limitation. For example, for n = 10 motions we need N ≥ 2430 pixels,

which is easily satisfied by a 100× 100 image.
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4.4 Multibody affine motion estimation and segmentation

Given the multibody affine motion A ∈ RMn×Mn , we now show how to compute the

individual affine motions {Ai ∈ R3×3}ni=1. In principle, this problem is equivalent to factoring the

bi-homogeneous polynomial E(x,y) into n bilinear expressions of the form yTAix. To the best of

our knowledge, this is a hard problem in real algebra and we are not aware of an efficient solution

to it.3 However, in this case we can exploit the algebraic structure of the multibody affine matrix to

convert the bi-homogeneous factorization problem into a factorization of homogeneous polynomi-

als, i.e., the GPCA problem discussed in Chapter 3, as described in the following subsections.

4.4.1 Estimating the optical flow field from the multibody affine motion A

Given the multibody affine matrix A ∈ RMn×Mn , we now show how to compute the

optical flow at every pixel x in the image. We first notice that if the pixel x undergoes an affine

motion Ai, then its optical flow ui is given by ui
.
= Aix ∈ R3, i = 1, . . . , n. Since

νn(y)TAνn(x) =
n∏

i=1

(
yTAix

)
=

n∏

i=1

(yTui), (4.18)

the vector ũ
.
= Aνn(x) ∈ RMn represents the coefficients of the homogeneous polynomial in y

gn(y)
.
= (yTu1)(yTu2) · · · (yTun) = νn(y)T ũ. (4.19)

We call the vector ũ
.
= Aνn(x) ∈ RMn the multibody optical flow associated with pixel x since it

is a combination of all the optical flows {ui}ni=1 that pixel x can undergo depending on the affine

motion associated with it4. From equation (4.19), we observe that recovering the optical flows

{ui}ni=1 associated with pixel x from the multibody optical flow ũ = Aνn(x) is equivalent to

factoring the homogeneous polynomial of degree n, gn(y), into the n homogeneous polynomials of

degree one {yTui}ni=1. This is simply a GPCA problem with k = 2 and K = 3, i.e., clustering of

two-dimensional subspaces ofR3, which can be solved using any of the GPCA algorithms discussed

in Section 3.3. Recall that the GPCA problem has a unique solution (up to a scale factor for each

ui) provided that u1 6= u2 6= · · · 6= un. Since in this case the vectors ui are of the form [u, v, 1]T ,

the unknown scale can actually be computed. Therefore, all the optical flows {ui}ni=1 associated

with pixel x can be uniquely recovered using GPCA provided that those optical flows are different.

Then, given the n candidate optical flows associated with pixel x, it remains to decide which one is

3Of course it can be solved in double exponential time using Gröebner basis and quantifier elimination.
4Mathematically, the multibody optical flow ũ is the symmetric tensor product of the individual optical flows {ui}ni=1.
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the optical flow associated with that pixel. Since we should have yTui = 0, where y is the vector

of image partial derivatives at x, we choose the vector ui that minimizes (yTui)
2.

Remark 32 (Pixels with repeated flows) Notice that there could be pixels whose corresponding

optical flows {ui}ni=1 are not all different from each other. This happens whenever (Ai−Aj)x = 0

for some i 6= j = 1, . . . n. Therefore, if we think of the image plane as a compact subset of R2,

then the set of pixels with repeated optical flows is a zero-measure set in the image plane. In fact,

it is either a collection of up to n(n − 1)/2 points, or a collection of up to n(n − 1)/2 lines, or a

combination of both, depending on the number of solutions to the linear systems (Ai −Aj)x = 0.

Inspired by the GPCA polynomial differentiation algorithm described in Section 3.3.3, we

now present a simpler and more elegant way of computing the optical flow u at every pixel x from

the multibody affine matrixA and the vector of image partials y. To this end, we notice from (4.18)

that the partial derivate of the multibody affine constraint with respect to y is given by

∂

∂y
νn(y)TAνn(x) =

n∑

i=1

∏

`6=i
(yTA`x)(Aix). (4.20)

Therefore, if the image measurement (x,y) corresponds to motion i, i.e., if yTAix = 0, then

∂

∂y
νn(y)TAνn(x) =

∏

`6=i
(yTA`x)(Aix) ∼ Aix. (4.21)

In other words, the derivative of the multibody affine constraint evaluated at (x,y) is proportional

to the optical flow at pixel x. In order to eliminate the scale factor, we notice that the third entry

of u must be equal to one. Therefore, we just need to divide the derivative of the multibody affine

constraint by its third coordinate. However, notice that this can be done only for pixels x whose

associated optical flows {Aix}ni=1 are different from each other. Otherwise, the derivative of the

multibody affine matrix is zero because it becomes a polynomial with one or more repeated factors.

We summarize our discussion so far with the following statement.

Theorem 9 (Estimating the optical flow from the multibody affine matrix) Let A ∈ RMn×Mn

be a multibody affine matrix generated by n different affine motions {Ai}ni=1. Also let y be the

vector of image partial derivatives at pixel x and assume that (Ai − Aj)x 6= 0 for all i 6= j =

1, . . . , n. Then, given A and y and without knowing the affine motion model associated with the

image measurement (x,y), one can compute the optical flow u at pixel x as

u =

∂
∂yνn(y)TAνn(x)

eT3
∂
∂yνn(y)TAνn(x)

. (4.22)



124

4.4.2 Estimating individual affine motions {Ai}ni=1 from the optical flow field

Given the optical flow {uj}Nj=1 at each pixel {xj}Nj=1, we are now interested in computing

the individual affine motions {Ai ∈ R3×3}ni=1. We presented a complete solution to this problem in

Section 3.9.3, which we now repeat for the sake of completeness. Let us first recall that the optical

flow u = [u, v, 1]T at pixel x = [x1, x2, 1] ∈ P2 satisfies the equations

a11x1 + a12x2 + a13 − u = 0 (4.23)

a21x1 + a22x2 + a23 − v = 0. (4.24)

Equations (4.23) and (4.24) define a three-dimensional subspace of a five-dimensional space with

coordinates [x1, x2, 1, u, v]T ∈ R5. The estimation of n affine motion models from measurements

of the optical flow u at each pixel x is then a GPCA problem with k = 3 and K = 5.

According to our discussion in Section 3.4.1, we can reduce this problem to a GPCA

problem with k = 3 and K = 4 by first projecting the data onto a four-dimensional space. The

particular structure of equations (4.23) and (4.24) with normal vectors [a11, a12, a13,−1, 0]T and

[a21, a22, a23, 0,−1]T suggests to project the data onto two four-dimensional subspaces with coor-

dinates [x1, x2, x3, u]T and [x1, x2, x3, v]T . Each one of these two projections allows us to compute

the first and second row of each affine motion model, respectively, by using any of the GPCA al-

gorithms for hyperplanes described in Section 3.3. However, it could happen that, even though the

affine motions {Ai}ni=1 are different from each other, a particular row could be common to two or

more affine motions. Therefore, in general we will obtain n1 ≤ n first rows and n2 ≤ n second

rows from each one of the two projections. Furthermore, even if n1 = n2 = n, we still do not know

which first and second rows correspond to the same affine motion model. Fortunately, we can ex-

ploit the structure of the problem in order to find the affine motions {Ai}ni=1 from the collection of

first and second rows, {a1i ∈ R3}n1
i=1 and {a2i ∈ R3}n2

i=1, respectively. Let `1 ∈ RN and `2 ∈ RN

be vectors of labels giving the segmentation of the data according to each projection, i.e.,

`1(j) = i if i = arg min
i=1,...,n1

|aT1ixj − uj | j = 1, . . . , N (4.25)

`2(j) = i if i = arg min
i=1,...,n2

|aT2ixj − vj | j = 1, . . . , N. (4.26)

Then the N rows of the matrix of labels [`1 `2] ∈ RN×2 will take on only n different values. Let

the rows of L = [`ij ] ∈ Rn×2 be the n different rows in [`1 `2]. Then the affine motion models can

be computed as

Ai =
[
a1`i1 a2`i2 e3

]T
i = 1, . . . , n. (4.27)
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Once the affine motion models {Ai}ni=1 have been estimated, we can segment the image

measurements by assigning pixel xj to the affine motion Ai that minimizes the algebraic error

(yTj Aixj)
2. However, in the presence of noise on the image partials, we normalize the algebraic

error by its variance. That is, pixel xj is assigned to motion Ai if

i = arg min
`=1,...,n

(yTj A`xj)
2

‖A`xj‖2
. (4.28)

We therefore have the following algorithm for segmenting a collection of affine motion

models from image intensities.

Algorithm 9 (Multibody affine motion segmentation)

Given a collection of image measurements {(xj ,yj)}Nj=1 of pixels undergoing n different affine

motions {Ai}ni=1, recover the number of affine motion models n, the affine matrix Ai associated

with motion i, and the segmentation of the image measurements as follows:

1. Number of motions. Compute the number of different motions n from the rank constraint

in (4.17), by applying the Veronese map of degree i = 1, 2, . . . , n to the image measurements.

2. Multibody affine matrix. Compute the multibody affine matrix A ∈ RMn×Mn by solving

the linear system L̃nã = 0 in (4.14).

3. Optical flow field. Compute the optical flow uj = [uj , vj , 1]T at pixel xj from the derivative

of the multibody affine constraint evaluated at (xj ,yj), as shown in (4.22).

4. Individual affine motions. Estimate the individual affine motions {Ai}ni=1 as follows:

(a) Apply a GPCA algorithm with k = 3 and K = 4 (e.g., PDA) to the data {[xj , uj ]T }Nj=1

to determine the number of different first rows n1 ≤ n in the affine matrices {Ai}ni=1

and the n1 different first rows {a1i ∈ R3}n1
i=1. Cluster the data into n1 groups and define

a vector of labels `1∈RN such that `1(j)= i if point xj belongs to group i = 1, . . . , n1.

(b) Repeat step 4(a) with data {[xj , vj ]T }Nj=1 to obtain n2 ≤ n different second rows {a2i ∈
R3}n2

i=1 and the corresponding vector of labels `2 ∈ RN .

(c) Extract the n different rows from the matrix of labels [`1 `2] ∈ RN×2 and use them to

compute the affine motions {Ai}ni=1 as in (4.27).

