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Abstract

We present an algorithm for infinitesimal motion estima-
tion from multiple central panoramic views. We first derive
the optical flow equations for central panoramic cameras
as a function of both pixel coordinates and back-projection
rays. We then derive a rank constraint on the optical flows
across many frames, which must lie in a six dimensional
subspace of a higher-dimensional space. We then propose
factorization approach for recovering camera motion and
scene structure. We present experimental results on a real
image sequence.

Key words: Omni-directional vision, central panoramic
optical flow, motion estimation, factorization methods.

1 Introduction

Omnidirectional vision systems provide a panoramic
field of view, which can potentially greatly benefit the task
of vision based motion estimation in applications such as
mobile robot navigation. Catadioptric cameras [11] are re-
alizations of omnidirectional vision systems which combine
a mirror and a lens. Central panoramic systems are cata-
dioptric cameras with a single effective viewpoint [1]. Ex-
amples of central panoramic systems with a unique effective
viewpoint are a parabolic mirror in front of an orthographic
camera, and a hyperbolic mirror in front of a perspective
camera.

Motion estimation with omnidirectional vision has been
an area of active research. Researchers have generalized
many structure from motion algorithms from perspective
projection to catadioptric projection in both the case of dis-
crete motion [13, 6, 2] as well as differential motion [8, 16].

In [8, 16], the image velocity vectors are mapped to a
sphere using the Jacobian of the transformation between
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the projection model of the camera and spherical projec-
tion. Once the image velocities are on the sphere, one can
apply well-known ego-motion algorithms (e.g. Jepson and
Heeger [9]) for spherical projection. In a more recent ap-
proach [3], the omnidirectional images are stereographi-
cally mapped onto the unit sphere and the image velocity
field is computed on the sphere. Again, once the velocities
are known on the sphere, one may apply any ego-motion
algorithm for spherical projection.

In this paper, we derive the optical flow equations for
central panoramic cameras directly, without the intermedi-
ate step of going to spherical projection. The optical flow
equations that we derive depend not only on the pixel co-
ordinates, but also on the back-projection rays. We then
show that the optical flows accross many frames lie in a
six dimensional subspace of a higher-dimensional space,
generalizing the well-known subspace constraints [10] for
perspective cameras to the case of central panoramic cam-
eras. Further, we propose a factorization method to recover
the infinitesimal camera motion and 3D structure based on
multiple views. Our approach generalizes the work of [18],
where subspace constraints were used to derive a factoriza-
tion method for infinitesimal motion estimation in perspec-
tive cameras, to the case of central panoramic cameras.

Paper Outline: In Section 2 we describe the projection
model for central panoramic cameras and derive the opti-
cal flow equations. In Section 3 we present an algorithm
for estimating infinitesimal motion from multiple central
panoramic views of a scene. In Section 4 we present ex-
perimental results, and we conclude in Section 5.

2 Central Panoramic Cameras

In this section, we describe the projection model for
a central panoramic camera [5], and derive the central
panoramic optical flow equation which relates the veloci-
ties of image points to infinitesimal camera motion.

The importance of the single viewpoint in central



panoramic cameras is that one can efficiently compute the
back-projection ray (the ray from the optical center to the
3D point being imaged) associated with each image point.
In fact, the optical flow equations we derive will be in terms
of the image points and their associated back-projection
rays.

We first present the special case of para-catadioptric
cameras (a parabolic lens in front of an orthographic cam-
era), then generalize to the case of any central panoramic
camera.

2.1 Para-catadioptric Projection Model

A para-catadioptric camera first projects a 3D point onto
the surface of a parabolic mirror and then orthographically
projects onto an image plane (see Figure 1). The implicit
equation for the surface of a parabola of focal length 1/2
whose focus is at the origin is given by:

Z =
1

2
(X2 + Y 2 − 1). (1)

By intersecting a parameterized ray with the implicit equa-
tion of a paraboloid, and then orthographically projecting
onto the image plane Z = 0, it can be shown that the image
x = (x, y, 0) of a point q = (X,Y, Z)T is given by:

[
x
y

]
=

1

−Z +
√
X2 + Y 2 + Z2

[
X
Y

]
. (2)
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Figure 1. Showing the projection model for
para-catadioptric cameras, and the back-
projection ray bp associated with image point
x.