5. Segmentation of the image measurements. Assign image measurement (xj ,yj) to the

affine motion Ai that minimizes
(yTj Aixj)

2

‖Aixj‖2 .
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4.5 Optimal segmentation of 2-D affine motions

The segmentation algorithm described in the previous section provides a unique global

solution to the multibody affine motion segmentation problem. Although the problem is nonlinear,

the solution is based on linear algebraic techniques thanks to the embedding of the image data into

a higher-dimensional space via the Veronese map. However, such a linear solution is obtained at

the cost of neglecting the algebraic structure of the multibody affine motion A. Recall that we treat

the M2
n − Zn ∼ O(n4) nonzero entries of A as unknowns, although there are only 6n unknowns

in {Ai}ni=1. While it is algebraically correct to neglect the internal structure of A provided that the

conditions of Theorem 8 are met, the estimation of A may not be robust in the presence of noisy

image measurements.

One way of dealing with noisy image measurements is to set up an optimization prob-

lem that searches for the affine motions {Ai}ni=1 that minimize the algebraic error defined by the

multibody affine constraint in a least squares sense, i.e.,

EA(A1, . . . , An) =
N∑

j=1

(
n∏

i=1

(yTj Aixj)

)2

. (4.29)

However, the solution to this optimization problem may be biased, because the algebraic error

in (4.29) does not coincide with the negative log-likelihood of the motion parameters.

In this section, we derive the optimal error function when the partial derivatives {yj}Nj=1

at pixel {xj}Nj=1 are corrupted with i.i.d. zero-mean Gaussian noise. The problem is to find a

collection of affine matrices {Ai}ni=1 such that the corresponding noise free derivatives {ỹj}Nj=1

satisfy the multibody affine constraint νn(ỹj)
TAνn(xj) = 0. This is equivalent to the constrained

nonlinear least squares problem:

min
∑N

j=1 ‖ỹj − yj‖2

subject to νn(ỹj)
TAνn(xj) = 0 j = 1, . . . , N.

(4.30)

By using Lagrangian multipliers λj for each constraint, the above optimization problem is equiva-

lent to minimizing

N∑

j=1

‖ỹj − yj‖2 + λjνn(ỹj)
TAνn(xj). (4.31)

From the first order condition for optimality we get

2(ỹj − yj) + λjgj = 0, (4.32)



127

where gj = (Dνn(ỹj))
TAνn(xj). Since Dνn(ỹ)ỹ = nνn(ỹ) and νn(ỹ)Aνn(x) = 0, we have

gTj ỹj = 0. Therefore, after multiplying (4.32) on the left by gTj , we obtain

−2gTj yj + λj‖gj‖2 = 0, (4.33)

from which we can solve for λj as

λj
2

=
gTj yj

‖gj‖2
=
yTj (Dνn(ỹj))

TAνn(xj)

‖(Dνn(ỹj))
TAνn(xj)‖2

. (4.34)

Similarly, after multiplying (4.32) on the left by (ỹj − yj)T we get

2‖ỹj − yj‖2 − λjgTj yj = 0, (4.35)

from which the error in image derivative j is given by

‖ỹj − yj‖2 =
λj
2
gTj yj =

(gTj yj)
2

‖gj‖2
. (4.36)

After replacing gj in the previous equation, we obtain the following expression for the total error

ẼO({Ai}ni=1, {ỹj}Nj=1)
.
=

N∑

j=1

(
yTj (Dνn(ỹj))

TAνn(xj)
)2

‖(Dνn(ỹj))
TAνn(xj)‖2

. (4.37)

Remark 33 Notice that the optimal error ẼO has a very intuitive interpretation. If measurement j

corresponds to motion i, then ỹTj Aixj = 0. This implies that

gj =
∂

∂ỹj

(
νn(ỹj)

TAνn(xj)
)

=
n∑

i=1




n∏

`6=i
ỹTj A`xj


 (Aixj) =

( n∏

6̀=i
ỹTj A`xj

)
(Aixj).

Therefore, the factor
∏n
6̀=i(x̃

T
j A`xj) is in both the numerator and the denominator of ẼO. Hence

the contribution of point j to the error ẼO reduces to
(yTj Aixj)

2

‖Aixj‖2 , which is the optimal error to min-

imize for a single affine motion model under the Gaussian noise. Therefore, the objective function

ẼO is just a clever algebraic way of simultaneously writing a mixture of optimal objective functions

for individual affine matrices into a single objective function for all the affine matrices.

We now derive an objective function the depends on the motion parameters only by con-

sidering first order statistics of νn(yj)
TAνn(xj). It turns out that this is equivalent to setting

ỹj = yj in the above expression for ẼO. Since Dνn(y)y = nνn(y) we get

EO(A1, . . . , An)
.
=

N∑

j=1

(
nνn(yj)

TAνn(xj)
)2

‖(Dνn(yj))
TAνn(xj)‖2

. (4.38)

The affine motion parameters {Ai}ni=1 are then recovered by minimizing the optimal error

function using standard nonlinear optimization techniques. We use Algorithm 9 for initialization.
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4.6 Experimental results

In this section, we present simulation results that we evaluate the performance of the

proposed motion segmentation algorithm with respect to the number of motions n for different

levels of noise. We also present experimental results on intensity based motion segmentation of an

outdoor sequence.

We first test the algorithm on synthetic data. We randomly pick n = 2, 3, 4 collections

of N = 600 pixel coordinates and apply a different (randomly chosen) affine motion model to

each collection of pixels to generate their optical flow field. From the optical flow associated with

each pixel, we randomly choose a vector y of spatial and temporal image derivatives satisfying the

brightness constancy constraint (4.3). Zero-mean Gaussian noise with std. from 0% to 5% is added

to the partial derivatives y. We run 1000 trials for each noise level. For each trial the error between

the true affine motions {Ai}ni=1 and the estimates {Âi}ni=1 is computed as

Affine error =
1

n

n∑

i=1

‖Ai − Âi‖
‖Ai‖

(%). (4.39)

Figure 4.1 plots the mean error as a function of the noise level. In all trials the number of

motions was correctly estimated from equation (4.17) as n = 2, 3, 45. Notice that the estimates of

the algebraic algorithm are within 6% of the true affine motions for n = 2, even for a noise level

of 5% in the image derivatives. However the performance deteriorates for n = 3. This is expected,

because the algebraic algorithm uses an over-parameterized representation of the multibody affine

matrix. On the other hand, the estimates of the optimal algorithm are within 2.1%, 8.2% and 13.3%

of the ground truth for n = 2, 3 and 4, respectively. The nonlinear algorithm is less sensitive to

noise, because it uses a minimal parameterization of the multibody affine motion.

We also tested the proposed approach by segmenting the real scene shown in Figure 4.2.

The scene displays a leader-follower configuration with two robots moving in a circle and a static

background. Even though the follower is tracking the leader, their 3D motions are not identical, yet

they are similar enough to make their segmentation challenging. We computed the image partial

derivatives using standard derivative filters in one dimension and smoothing filters in the other two

dimensions. For computational efficiency, out of the 150 × 200 pixels in the image derivatives, we

extracted N = 1995 pixels for which |It| > δ = 0.115. Figure 4.2 shows the results of applying

our algorithm to the image sequence. Notice that the two moving robots are correctly segmented.

5We declared the rank of Ln to be r if σr+1/(σ1 + · · · + σr) < ε, where σi is the i-th singular value of Ln and
ε = 3× 10−3.
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Figure 4.1: Error in the estimation of the 2-D affine motion models as a function of noise in the
image partial derivatives (std. in %).

(a) Frame 2 (b) Frame 4 (c) Frame 6

(d) Robot 1 (e) Robot 2 (f) Background

Figure 4.2: Segmenting a sequence with two affine motions from image intensities.
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4.7 Conclusions

We have proposed a novel geometric approach for segmenting 2-D affine motion models

from image intensities. We showed that one can determine the number of affine motions and the

motion parameters directly from image intensities with no prior segmentation or correspondences

and in spite of depth discontinuities.

Our solution is based on a clear geometric interpretation the multibody affine constraint

and its associated multibody affine matrix. We first showed than one can estimate the number of

affine motions and the multibody affine matrix from a rank constraint on the image measurements.

Given the multibody affine matrix, one can estimate the optical flow at every pixel in the image from

the partial derivatives of the multibody affine constraint. Given the optical flow field, we showed

that the estimation of the affine motion parameters becomes a GPCA problem. Therefore, the affine

motion segmentation problem has a unique global solution that can be computed using all the image

measurements, without prior segmentation.

Such a unique solution can be used to initialize probabilistic methods such as [56, 67] or

any other EM-like algorithm. We used such a solution to initialize an optimal algorithm in the case

of zero-mean Gaussian noise in the image partial derivatives. Instead of iterating between feature

segmentation and single body motion estimation, our algorithm algebraically eliminates the feature

segmentation stage and directly optimizes over the motion parameters. We presented simulation

and experimental results validating the proposed approach.
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Chapter 5

Segmentation of 3-D Rigid Motions:

Multibody Structure from Motion

5.1 Introduction

3-D motion segmentation refers to the problem of estimating the 3-D motion (rotation

and translation) of multiple rigidly moving objects from image measurements collected by a static

or moving camera. This is a challenging problem in visual motion analysis, because it requires the

simultaneous estimation of an unknown number of rigid motion models, without knowing which

measurements correspond to which model.

Prior work on 3-D motion segmentation subdivides the problem in two stages: feature seg-

mentation and single body motion estimation. In the first stage, image measurements corresponding

to the same motion model are grouped together using algorithms such as K-means, normalized cuts,

spectral clustering, etc. In the second stage, a different motion model is estimated from the image

measurements corresponding to each group using, e.g., , the eight-point algorithm.

Since this two-stage approach to motion segmentation is clearly not optimal in the pres-

ence of noise, probabilistic approaches model the image data as being generated by a mixture of

motion models in which the image points are corrupted with noise, typically i.i.d zero-mean and

Gaussian. The membership of the data to each one of the groups is also modeled with a probability

distribution, typically multinomial, by using the so-called mixing proportions. Unfortunately, the

simultaneous maximum likelihood estimation of both mixture and motion parameters is in general

a hard problem. Therefore, most of the existing methods solve the problem in two stages. One first
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computes the expected value of the membership of the data given a prior on the motion parame-

ters and then maximizes the expected log-likelihood of the motion parameters given a prior on the

grouping of the data. This is usually done in an iterative manner using the Expectation Maximiza-

tion (EM) algorithm.

One of the main reasons for using either one of these two-stage approaches (iterative or

not) is that the problem of estimating a single motion model from image measurements is reasonably

well understood, both from a geometric and from an optimization point of view. For example, it

is well known that two views of a scene are related by the so-called epipolar constraint [35] and

that multiple views are related by the so-called multilinear constraints [24]. These constraints can

be naturally used to estimate the motion parameters using linear techniques, such as the eight-point

algorithm and its generalizations. In the presence of noise, many optimal nonlinear algorithms for

single body motion estimation have been proposed. For example, see [36, 51, 57, 69] for the discrete

case and [48] for the differential case.

The geometry of multiple moving objects is, on the other hand, not as well understood.

Previous work in this area includes particular cases such as multiple points moving linearly with

constant speed [20, 43] or in a conic section [1], multiple moving objects seen by an orthographic

camera [10, 31], self-calibration from multiple motions [17, 21], and two-object segmentation from

two perspective views [70]. Alternative probabilistic approaches to 3-D motion segmentation are

based on model selection techniques [56, 31], combine normalized cuts with a mixture of proba-

bilistic models [16], or compute statistics of the innovation process of a recursive filter [49].

5.1.1 Contributions

In this chapter, we present a novel approach to 3-D motion segmentation that does not

iterate between feature segmentation and single body motion estimation. Instead, our approach al-

gebraically eliminates the feature segmentation stage and directly solves for the motion parameters,

either in a purely algebraic fashion, or else using an optimal algorithm in the presence of noise.

Therefore, our results provide a natural generalization of the geometric, statistical, and optimization

theoretic aspects of the classical two-view structure from motion problem to the case of multiple

rigidly moving objects.1

In Section 5.2 we show how to eliminate the feature segmentation stage by using the so-

called multibody epipolar constraint, a geometric relationship between the motion of the objects

1Part of the results in this chapter were published in [62, 59, 61].
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and the image data that is satisfied by all the image points, regardless of the body with which they

are associated. The multibody epipolar constraint combines all the motion parameters into a single

algebraic structure, the so-called multibody fundamental matrix, which is a natural generalization

of the fundamental matrix to the case of multiple rigid motions.

Section 5.3 shows that one can estimate the number of independent motions from a rank

constraint on the image data, which is obtained after embedding all the image points into a higher-

dimensional space. Given the number of independent motions, we show that one can linearly solve

for the multibody fundamental matrix given enough image points in general configuration.

In Section 5.4 we study the geometry of the multibody fundamental matrix. We prove that

the epipoles of each independent motion lie exactly in the intersection of the left null space of the

multibody fundamental matrix with the so-called Veronese surface.

In Section 5.5 we present an algebraic algorithm for simultaneous motion estimation and

segmentation. We show that, given the multibody fundamental matrix, one can estimate the epipolar

line associated with each image pair from the partial derivatives of the multibody epipolar constraint.

Given the epipolar lines, we show that the estimation of the individual epipoles is a GPCA problem

with k = 2 and K = 3, i.e., clustering a collection of two-dimensional subspaces of R3. Given

the epipoles and the epipolar lines, the estimation of the individual fundamental matrices becomes a

simple linear problem. Then, motion and feature point segmentation can be automatically obtained

from either the epipoles and epipolar lines or from the individual fundamental matrices.

In Section 5.6 we consider the 3-D motion segmentation problem in the presence of zero-

mean Gaussian noise in the image points. We cast the motion segmentation problem as a constrained

nonlinear least squares problem which minimizes the re-projection error subject to all multibody

epipolar constraints. By converting this constrained problem into an unconstrained one, we obtain

an optimal objective function that depends on the motion parameters only (fundamental matrices)

and is independent on the segmentation of the image data. We then use standard nonlinear opti-

mization techniques to simultaneously recover all the fundamental matrices, without prior feature

segmentation. As before, once the individual fundamental matrices have been estimated, one can

trivially obtain the segmentation of the image points.

In Section 5.7 we present experimental results on 3-D motion segmentation that evaluate

the performance of our algorithm with respect to the number of motions n and the level of noise.

We also present experimental results on the segmentation of an indoor sequence.
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5.2 Multibody epipolar geometry

5.2.1 Two-view multibody structure from motion problem

Consider two images of a scene containing an unknown number n of rigidly moving

objects. We describe the rigid motion of object i = 1, . . . , n relative to the camera between the

two frames with a rank-2 (nonzero) fundamental matrix Fi ∈ R3×3, i = 1, . . . , n. We assume that

the rigid motions of the objects relative to the camera are independent from each other, that is, we

assume that the n fundamental matrices are distinct (up to a scale factor).

The image of a point qj ∈ R3 in any of the objects with respect to image frame Ik is

denoted as xjk ∈ P2, for j = 1, . . . , N and k = 1, 2. In order to avoid degenerate cases, we will

assume that the image points are in general position in 3-D space, i.e., they do not all lie in any

critical surface, for example. We will drop the superscript when we refer to a generic image pair

(x1,x2). Also, we will use the homogeneous representation x = [x, y, z]T ∈ R3 to refer to an

arbitrary (image) point in P2, unless otherwise stated.

We define the two-view multibody structure from motion problem as follows:

Problem 6 (Two-view multibody structure from motion problem).

Given a collection of image pairs {(xj1,xj2)}Nj=1 corresponding to an unknown number of indepen-

dent and rigidly moving objects, estimate the number of independent motions n, the fundamental

matrices {Fi}ni=1, and the object to which each image pair belongs.

5.2.2 The multibody epipolar constraint

Given an image pair (x1,x2) corresponding to the ith moving object, we know that the

image pair and the associated fundamental matrix Fi ∈ R3×3 satisfy the so-called epipolar con-

straint [35]

xT2 Fix1 = 0. (5.1)

If we do not know the motion associated with the image pair (x1,x2), then we know that there

exists an object i such that xT2 Fix1 = 0. Therefore, regardless of the object to which the image

pair belongs, the following constraint must be satisfied by the number of independent motions n,

the fundamental matrices {Fi}ni=1 and the image pair (x1,x2)

E(x1,x2)
.
=

n∏

i=1

(
xT2 Fix1

)
= 0. (5.2)
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We call this constraint the multibody epipolar constraint, since it is a natural generalization of

the epipolar constraint (5.1) valid for n = 1. The main difference is that the multibody epipolar

constraint is defined for an arbitrary number of objects, which is typically unknown (e.g., traffic

surveillance). Furthermore, even if n is known, the algebraic structure of the constraint is neither

bilinear in the image points nor linear in the fundamental matrices as illustrated in the following

example.

Example 9 (Two rigid body motions) Imagine the simplest scenario of a scene containing only

two independently moving objects as shown in Figure 5.1.
PSfrag replacements

x1
1

x1
2

x2
1

x2
2

(R1, T1)

(R2, T2)

Figure 5.1: Two views of two independently moving objects, with two different rotations and trans-
lations: (R1, T1) and (R2, T2) relative to the camera frame.

In this case, both image pairs (x1
1,x

1
2) and (x2

1,x
2
2) satisfy the equation

(
xT2 F1x1

) (
xT2 F2x1

)
= 0

for F1 = [T1]×R1 and F2 = [T2]×R2.2 This equation is no longer bilinear but rather bi-quadratic

in the two images x1 and x2 of any point q on one of these objects. Furthermore, the equation is no

longer linear in F1 or F2 but rather bilinear in (F1, F2). However, if enough number of image pairs

(x1,x2) are given, we can still recover some information about the two fundamental matrices F1

and F2 from such equations, in spite of the fact that we do not know the object or motion to which

each image pair belongs. This special case (n = 2) has been studied in [70]. In this chapter, we

provide a general solution for an arbitrary number of motions n.

5.2.3 The multibody fundamental matrix

The multibody epipolar constraint allows to convert the multibody structure from motion

problem (Problem 6) into one of solving for the number of independent motions n and the funda-

mental matrices {Fi}ni=1 from the nonlinear equation (5.2). A standard technique used in algebra
2We use [u]× to denote the 3 × 3 skew symmetric matrix representing the cross product with a vector u ∈ R3, i.e.,

we have that [u]×v = u× v for all v ∈ R3.
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to render a nonlinear problem into a linear one is to find an “embedding” that lifts the problem into

a higher-dimensional space. In this case, we notice that the multibody epipolar constraint defines a

homogeneous polynomial of degree n in either x1 or x2. For example, if we let x1 = [x1, y1, z1]T ,

then equation (5.2) viewed as a function of x1 can be written as a linear combination of the follow-

ing monomials {xn1 , xn−1
1 y1, x

n−1
1 z1, . . . , z

n
1 }. It is readily seen that there are a total of

Mn
.
=


n+ 2

2


 =

(n+ 1)(n+ 2)

2
(5.3)

different monomials, thus the dimension of the space of homogeneous polynomials in 3 variables

with real coefficients is Mn. Therefore, we can use the Veronese map of degree n, νn : R3 → RMn ,

[x1, y1, z1]T 7→ [xn1 , x
n−1
1 y1, x

n−1
1 z1, . . . , z

n
1 ]T , to write the multibody epipolar constraint (5.2) as

a bilinear expression in νn(x1) and νn(x2) as stated by the following theorem.

Theorem 10 (The bilinear multibody epipolar constraint) The multibody epipolar constraint (5.2)

can be written in bilinear form as

νn(x2)TFνn(x1) = 0, (5.4)

where F ∈ RMn×Mn is a matrix whose entries are symmetric multilinear functions of degree n on

the entries of the fundamental matrices {Fi}ni=1.

Proof. See proof of Theorem 7.

We call the matrix F the multibody fundamental matrix since it is a natural generalization

of the fundamental matrix to the case of multiple moving objects. Since equation (5.4) clearly

resembles the bilinear form of the epipolar constraint for a single rigid body motion, we will refer

to both equations (5.2) and (5.4) as the multibody epipolar constraint.

Remark 34 (Multibody fundamental tensor) The multibody fundamental matrix is a matrix rep-

resentation of the symmetric tensor product of all the fundamental matrices
∑

σ∈Sn

Fσ(1) ⊗ Fσ(2) ⊗ · · · ⊗ Fσ(n), (5.5)

where Sn is the permutation group of n elements and ⊗ represents the tensor product.

Although the multibody fundamental matrix F seems a complicated mixture of all the

individual fundamental matrices F1, . . . , Fn, it is still possible to recover all the individual funda-

mental matrices from F (alone), under some mild conditions (e.g., the Fi’s are distinct). The rest of

the chapter is devoted to providing a constructive proof for this. Section 5.3 shows how to recover

n and F from data, and Section 5.5 shows how to recover {Fi}ni=1 from F .
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5.3 Estimating the number of motions n and the multibody funda-

mental matrix F

Notice that, by definition, the multibody fundamental matrix F depends explicitly on the

number of independent motions n. Therefore, even though the multibody epipolar constraint (5.4) is

linear inF , we cannot use it to estimateF without knowing n in advance. However, it turns out that

one can use the multibody epipolar constraint to derive a rank constraint on the image measurements

that allows to compute n explicitly. Given n, the estimation of F becomes a linear problem.