The mapping from normalized image coordinates (x, y)
to pixel coordinates (xp, yp) in the image involves an affine
transformation:

[
xp
yp

]
=

[
sx σ
0 sy

] [
x
y

]
+

[
cx
cy

]
,

where (sx, sy) are scales which combine information about
the focal length of the mirror and the aspect ratio the or-
thographic projection, σ is the skew, and (cx, cy)T is the

mirror center. In this paper, we assume that the catadioptric
camera has been calibrated and work with normalized im-
age coordinates. See, for example [7], for how to calibrate
para-catadioptric cameras.

2.2 Para-catadioptric Optical Flow

We can write the para-catadioptric projection equation
as:

λx = Pq, (3)

where P = diag(1, 1, 0) ∈ R3×3, λ = −eT3 q + ‖q‖ is an
unknown scale factor due to the para-catadioptric projec-
tion, and e3 = (0, 0, 1)T .

If the camera undergoes a linear velocity v ∈ R3 and
an angular velocity ω ∈ R3, then the coordinates of the
static 3D point in the camera frame evolve as q̇ = [ω]×q +
v. Differentiating equation (3) with respect to time, we get
λ̇x + λẋ = P ([ω]×q + v). Now, letting r , ‖q‖, it is easy
to show that

λ̇ = −eT3 q̇ +
qT q̇

r
= −eT3 ([ω]×q + v) +

qT v

r
.

Then we have

ẋ =
P (−[q]×ω + v)

λ
− x

λ
(−eT3 (−[q]×ω + v) +

qT v

r
)

= −(P + xeT3 )
[q]×
λ
ω +

1

λ
(P + xeT3 −

xqT

r
)v.

Now, let bp ∈ R3 be the back-projection ray associated
with image point x (see Figure 1). Using the implicit equa-
tion of the paraboloidal mirror (1), given an image point
x = (x, y, 0)T it is easy to compute its back-projection ray:

bp = (x, y, z)T = (x, y,
1

2
(x2 + y2 − 1))T . (4)

In fact, since Pbp = x, and λx = Pq, we have bp =
q/λ. Further, since z = Z/λ, and λ = −Z + r, we have
r = (1 + z)λ. Hence, we obtain the following optical flow
equation for para-catadioptric cameras:

ẋ = −(P + xeT3 )[bp]×ω +
1

λ
(P + xeT3 −

xbTp
1 + eT3 bp

)v. (5)

Therefore, in terms of the back-projection ray bp defined
in equation (4), the optical flow (ẋ, ẏ)T , (u, v)T induced
by a para-catadioptric camera undergoing a motion (ω, v) is
given by:

[
u
v

]
=

[
xy z − x2 −y

−(z − y2) −xy x

]
ω + (6)

1

λ

[
1+z−x2

1+z
−xy
1+z

x
1+z

−xy
1+z

1+z−y2

1+z
y

1+z

]
v.



2.3 Central Panoramic Projection Model

It was shown in [5] that all central panoramic systems
can be modeled by a mapping of a 3D point onto a sphere
followed by a projection onto the image plane from a point
in the optical axis of the camera (see Figure 2). The projec-
tion model defined in [5] represents in a unified manner all
central panoramic systems with two parameters (l,m). For
example, a para-catadioptric camera would have parameters
(l,m) = (1, 0), while a pinhole camera would have param-
eters (l,m) = (0, 1).PSfrag replacements
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Figure 2. Showing the projection model for
central panoramic cameras, and the back-
projection ray bc associated with image point
x.

The image x = (x, y,−m)T of a 3D point q =
(X,Y, Z)T obtained through a central panoramic system
with parameters (l,m) is given by [5]:

[
x
y

]
=

l +m

−Z + l
√
X2 + Y 2 + Z2

[
X
Y

]
. (7)

As in the previous section, we work in normalized image
coordinates, and assume that the camera has been previ-
ously calibrated.

2.4 Central Panoramic Optical Flow

We can write the central panoramic projection equation
as:

λ(x +me3) = Pq (8)

where P = diag(1, 1, 0), e3 = (0, 0, 1)T , and λ =
1

l+m (−eT3 q + l‖q‖) is an unknown scale factor due to the
central panoramic projection.

If the camera undergoes a linear velocity v ∈ R3 and
an angular velocity ω ∈ R3, then we have q̇ = [ω]×q + v.
Differentiating (8) with respect to time, we get

λ̇(x +me3) + λẋ = P ([ω]×q + v).