To this end, let us first rewrite the multibody epipolar constraint (5.4) as

(νn(x2)⊗ νn(x1))Tf = 0, (5.6)

where f ∈ RM2
n is the stack of the rows of F and ⊗ represents the Kronecker product. Then, given

a collection of image pairs {(xj1,xj2)}Nj=1, the vector f satisfies the system of linear equations

Lnf
.
=




(
νn(x1

2)⊗ νn(x1
1)
)T

(
νn(x2

2)⊗ νn(x2
1)
)T

...
(
νn(xN2 )⊗ νn(xN1 )

)T



f = 0. (5.7)

In order to determine f uniquely (up to a scale factor) from (5.7), we must have that

rank(Ln) = M2
n − 1.

The above rank condition on the matrix Ln provides an effective criterion to determine the number

of independent motions n from the given image pairs, as stated by the following Theorem.

Theorem 11 (Number of independent motions) Let {(xj1,xj2)}Nj=1 be a collection of image pairs

corresponding to 3-D points in general configuration and undergoing an unknown number n of

independent rigid body motions with nonzero translation. Let Li ∈ RN×M2
i be the matrix defined

in (5.7), but computed using the Veronese map νi of degree i ≥ 1. Then, if the number of image pairs

is big enough (N ≥M 2
n − 1 when n is known) and at least 8 points correspond to each motion, we

have

rank(Li)





> M2
i − 1, if i < n,

= M2
i − 1, if i = n,

< M2
i − 1, if i > n.

(5.8)
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Therefore, the number of independent motions n is given by

n
.
= min{i : rank(Li) = M2

i − 1}. (5.9)

Proof. Since each fundamental matrix Fi has rank 2, the polynomial pi = xT2 Fix1 is irreducible

over the real field R. Let Zi be the set of (x1,x2) that satisfy xT2 Fix1 = 0. Then due to the

irreducibility of pi, any polynomial p in x1 and x2 that vanishes on the entire set Zi must be of the

form p = pih, where h is some polynomial. Hence if F1, . . . , Fn are distinct, a polynomial which

vanishes on the set ∪ni=1Zi must be of the form p = p1p2 · · · pnh for some h. Therefore, the only

polynomial of minimal degree that vanishes on the same set is

p = p1p2 · · · pn =
(
xT2 F1x1

) (
xT2 F2x1

)
· · ·
(
xT2 Fnx1

)
. (5.10)

Since the rows of Ln are of the form (νn(x2) ⊗ νn(x1))T and the entries of νn(x2) ⊗ νn(x1) are

exactly the independent monomials of p (as we will show below), this implies that if the number of

data points per motion is at least 8 and N ≥M 2
n − 1, then:

1. There is no polynomial of degree 2i < 2n whose coefficients are in the null space of Li, i.e.,

rank(Li) = M2
i > M2

i − 1 for i < n.

2. There is a unique polynomial of degree 2n, namely p, whose coefficients are in the null space

of Ln, i.e., rank(Ln) = M2
n − 1.

3. There is more than one polynomial of degree 2i > 2n (one for each independent choice of

the 2(i − n)-degree polynomial h in p = p1p2 · · · pnh) with coefficients in the null space of

Li, i.e., rank(Li) < M2
i − 1 for i > n.

The rest of the proof is to show that the entries of νn(x2) ⊗ νn(x1) are exactly the in-

dependent monomials in the polynomial p, which we do by induction. Since the claim is obvious

for n = 1, we assume that it is true for n and prove it for n + 1. Let x1 = [x1, y1, z1]T and

x2 = [x2, y2, z2]T . Then the entries of νn(x2)⊗ νn(x1) are of the form (xm1
2 ym2

2 zm3
2 )(xn1

1 yn2
1 zn3

1 )

with m1 + m2 + m3 = n1 + n2 + n3 = n, while the entries of x2 ⊗ x1 are of the form

(xi12 y
i2
2 z

i3
2 )(xj11 y

j2
1 z

j3
1 ) with i1 + i2 + i3 = j1 + j2 + j3 = 1. Thus a basis for the product of

these monomials is given by the entries of νn+1(x2)⊗ νn+1(x1).

The significance of Theorem 11 is that the number of independent motions can now be

determined incrementally using equation (5.9). Once the number n of motions is found, the multi-

body fundamental matrix F is simply the 1-D null space of the corresponding matrix Ln, which can
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be linearly obtained. Nevertheless, in order for this scheme to work, the minimum number of image

pairs needed is N ≥ M 2
n − 1. For n = 1, 2, 3, 4, the minimum N is 8, 35, 99, 225, respectively. If

n is large, N grows approximately in the order of O(n4) – a price to pay for working with a linear

representation of Problem 6. In Section 5.5.5 we will discuss many variations to the general scheme

that will reduce the number of data points required, especially for large n.

5.4 Null space of the multibody fundamental matrix

In this section, we study the relationships between the multibody fundamental matrix F
and the epipoles e1, . . . , en associated with the fundamental matrices F1, . . . , Fn. The relationships

between epipoles and epipolar lines will be studied in the next section, where we will show how

they can be computed from the multibody fundamental matrix F .

First of all, recall that the epipole ei associated with the ith motion in the second image is

defined as the left kernel of the rank-2 fundamental matrix Fi, that is

eTi Fi
.
= 0. (5.11)

Hence, the following polynomial (in x) is zero for any ei, i = 1, . . . , n

(
eTi F1x

) (
eTi F2x

)
· · ·
(
eTi Fnx

)
= νn(ei)

TFνn(x) = 0. (5.12)

We call the vector νn(ei) the embedded epipole associated with the ith motion. Since νn(x) as a

vector spans the entire RMn when x ranges over P2 (or R3),3 we have

νn(ei)
TF = 0. (5.13)

Therefore, the embedded epipoles {νn(ei)}ni=1 lie on the left null space of F while the epipoles

{ei}ni=1 lie on the left null space of {Fi}ni=1. Hence, the rank of F is bounded depending on the

number of distinct (pairwise linearly independent) epipoles as stated by Lemmas 5 and 6.

Lemma 5 (Null space of F when the epipoles are distinct) Let F be the multibody fundamental

matrix generated by the fundamental matrices F1, . . . , Fn. If the epipoles e1, . . . , en are distinct

(up to a scale factor), then the (left) null space of F ∈ RMn×Mn contains at least the n linearly

independent vectors

νn(ei) ∈ RMn , i = 1, . . . , n. (5.14)

3This is simply because the Mn monomials in νn(x) are linearly independent.
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Therefore, the rank of the multibody fundamental matrix F is bounded by

rank(F) ≤ (Mn − n). (5.15)

Proof. We only need to show that if the ei’s are distinct, then the νn(ei)’s are linearly independent.

If we let ei = [xi, yi, zi]
T , i = 1, . . . , n, then we only need to prove the rank of the following matrix

U
.
=




νn(e1)T

νn(e2)T

...

νn(en)T




=




xn1 xn−1
1 y1 xn−1

1 z1 · · · zn1

xn2 xn−1
2 y2 xn−1

2 z2 · · · zn2
...

...
...

. . .
...

xnn xn−1
n yn xn−1

n zn · · · znn



∈ Rn×Mn (5.16)

is exactly n. Since the ei’s are distinct, we can assume without loss of generality that {[xi, zi]}ni=1

are already distinct and that zi 6= 0.4 Then, after dividing the ith row of U by zni and letting

ti = xi/zi, we can extract the following Van Der Monde sub-matrix of U

V
.
=




tn−1
1 tn−2

1 · · · 1

tn−1
2 tn−2

2 · · · 1
...

...
. . .

...

tn−1
n tn−2

n · · · 1



∈ Rn×n. (5.17)

Since det(V ) =
∏
i<j(ti − tj), the Van Der Monde matrix V has rank n if and only if t1, . . . , tn

are distinct. Hence rank(U) = rank(V ) = n.

Even though we know that the linearly independent vectors νn(ei)’s lie on the left null

space of F , we do not know if the n-dimensional subspace spanned by them will be exactly the left

null space of F , i.e., we do not know if rank(F) = Mn − n.

Now, if one of the epipoles is repeated, then the null space of F is actually enlarged by

higher-order derivatives of the Veronese map as stated by the following Lemma.

Lemma 6 (Null space of F when one epipole is repeated) Let F be the multibody fundamental

matrix generated by the fundamental matrices F1, . . . , Fn with epipoles e1, . . . , en. Let e1 be

repeated k times, i.e., e1 = · · · = ek, and let the other n− k epipoles be distinct. Then the rank of

the multibody fundamental matrix F is bounded by

rank(F) ≤Mn −Mk−1 − (n− k). (5.18)

4This assumption is not always satisfied, e.g., for n = 3 motions with epipoles along the X , Y and Z axis. However,
as long as the ei’s are distinct, one can always find a non-singular linear transformation ei 7→ Tei on R3 that makes
the assumption true. Furthermore, this linear transformation induces a linear transformation on the lifted space RMn that
preserves the rank of the matrix U .
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Proof. When k = 2, e1 = e2 is a “repeated root” of νn(x)TF as a polynomial (matrix) in x =

[x, y, z]T . Hence we have

∂νn(x)T

∂x
F
∣∣∣
x=e1

= 0,
∂νn(x)T

∂y
F
∣∣∣
x=e1

= 0,
∂νn(x)T

∂z
F
∣∣∣
x=e1

= 0.

Notice that the Jacobian of the Veronese map Dνn(x) is full rank for all x ∈ P2, because for n ≥ 2

we have Dνn(x)TDνn(x) � xTx I3×3. Thus, the vectors ∂νn(e1)
∂x , ∂νn(e1)

∂y , ∂νn(e1)
∂z are linearly

independent, because they are the columns of Dνn(e1) and e1 6= 0. In addition, their span contains

νn(e1), because

nνn(x) = Dνn(x)x
.
=

[
∂νn(x)

∂x
,
∂νn(x)

∂y
,
∂νn(x)

∂z

]
x, ∀x ∈ R3, (5.19)

but does not containt νn(ei) for i = 3, . . . , n. Hence rank(F) ≤ Mn −M1 − (n − 1) = Mn −
3 − (n − 1). Now if k > 2, one should consider the (k − 1)th order partial derivatives of νn(x)

evaluated at e1. There is a total of Mk−1 such partial derivatives, which give rise to Mk−1 linearly

independent vectors in the (left) null space of F . Similarly to the case k = 2, one can show that the

embedded epipole νn(e1) is in the span of these higher-order partials.

Example 10 (Two repeated epipoles) In the two-body problem, if F1 and F2 have the same (left)

epipole, i.e., F1 = [T ]×R1 and F2 = [T ]×R2, then the rank of the two-body fundamental matrix F
is M2 −M1 − (2− 2) = 6− 3 = 3 instead of M2 − 2 = 4.

Since the null space of F is enlarged by higher-order derivatives of the Veronese map

evaluated at repeated epipoles, in order to identify the embedded epipoles νn(ei) from the left null

space of F we will need to exploit the algebraic structure of the Veronese map. Let us denote

the image of the real projective space P2 under the Veronese map of degree n as νn(P2).5 The

following theorem establishes a key relationship between the null space of F and the epipoles of

each fundamental matrix.

Theorem 12 (Veronese null space of multibody fundamental matrix) The intersection of the left

null space of the multibody fundamental matrix F , null(F), with the Veronese surface νn(P2) is ex-

actly

null(F) ∩ νn(P2) = {νn(ei)}ni=1. (5.20)

5This is the so-called (real) Veronese surface in Algebraic Geometry [22].
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Proof. Let x ∈ P2 be a vector whose Veronese map is in the left null space of F . We then have

νn(x)TF = 0 ⇔ νn(x)TFνn(y) = 0,∀y ∈ P2. (5.21)

Since F is a multibody fundamental matrix,

νn(x)TFνn(y) =
n∏

i=1

(
xTFiy

)
.

This means for this x,
n∏

i=1

(xTFiy) = 0, ∀y ∈ P2. (5.22)

If xTFi 6= 0 for all i = 1, . . . , n, then the set of y that satisfy the above equation is simply the

union of n 2-dimensional subspaces in P2, which will never fill the entire space P2. Hence we must

have xTFi = 0 for some i. Therefore x is one of the epipoles.

The significance of Theorem 12 is that, in spite of the fact that repeated epipoles may

enlarge the null space of F , and that we do not know if the dimension of the null space equals n for

distinct epipoles, one may always find the epipoles exactly by intersecting the left null space of F
with the Veronese surface νn(P2), as illustrated in Figure 5.2.

PSfrag replacements

νn(P2)

null(F)

RMn

νn(ei)

Figure 5.2: The intersection of νn(P2) and null(F) is exactly n points representing the Veronese
map of the n epipoles, repeated or not.

The question is now how to actually compute the intersection of null(F) with νn(P2).

One possible approach, explored in [70] for n = 2 and generalized in [64] to n ≥ 2, consists of

determining a vector v ∈ Rn such that Bv ∈ νn(P2), where B is a matrix whose columns form a
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basis for the (left) null space of F . Finding v, hence the epipoles, is equivalent to solving for the

roots of polynomials of degree n in n − 1 variables. Although this is feasible for n = 2 and even

for n = 3, it is computationally formidable for n > 3.

In the next section, we take a completely different approach that combines the multibody

epipolar geometry developed so far with the GPCA problem studied in Chapter 3. In essence,

we will show that the epipolar lines can be directly computed from the partial derivatives of the

multibody epipolar constraint, while the epipoles can be computed by applying GPCA to the set of

epipolar lines. Given the epipoles and the epipolar lines, the computation of individual fundamental

matrices becomes a linear problem.

5.5 Multibody motion estimation and segmentation

Given the multibody fundamental matrix F and the number of independent motions n,

we are now interested in recovering the motion parameters (or fundamental matrices) and the seg-

mentation of the image points. In this section, we show how to solve these two problems from the

epipoles of each fundamental matrix and the epipolar lines associated with each image point. We

first show that one can estimate the epipolar line associated with each image pair from the partial

derivatives of the multibody epipolar constraint. Given the epipolar lines, the estimation of the

epipoles will be based on the factorization of a given homogeneous polynomial of degree n in 3

variables into n distinct polynomials of degree 1, i.e., the GPCA problem discussed in Chapter 3.

Once the epipoles and the epipolar lines have been estimated, the estimation of individual funda-

mental matrices becomes a simple linear problem from which the segmentation of the image points

can be automatically obtained.

5.5.1 Estimating the epipolar lines {`j}Nj=1

Given a point x1 in the first image frame, the epipolar lines associated with it are defined

as `i
.
= Fix1 ∈ R3, i = 1, . . . , n. From the epipolar constraint, we know that one of such lines

passes through the corresponding point in the second frame x2, i.e., there exists an i such that

xT2 `i = 0. Let F be the multibody fundamental matrix. We have that

E(x1,x2) = νn(x2)TFνn(x1) =
n∏

i=1

(
xT2 Fix1

)
=

n∏

i=1

(xT2 `i), (5.23)
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from which we conclude that the vector ˜̀ .
= Fνn(x1) ∈ RMn represents the coefficients of the

homogeneous polynomial in x

gn(x)
.
= (xT `1)(xT `2) · · · (xT `n) = νn(x)T ˜̀. (5.24)

We call the vector ˜̀ the multibody epipolar line associated with x1. Notice that ˜̀ is a vector

representation of the symmetric tensor product of all the epipolar lines `1, . . . , `n and is in general

not the Veronese map (or lifting) νn(`i) of any particular epipolar line `i, i = 1, . . . , n.

From ˜̀, we can compute the individual epipolar lines {`i}ni=1 associated with any image

point x1 using the polynomial factorization technique given in Section 3.3.2. Given the n epipolar

lines {`i}ni=1 associated with x1, we can compute the epipolar line associated with the image pair

(x1,x2) in the second view as the vector `i that minimizes (xT2 `i)
2.

In essence, the multibody fundamental matrix F allows us to “transfer” a point x1 in the

first image to a set of epipolar lines in the second image. This is exactly the multibody version of

the conventional “epipolar transfer” that maps a point in the first image to an epipolar line in the

second image. The multibody epipolar transfer process can be described by the sequence of maps

x1
V eronese7−→ νn(x1)

Epipolar Transfer7−→ Fνn(x1)
Polynomial Factorization7−→ {`i}ni=1,

which is illustrated geometrically in Figure 5.3.

PSfrag replacements

I1 I2

Fx1

e1

e2
en

`1

`2

`n

Figure 5.3: The multibody fundamental matrixF maps each point x1 in the first image to n epipolar
lines `1, . . . , `n which pass through the n epipoles e1, . . . , en respectively. Furthermore, one of
these epipolar lines passes through x2.

Inspired by the GPCA polynomial differentiation algorithm described in Section 3.3.3,

we now present a simpler and more elegant way of computing the epipolar line ` associated with

an image pair (x1,x2). To this end, we notice from equation (5.23) that the partial derivate of the

multibody epipolar constraint with respect to x2 is given by

∂

∂x2
νn(x2)TFνn(x1) =

n∑

i=1

∏

`6=i
(xT2 F`x1)(Fix1). (5.25)
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Therefore, if the image pair (x1,x2) corresponds to motion i, i.e., if xT2 Fix1 = 0, then

∂

∂x2
νn(x2)TFνn(x1) =

∏

`6=i
(xT2 F`x1)(Fix1) ∼ Fix1 = `i. (5.26)

In other words, the partial derivative of the multibody epipolar constraint with respect to x2 eval-

uated at (x1,x2) is proportional to the epipolar line associated with (x1,x2) in the second view.

Similarly, the partial derivative of the multibody epipolar constraint with respect to x1 evaluated at

(x1,x2) is proportional to the epipolar line associated with (x1,x2) in the first view.

Remark 35 Notice that if a particular image pair (x1,x2) belongs to two motions, then the multi-

body epipolar constraint has a repeated factor, hence its derivative at that image pair is zero. There-

fore, we cannot compute the epipolar line associated with image pairs that correspond to two or

more motions from the derivatives of the multibody fundamental matrix.

We summarize our discussion so far with the following statement.

Theorem 13 (Epipolar lines from the multibody fundamental matrix) Let F ∈ RMn×Mn be a

multibody fundamental matrix generated by n different fundamental matrices {Fi}ni=1. Also let

(x1,x2) be an image pair associated with only one of the motions, i.e., xT2 (Fi − Fj)x1 6= 0 for

i 6= j = 1, . . . , n. Then one can compute the epipolar line `1 associated with the image pair

(x1,x2) in the first view as

`1 ∼
∂

∂x1
νn(x2)TFνn(x1), (5.27)

and the epipolar line `2 associated with the image pair (x1,x2) in the second view as

`2 ∼
∂

∂x2
νn(x2)TFνn(x1). (5.28)

5.5.2 Estimating the epipoles {ei}ni=1

Given a set of epipolar lines, we now describe how to compute the epipoles. Recall that

the (left) epipole associated with each rank-2 fundamental matrix Fi ∈ R3×3 is defined as the vector

ei ∈ R3 lying in the (left) null space of Fi, that is ei satisfies that eTi Fi = 0. Now let ` ∈ R3 be

an arbitrary epipolar line associated with some image point in the first frame. Then there exists

an i such that eTi ` = 0. Therefore, every epipolar line ` has to satisfy the following polynomial

constraint

hn(`)
.
= (eT1 `)(e

T
2 `) · · · (eTn`) = ẽT νn(`) = 0, (5.29)
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regardless of the motion with which it is associated. We call the vector ẽ ∈ RMn the multibody

epipole associated with the n motions. As before, ẽ is a vector representation of the symmetric

tensor product of the individual epipoles e1, . . . , en and it is in general different from any of the

embedded epipoles νn(ei), i = 1, . . . , n.

Given a collection {`j}mj=1 of m ≥ Mn − 1 epipolar lines (which can be computed from

the multibody epipolar transfer or from the derivatives of the multibody epipolar constraint), we can

obtain the multibody epipole ẽ ∈ RMn as the solution to the linear system

Pnẽ
.
=




νn(`1)T

νn(`2)T

...

νn(`m)T



ẽ = 0. (5.30)

In order for equation (5.30) to have a unique solution (up to a scale factor), we will need

to replace n by the number of distinct epipoles ne, as stated by the following proposition:

Proposition 5 (Number of distinct epipoles) Let {`j}mj=1 be a given collection of m ≥ Mn − 1

epipolar lines corresponding to 3-D points in general configuration and undergoing n distinct rigid

body motions with nonzero translation (relative to the camera). Let Pi ∈ RN×Mi be the matrix

defined in (5.30), but computed using the Veronese map νi of degree i ≥ 1. Then we have

rank(Pi)





> Mi − 1, if i < ne,

= Mi − 1, if i = ne,

< Mi − 1, if i > ne.

(5.31)

Therefore, the number of distinct epipoles ne ≤ n is given by

ne
.
= min{i : rank(Pi) = Mi − 1}. (5.32)

Proof. Similar to the proof of Theorem 11.

Once the number of distinct epipoles, ne, has been computed, the vector ẽ ∈ Mne can

be obtained from the linear system Pne ẽ = 0. Once ẽ has been computed, the individual epipoles

{ei}nei=1 can be computed from ẽ by applying any of the GPCA algorithms for hyperplanes to the

data {`j}mj=1, as described in Section 3.3. We illustrate the computation of the epipoles in Figure

5.4. Each epipole ei corresponds to the intersection of the epipolar lines associated with the ith

motion. Either of the GPCA algorithms performs all such intersections simultaneously without

knowing the segmentation of the epipolar lines.
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Figure 5.4: When n objects move independently, the epipolar lines in the second view associated
with each image point in the first view form ne groups and intersect respectively at ne distinct
epipoles in the second view.

5.5.3 Estimating the individual fundamental matrices {Fi}ni=1

Given the epipolar lines and the epipoles, we show now how to recover each one of the

individual fundamental matrices {Fi}ni=1. To avoid degenerate cases, we assume that all the epipoles

are distinct,6 i.e.,

ne = n.

We first notice that, thanks to Theorem 13, given each image pair (xj1,x
j
2), j = 1, . . . , N ,

we know how to compute its epipolar line `j in the second view. Furthermore, from our discus-

sion in Section 5.5.2, we also know how to compute the n different epipoles. Therefore, we can

immediately compute the fundamental matrices using either of the following procedures

1. Fundamental matrices from eight-point algorithm: Assign image pair (xj1,x
j
2) to group i if

i = arg min`=1,...n(eTi `
j)2. Then compute the fundamental matrix Fi by applying the eight-

point algorithm to the image pairs in group i, where i = 1, . . . , n.

2. Fundamental matrices from epipolar lines: Assign the jth image point xj1 to group i if i =

arg min`=1,...n(eTi `
j)2. If the image point xj1 belongs to group i, then we must have `j ∼

6Notice that this is not a strong assumption. If two individual fundamental matrices share the same (left) epipoles,
one can consider the right epipoles (in the first image frame) instead, because it is extremely rare that two motions give
rise to the same left and right epipoles. In fact, this happens only when the rotation axes of the two motions are equal to
each other and parallel to the translation direction.
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Fix
j
1. Therefore, we can compute fundamental matrix Fi by solving the set of equations

[`j ]×Fix
j
1 = 0 for all j in group i. (5.33)

We summarize the results of Sections 5.5.1- 5.5.3 with the following statement:

Theorem 14 (Factorization of the multibody fundamental matrix)

Let F ∈ RMn×Mn be the multibody fundamental matrix associated with fundamental matrices

{Fi ∈ R3×3}ni=1. If the n epipoles {ei : eTi Fi = 0} are distinct, then the matrices {Fi}ni=1 can

be uniquely determined (up to a scale factor) using polynomial factorization. Therefore, motion

estimation and segmentation can be solved in closed form if and only if n ≤ 4.

5.5.4 Segmenting the feature points

Feature segmentation refers to the problem of assigning each image pair {(xj1,xj2)}Nj=1, to

the motion it corresponds. We notice from the previous section that both algorithms for estimating

the fundamental matrices are based on first clustering the image pairs from epipoles and epipolar

lines. More specifically, an image pair (xj1,x
j
2) is assigned to group i if

i = arg min
`=1,...n

(eTi `
j)2.

In the presence of noise, one could improve the clustering of the feature points by using

the already computed fundamental matrices. For example, we can assign image pair (xj1,x
j
2) to

group i if

i = arg min
`=1,...,n

(xjT2 Fix
j
1)2. (5.34)

However, the square of the epipolar constraint is only an algebraic way of measuring how close an

image pair (x1,x2) is to satisfying the epipolar constraint. In the presence of noise, we assign image

pair (xj1,x
j
2) to the group i that minimizes the square of the normalized epipolar constraint7 [36],

i.e.,

i = arg min
`=1,...,n

(xjT2 Fix
j
1)2

‖[e3]×F Ti x
j
2‖2 + ‖[e3]×Fix

j
1‖2

. (5.35)

Figure 5.5 illustrates how a particular image pair, say (x1,x2), which belongs to the ith

motion, i = 1, . . . , n is successfully segmented.

7We will justify the choice of the normalized epipolar constraint in Section 5.6.
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Fνn(x1) ∈ RMn

xT2 `k = 0

(x1,x2) ∈ ith motion
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{`1, . . . , `n ∈ R3}

Figure 5.5: Transformation diagram associated with the segmentation of an image pair (x1,x2) in
the presence of n motions.

5.5.5 Two-view multibody structure from motion algorithm

We are now ready to present a complete algorithm for multibody motion estimation

and segmentation from two perspective views. Given a collection of N ≥ M 2
n − 1 image pairs

{(xj1,xj2)}Nj=1, Algorithm 10 determines the number of independent motions n, the individual fun-

damental matrices {Fi}ni=1 and the segmentation of the image pairs. Therefore, Algorithm 10 is a

natural generalization of the eight-point algorithm to the case of multiple rigid motions.

However, we must notice that a drawback of Algorithm 10 is that it needs a lot of image

pairs in order to compute the multibody fundamental matrix, which often makes it impractical for

large n (See Remark 36 below). In practice, one can significantly reduce the data requirements by

incorporating partial knowledge about the motion or segmentation of the objects with minor changes

in the general algorithm. We discuss a few of such possible variations below.

Multiple linearly moving objects. In many practical situations, the motion of the objects can be

well approximated by a linear motion, i.e., there is only translation but no rotation. As discussed

in Section 3.9.4, in this case the epipolar constraint reduces to xT2 [ei]×x1 = 0 or eTi [x2]×x1 = 0,

where ei ∈ R3 represents the epipole associated with the ith motion, i = 1, . . . , n. Therefore,

the vector ` = [x2]×x1 ∈ R3 is an epipolar line satisfying gn(`) = (eT1 `)(e
T
2 `) · · · (eTn`) = 0.
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Algorithm 10 (Two-view multibody structure from motion algorithm).

Given a collection of image pairs {(xj1,xj2)}Nj=1 of points undergoing n different rigid motions

relative to the camera, recover the number of independent motions n, the fundamental matrix Fi

associated with motion i = 1, . . . , n, and the motion associated with each image pair as follows:

1. Number of motions. Compute the number of independent motions n from the rank con-

straint in (5.9), by applying the Veronese map of degree i = 1, 2, . . . , n to the image points

{(xj1,xj2)}Nj=1.

2. Multibody fundamental matrix. Compute the multibody fundamental matrix F as the so-

lution of the linear system Lnf = 0 in (5.7), using the Veronese map of degree n.

3. Epipolar transfer. For each image point {xj1}Nj=1 compute its epipolar line in the second

view {`j}Nj=1 from the partial derivative of the multibody epipolar constraint with respect to

x2 evaluated at (xj1,x
j
2), as described in Theorem 13.

4. Multibody epipole. Use the epipolar lines {`j}Nj=1 to estimate the multibody epipole ẽ as

the coefficients of the polynomial hn(`) in (5.29) by solving the system Pnẽ = 0 in (5.30).

5. Individual epipoles. Use the polynomial factorization algorithm of Section 3.3.2 or the poly-

nomial differentiation algorithm of Section 3.3.3 to compute the individual epipoles {ei}ni=1

from the multibody epipole ẽ∈RMn .

6. Individual fundamental matrices. Assign each image pair (xj1,x
j
2) to group i if i =

arg min`=1,...n(eTi `
j)2, and then compute the fundamental matrix Fi from the set of linear

equations xjT2 Fix
j
1 = 0 or [`j ]×Fix

j
1 = 0, as described in Section 5.5.3.

7. Feature segmentation from fundamental matrices. Assign image pair (xj1,x
j
2) to motion

i if

i = arg min
`=1,...,n

(xjT2 Fix
j
1)2

‖[e3]×F Ti x
j
2‖2 + ‖[e3]×Fix

j
1‖2

.
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Therefore, given a set of image pairs {(xj1,xj2)}Nj=1 corresponding to N points undergoing n dis-

tinct linear motions {ei ∈ R3}ni=1, one can use the set of epipolar lines {`j = [xj2]×x
j
1}Nj=1 to

estimate the epipoles ei using Steps 4 and 5 of Algorithm 10. Notice that the epipoles are re-

covered directly using polynomial factorization or differentiation without estimating the multibody

fundamental matrix F first. Furthermore, given the epipoles, the fundamental matrix is trivially

obtained as Fi = [ei]×. The segmentation of the image points is then obtained from Step 7 of

Algorithm 10. We conclude that if the motions are linear, we only need N = Mn − 1 image pairs

versus N = M2
n − 1 needed in the general case. So when n is large, the number of image pairs

needed grows asO(n2) for the linear motion case versusO(n4) for the general case. In other words,

the number of feature points that need to be tracked on each object grows linearly in the number of

independent motions. For instance, when n = 10, one only needs to track 7 points on each object,

which is a mild requirement given that the case n = 10 occurs rather rarely in most applications.

Constant motions. In many vision and control applications, the motion of the objects in the scene

changes slowly relative to the sampling rate. Thus, if the image sampling rate is even, we may

assume that for a number of image frames, say m, the motion of each object between consecutive

pairs of images is the same. Hence all the feature points corresponding to the m − 1 image pairs

in between can be used to estimate the same multibody fundamental matrix. For example, when

m = 5 and n = 4, we only need to track (M 2
4 − 1)/4 = 225/4 ≈ 57 image points between each of

the 4 consecutive pairs of images instead of 255. That is about 57/4 ≈ 15 features on each object

on each image frame, which is rather feasible to do in practice. In general if m = O(n), O(n2)

feature points per object need to be tracked in each image. For example, when m = n+ 1 = 6, one

needs to track about 18 points on each object, which is not so demanding given the nature of the

problem.

Internal structure of the multibody fundamental matrix. The only step of Algorithm 10 that

requiresO(n4) image pairs is the estimation of the multibody fundamental matrixF . Step 2 requires

a lot of data points, because F is estimated linearly without taking into account the rich internal

(algebraic) structure of F (e.g., rank(F) ≤ Mn − n). In the future, we expect to be able to reduce

the number of image pairs needed by considering constraints among entries of F , in the same spirit

that the well-known 8-point algorithm for n = 1 can be reduced to 7 points if the algebraic property

det(F ) = 0 is used.
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Remark 36 (Comments about the algorithm)

1. Repeated epipoles. If two individual fundamental matrices share the same (left) epipoles, we

cannot segment the epipolar lines as described in Step 6 of Algorithm 10. In this case, one

can consider the right epipoles (in the first image frame) instead, since it is extremely rare

that two motions give rise to the same left and right epipoles.8

2. Repeated roots. If in Step 5 one uses polynomial factorization to recover the epipoles, then

recall from Section 3.3.2 that when the polynomial qn(t) in (3.22) has repeated roots or more

than one of its leading coefficient is zero one must pre-apply a linear transformation (3.31) to

the polynomial pn(x) before factoring it.

3. Algebraic solvability. The only nonlinear part of Algorithm 10 is to solve for the roots of

univariate polynomials of degree n in Step 5. Therefore, the multibody structure from motion

problem is algebraically solvable (i.e., there is closed form solution) if and only if the number

of motions is n ≤ 4 (see [34]). When n ≥ 5, the above algorithm must rely on a numerical

solution for the roots of those polynomials.

4. Computational complexity. In terms of data, Algorithm 10 requires O(n4) image pairs to

estimate the multibody fundamental matrix F associated with the n motions. In terms of

numerical computation, it needs to factor O(n) polynomials9 and hence solve for the roots of

O(n) univariate polynomials of degree n.10 As for the rest of computation, which can be well

approximated by the most costly Steps 1 and 2, the complexity is about O(n6).

5. Special motions and structures. Algorithm 10 works for distinct motions with nonzero trans-

lation. Future research is needed for special motions, e.g., pure rotation or repeated epipoles

parallel to the rotation axis, and for special structures, e.g., planar objects. We gave a solu-

tion for the case of linearly moving objects in Section 3.9.4.

6. Noise sensitivity. Algorithm 10 gives a purely algebraic solution to the multibody structure

from motion problem. Future research will need to address the sensitivity of the algorithm to

8This happens only when the rotation axes of the two motions are equal to each other and parallel to the translation
direction.

9One needs about Mn − 1 ≈ O(n2) epipolar lines to compute the epipoles and fundamental matrices, which can be
obtained from O(n) polynomial factorizations since each one generates n epipolar lines. Hence it is not necessary to
compute the epipolar lines for all N = M 2

n − 1 ≈ O(n4) image pairs in Step 3.
10The numerical complexity of solving for the roots for an nth order polynomial in one variable is polynomial in n for

a given error bound, see [47].
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noise in the image measurements. In particular, one should pay attention to Step 2, which is

sensitive to noise, because it does not exploit the algebraic structure of the multibody funda-

mental matrix F .

7. Optimality. Notice that linearly solving for the multibody fundamental matrix through the

Veronese embedding is sub-optimal from a statistical point of view. We will derive the optimal

function for motion estimation and segmentation in Section 5.6.

At the end of our theoretical development, Table 5.1 summarizes our results with a com-

parison of the geometric entities associated with two views of 1 rigid body motion and two views

of n rigid body motions.

Comparison of 2 views of 1 body 2 views of n bodies

An image pair x1,x2 ∈ R3 νn(x1), νn(x2) ∈ RMn

Epipolar constraint xT2 Fx1 = 0 νn(x2)TFνn(x1) = 0

Fundamental matrix F ∈ R3×3 F ∈ RMn×Mn

Linear estimation from

N image pairs




x1
2 ⊗ x1

1

x2
2 ⊗ x2

1

...

xN2 ⊗ xN1



f = 0




νn(x1
2)⊗ νn(x1

1)

νn(x2
2)⊗ νn(x2

1)
...

νn(xN2 )⊗ νn(xN1 )



f = 0

Epipole eTF = 0 νn(e)TF = 0

Epipolar lines ` = Fx1 ∈ R3 ˜̀ = Fνn(x1) ∈ RMn

Epipolar line & point xT2 ` = 0 νn(x2)T ˜̀ = 0

Epipolar line & epipole eT ` = 0 ẽT νn(`) = 0

Table 5.1: Comparison between the geometry for two views of 1 rigid body motion and the geometry
of n rigid body motions.

5.6 Optimal segmentation of 3-D rigid motions

The two-view multibody structure from motion algorithm provides an algebraic geometric

solution to the problem of estimating a collection of fundamental matrices {Fi}ni=1 from image pairs

{(xj1,xj2)}Nj=1. In essence, Algorithm 10 solves the set of nonlinear equations
∏n
i=1(xjT2 Fix

j
1) = 0,

j = 1, . . . , N , in a “linear” fashion by embedding the image pairs into a higher-dimensional space

via the Veronese map.
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However, such a “linear” solution is obtained at the cost of neglecting the internal non-

linear structure of the multibody fundamental matrix F . For example, the algorithm solves for

M2
n − 1 unknowns in F ∈ RMn×Mn from equation (5.7), even though there are only 8n un-

knowns in the fundamental matrices {Fi}ni=1 (5n in the calibrated case). In practice, solving for

an over-parameterized representation of the multibody fundamental matrix can be very sensitive in

the presence of noise. One way of resolving this problem is to replace the algebraic algorithm by an

optimization problem in which one obtains the individual fundamental matrices by minimizing the

algebraic error

EA(F1, . . . , Fn) =
N∑

j=1

(νn(xj2)TFνn(xj1))2 =
N∑

j=1

n∏

i=1

(xjT2 F Ti x
j
1)2. (5.36)

This nonlinear solution in fact provides a more robust estimate of the fundamental matrices, be-

cause it uses a minimal representation of the unknowns. However, the solution to this optimization

problem is not optimal, because the algebraic error in (5.36) does not coincide with the negative

log-likelihood of the motion parameters.

In this section, we derive an optimal algorithm for estimating the fundamental matrices

when the image pairs are corrupted with i.i.d. zero-mean Gaussian noise. We show that the optimal

solution can be obtained by minimizing a function similar to the algebraic error in (5.36), but prop-

erly normalized. We cast the motion segmentation problem as a constrained nonlinear least squares

problem which minimizes the re-projection error subject to all the multibody epipolar constraints.

Since the multibody epipolar constraint is satisfied by all image pairs, irrespective of the segmenta-

tion, we do not need to model the membership of the image pairs to each one of the rigid motions

with a probability distribution. Hence, we do not need to iterate between feature segmentation and

single body motion estimation, as in EM-like techniques. In fact, the segmentation (E-step) is alge-

braically eliminated by the multibody epipolar constraint, which leads to an objective function that

depends only on the motion parameters (fundamental matrices).

Let {(xj1,xj2)}Nj=1 be the given collection of noisy image pairs. We would like to find

a collection of fundamental matrices {Fi}ni=1 such that the corresponding noise free image pairs

{(x̃j1, x̃j2)}Nj=1 satisfy the multibody epipolar constraint νn(x̃j2)TFνn(x̃j1) = 0. Since for the Gaus-

sian noise model the negative log-likelihood is equal to the re-projection error (up to constant terms),
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we obtain the constrained optimization problem11

min
∑N

j=1 ‖x̃
j
1 − xj1‖2 + ‖x̃j2 − xj2‖2

subject to νn(x̃j2)TFνn(x̃j1) = 0 j = 1, . . . , N.
(5.37)

By using Lagrange multipliers λj ∈ R for each constraint, the above optimization prob-

lem is equivalent to minimizing

N∑

j=1

‖x̃j1 − xj1‖2 + ‖x̃j2 − xj2‖2 + λjνn(x̃j2)TFνn(x̃j1). (5.38)

Let

Λ =




1 0 0

0 1 0

0 0 0


 = [e3]T×[e3]×, (5.39)

with e3 = [0, 0, 1]T ∈ R3, be the projection matrix eliminating the third entry of any image point

x = [x, y, 1]T ∈ R3. Since Λ(x̃ − x) = (x̃ − x), after left-multiplying the partial derivatives of

the Lagrangian (5.38) with respect to x̃j1 and x̃j2 by the projection matrix Λ we obtain

2(x̃j1 − xj1) + λjΛ
(
Dνn(x̃j1)

)T
FT νn(x̃j2) = 0, (5.40)

2(x̃j2 − xj2) + λjΛ
(
Dνn(x̃j2)

)T
Fνn(x̃j1) = 0, (5.41)

where Dνn(x) ∈ RMn×3 is the Jacobian of the Veronese map νn.

For ease of notation, let us also define

gj1 = (Dνn(x̃j1))TFT νn(x̃j2) and gj2 = (Dνn(x̃j2))TFνn(x̃j1). (5.42)

Then, since ΛTΛ = Λ2 = Λ, after left-multiplying (5.40) and (5.41) by gjT1 Λ and gjT2 Λ, respec-

tively, we obtain

2gjT1 Λ(x̃j1 − xj1) + λj‖[e3]×g
j
1‖2 = 0, (5.43)

2gjT2 Λ(x̃j2 − xj2) + λj‖[e3]×g
j
2‖2 = 0. (5.44)

11Notice that the optimization problem (5.37) does not include as an additional constraint the fact that the third entry
of each image point x = [x, y, 1]T ∈ R3 is equal to one. We will implicitly eliminate such constraints and their
associated Lagrange multipliers by left-multiplying the partial derivatives of the Lagrangian (5.38) by the projection
matrix Λ in (5.39).
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Since Λ(x̃ − x) = (x̃ − x), Dνn(x̃)x̃ = nνn(x̃) and νn(x̃2)Fνn(x̃1) = 0, we obtain

gjT1 x̃
j
1 = gjT2 x̃

j
2 = 0. Therefore, we have

−2gjT1 x
j
1 + λj‖[e3]×g

j
1‖2 = 0, (5.45)

−2gjT2 x
j
2 + λj‖[e3]×g

j
2‖2 = 0, (5.46)

from which we can solve for λj as

λj =
2
(
gjT1 x

j
1 + gjT2 x

j
2

)

‖[e3]×g
j
1‖2 + ‖[e3]×g

j
2‖2

. (5.47)

Similarly, after left-multiplying (5.40) by (x̃j1 − xj1)T and (5.41) by (x̃j2 − xj2)T we get

2‖x̃j1 − xj1‖2 − λjgjT1 xj1 = 0, (5.48)

2‖x̃j2 − xj2‖2 − λjgjT2 xj2 = 0, (5.49)

from which the re-projection error for point j is given by

‖x̃j1 − xj1‖2 + ‖x̃j2 − xj2‖2 =
λj

2
(gjT1 x

j
1 + gjT2 x

j
2). (5.50)

After replacing (5.47) in the previous equation, we obtain the following expression for the

total re-projection error

ẼO({Fi}ni=1, {(x̃j1, x̃j2)}Nj=1)
.
=

N∑

j=1

(gjT1 x
j
1 + gjT2 x

j
2)2

‖[e3]×g
j
1‖2 + ‖[e3]×g

j
2‖2

= (5.51)

=
N∑

j=1

(xjT1 (Dνn(x̃j1))TFT νn(x̃j2) + xjT2 (Dνn(x̃j2))TFνn(x̃j1))2

‖[e3]×(Dνn(x̃j1))TFTνn(x̃j2)‖2+‖[e3]×(Dνn(x̃j2))TFνn(x̃j1)‖2
.

Since ν1(x) = x and Dν1(x) = I , by letting n = 1 in the above expression we no-

tice that ẼO is a natural generalization of the well-known optimal function for estimating a single

fundamental matrix F ∈ R3×3, which is given by [36]

ẼO(F, {(x̃j1, x̃j2)}Nj=1) =
N∑

j=1

(xjT1 F T x̃j2 + xjT2 F x̃j1)2

‖[e3]×F T x̃
j
2‖2 + ‖[e3]×F x̃

j
1‖2

. (5.52)
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Remark 37 Notice that the optimal error ẼO has a very intuitive interpretation. If point j belongs

to group i, then x̃jT2 Fix̃
j
1 = 0. This implies that

gjT1 = νn(x̃j2)TFDνn(x̃j1) =
∂

∂x̃j1

(
νn(x̃j2)TFνn(x̃j1)

)
(5.53)

=
∂

∂x̃j1

(
n∏

i=1

x̃jT2 Fix̃
j
1

)
=

n∑

i=1




n∏

`6=i
x̃jT2 F`x̃

j
1


 (x̃jT2 Fi) (5.54)

=
( n∏

6̀=i
x̃jT2 F`x̃

j
1

)
(x̃jT2 Fi), (5.55)

and similarly

gjT2 =
( n∏

`6=i
x̃jT2 F`x̃

j
1

)
(x̃jT1 F Ti ). (5.56)

Therefore, the factor
∏n
6̀=i(x̃

jT
2 F`x̃

j
1) is in both the numerator and the denominator of ẼO. Hence

the contribution of point j to the error ẼO reduces to

(x̃jT2 Fix
j
1 + xjT2 Fix̃

j
1)2

‖[e3]×F Ti x̃
j
2‖2 + ‖[e3]×Fix̃

j
1‖2

, (5.57)

which is the same as the contribution of point j to the optimal function for a single fundamental

matrix Fi in (5.52). Therefore, the objective function ẼO is just a clever algebraic way of simulta-

neously writing a mixture of optimal objective functions for individual fundamental matrices into a

single objective function for all the fundamental matrices.

We now derive an objective function that depends on the motion parameters only. As in

the case of a single fundamental matrix [36], this can be done by considering the first order statistics

of νn(xj2)TFνn(xj1). It turns out that this is equivalent to setting x̃j = xj in the above expression

for ẼO. Since Dνn(x)x = nνn(x) we obtain the following function of the fundamental matrices

EO(F1, . . . , Fn)
.
=

N∑

j=1

4n2(νn(xj2)TFνn(xj1))2

‖[e3]×(Dνn(xj1))TFT νn(xj2)‖2 + ‖[e3]×(Dνn(xj2))TFνn(xj1)‖2
.

Notice that EO is just a normalized version of the algebraic error (5.36). Furthermore,

when n = 1, EO reduces to the well-known objective function, the so-called normalized epipolar

constraint or Sampson distance, for estimating a single fundamental matrix F ∈ R3×3 [36]

EO(F ) =

N∑

j=1

4(xjT2 Fxj1)2

‖[e3]×F Tx
j
2‖2 + ‖[e3]×Fx

j
1‖2

. (5.58)
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Notice that (5.58) can also be obtained by setting x̃ = x in (5.52). Therefore, the objective function

EO(F1, . . . , Fn) is a natural generalization of well-known objective function EO(F ) in single body

structure from motion.

In summary, we have derived an objective function from which one can simultaneously

estimate all the fundamental matrices {Fi}ni=1 using all the image pairs {(xj1,xj2)}Nj=1, without prior

segmentation of the image measurements. The fundamental matrices can be obtained by minimizing

EO using standard nonlinear optimization techniques. One can use the multibody linear algorithm

(Algorithm 10) to initialize the number of motions and the fundamental matrices.

Remark 38 (Pure translation and calibrated cases) The case of linearly moving objects (see Sec-

tion 3.9.4) or calibrated cameras can be easily handled by properly parameterizing the fundamental

matrices and then minimizing over fewer parameters.

5.7 Experimental results

In this section, we present simulation results that evaluate the performance of our nonlin-

ear motion segmentation algorithm with respect to the number of motions n for different levels of

noise. We also present experimental results on the segmentation of an indoor sequence.

We first test the algorithm on synthetic data. We randomly pick n = 1, 2, 3, 4 collections

ofN = 100 feature points and apply a different (randomly chosen) rigid body motion (Ri, Ti), with

Ri ∈ SO(3) the rotation and Ti ∈ R3 the translation. Zero-mean Gaussian noise with standard

deviation (std.) from 0 to 2.5 pixels is added to the images x1 and x2. We run 1000 trials for

each noise level. For each trial the error between the true motions {(Ri, Ti)}ni=1 and the estimates

{(R̂i, T̂i)}ni=1 is computed as

Rotation error =
1

n

n∑

i=1

acos
( trace(RiR̂

T
i )− 1

2

)
(degrees).

Translation error =
1

n

n∑

i=1

acos
( T Ti T̂i

‖Ti‖‖T̂i‖

)
(degrees).

Figure 5.6 plots the mean error in rotation and translation as a function of noise. The

algorithm gives an error of less than 3◦ for rotation and less than 10◦ for translation. As expected, the

performance deteriorates as the number of motions n increases, especially for the error in rotation.

We also tested the proposed approach by segmenting a real image sequence with n = 3

moving objects: a truck, a car and a box. Figure 5.7(a) shows the first frame of the sequence
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with the tracked features superimposed. We used the algorithm in [8] to track a total of N = 173

point features: 44 “◦” for the truck, 48 “2” for the car and 81 “4” for the box. For comparison

purposes, we estimated the ground truth motion (Ri, Ti) of each object by manually segmenting

the feature points and then minimizing the standard error for single-body structure from motion

EO(Fi) in (5.52). Then, we estimated the number of motions from (5.9) as n = 3 and minimized

EO(F1, F2, F3) to obtain (R̂i, T̂i). The error in rotation was 1.5◦, 1.9◦ and 0.1◦ and the error in

translation was 1.7◦, 1.8◦ and 0.4◦ for the truck, car and box, respectively.

In order to obtain the segmentation of the feature pairs, we computed the three re-projection

errors EO(F̂i) for each feature pair as shown in Figures 5.7(c)-(e). Each feature pair was assigned

to the motion i = 1, 2, 3 with the minimum error. Figure 5.7(b) plots the segmentation of the image

points. There are no mismatches for motions 1 and 3. However 5 features corresponding to motion

2 are assigned to motion 1 and 6 features corresponding to motion 2 are assigned to motion 3. This

is because the motion of the car was smaller and hence its re-projection error is small for all F̂i’s.

5.8 Conclusions

We have presented a novel geometric approach for the analysis of dynamic scenes con-

taining multiple rigidly moving objects seen in two perspective views. Our approach exploited the

algebraic and geometric properties of the so-called multibody epipolar constraint and its associated

multibody fundamental matrix, which are natural generalizations of the epipolar constraint and of

the fundamental matrix to multiple moving objects. We derived a rank constraint on the image

points from which one can estimate the number of independent motions and linearly solve for the

multibody fundamental matrix. We proved that the epipoles of each independent motion lie exactly

in the intersection of the left null space of the multibody fundamental matrix with the so-called

Veronese surface. We then showed that epipolar lines can be computed from the derivatives of the

multibody epipolar constraint, and individual epipoles can be computed by applying GPCA to the

set of epipolar lines. Given the epipoles and epipolar lines, the estimation of individual fundamental

matrices becomes a linear problem. Then, motion and feature point segmentation is automatically

obtained from either the epipoles and epipolar lines or the individual fundamental matrices. We then

presented a novel algorithm for optimally segmenting dynamic scenes containing multiple rigidly

moving objects in the presence of noise. Instead of iterating between feature segmentation and sin-

gle body motion estimation, our approach eliminates the segmentation and directly optimizes over

the motion parameters.
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Figure 5.6: Error in the estimation of the rotation and translation as a function of noise in the image
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Chapter 6

Conclusions

This thesis presented an algebraic geometric approach to simultaneous data segmenta-

tion and model estimation, which is applicable to segmentation problems in which the data has a

piecewise constant, piecewise linear, or piecewise bilinear structure.

For these three classes of problems, we showed that one can represent the data with a col-

lection of multivariate polynomials of a certain degree. The degree of the polynomials corresponds

to the number of groups and the factors of the polynomials encode the model parameters associated

with each group. Therefore, we showed that the problem of estimating multiple models from data

is mathematically equivalent to factoring multivariate polynomials. We presented a novel solution

to such problem based on computing roots of univariate polynomials, plus a combination of linear

algebra with polynomial differentiation and division.

The development of our theory was motivated by various problems in computer vision.

We illustrated the piecewise constant case with applications to segmentation of static scenes based

on different cues such as intensity, texture and motion. We illustrated the piecewise linear case

with applications to detection of vanishing points, clustering of faces under varying illumination,

and segmentation of dynamic scenes with linearly moving objects. In the case of piecewise bilinear

data, we gave a complete solution to the multibody structure from motion problem, i.e., the problem

of segmenting dynamic scenes with multiple rigidly moving objects from two perspective views.

We also showed that our algebraic algorithms can be naturally used to initialize iterative

approaches to data clustering, such as K-means or EM, and established some basic connections with

other machine learning algorithms such as KPCA. Future research will further explore connections

with other probabilistic methods, and extend our theory to mixtures of models in which each class

has a possibly different algebraic structure.
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