Noticing that x +me3 = Px, we have

ẋ =
P ([ω]×q + v)− λ̇Px

λ
.

Now, letting r , ‖q‖, and µ , (l + m), it is easy to show
that

λ̇ =
1

µ

(
−eT3 ([ω]×q + v) + l

qT v

r

)

and

ẋ = − 1

λ
P (I +

xeT3
µ

)[q]×ω +
1

λ
P (I +

x

µ
(eT3 −

lqT

r
))v. (9)

Now, let bc = (b1, b2, b3)T ∈ R3 be the back-projection
ray associated with image point x = (x, y,−m)T (see Fig-
ure 2). By intersecting the unit sphere with the line segment
connecting points x and (0, 0, l)T , we can compute bc as:
[
b1
b2

]
=

lµ+ sign(µ)
√

(x2 + y2)(1− l2) + µ2

x2 + y2 + µ2

[
x
y

]

b3 = ±
√

1− b21 − b22

where b3 is negative if |µ/l| >
√
x2 + y2 and positive oth-

erwise. Now, since ‖bc‖ = 1, we have bc = q/r, which
we substitute into equation (9) to get

ẋ = − r
λ
P (I +

xeT3
µ

)[bc]×ω + P (
I

λ
+

x(eT3 − lbTc )

λµ
)v.

Now, using the relations b3 = Z/r and λ = (−Z + lr)/µ
we have r/λ = µ/(l − b3). Therefore we have derived
the following optical flow equation for central panoramic
systems:

ẋ = −P (
µI + xeT3
l − eT3 bc

)[bc]×ω + P (
I

λ
+

x(eT3 − lbTc )

λµ
)v. (10)

Therefore in terms of the back-projection ray bc, the op-
tical flow (ẋ, ẏ)T , (u, v)T induced by a central panoramic
camera undergoing a motion (ω, v) is given by:

[
u
v

]
=

[
xb2
l−b3

−xb1+µb3
l−b3

−µb2
l−b3

yb2−µb3
l−b3

−yb1
l−b3

µb1
l−b3

]
ω + (11)

1

λ

[
µ−xlb1
µ

−xlb2
µ

x(1−lb3)
µ

−ylb1
µ

µ−ylb2
µ

y(1−lb3)
µ

]
v.

Comments 2.1. Since para-catadioptric projection is a
special case of the central panoramic projection, one would
expect that plugging values (l,m) = (1, 0) into central
panoramic optical flow equation (10) would yield the para-
catadioptric optical flow equation (5). Although by the form
of the equations, this appears not to be the case, in fact it is.
Notice that in the para-catadioptric case, we had bp = q/λ,
while in the central panoramic case, we have bc = q/r,
and hence bp = r

λbc. Also, in the para-catadioptric case
eT3 x = 0 while in the central panoramic case eT3 x = −m.
Using these facts, it is direct to check that the optical flow
for the central panoramic case reduces to that of the para-
catadioptric case when (l,m) = (1, 0).



3 Infinitesimal motion estimation from mul-
tiple central panoramic views

Tomasi and Kanade [14] proposed an algorithm to es-
timate the motion of an orthographic camera, based on
discrete image measurements. They used a factorization
method based on the fact that, under orthographic projec-
tion, discrete image measurements lie on a low-dimensional
linear variety. The method has also been extended to affine
and paraperspective cameras [12]. Unfortunately, under
full perspective projection such a variety is nonlinear [15],
hence factorization methods cannot be used. However,
Irani [10] showed that the infinitesimal measurements do lie
on a low-dimensional linear variety in the perspective pro-
jection case. Irani used subspace constraints on the motion
field to obtain a multi-frame algorithm for the estimation
of the optical flow of a moving camera observing a static
scene. She did not use those constraints for 3D motion esti-
mation.

Here, we generalize the results of [18], where subspace
constraints were used to derive a factorization method for
infinitesimal motion estimation in perspective cameras, to
the case of central panoramic cameras.

Given measurements for the optical flow (ẋij , ẏ
i
j)
T =

(uij , v
i
j)
T of point i = 1, . . . , n in frame j = 1, . . . ,m rela-

tive to a reference frame, let

U =




u1
1 · · · u1

m
...

...
un1 · · · unm


 and V =




v1
1 · · · v1

m
...

...
vn1 · · · vnm


 ,

and define the optical flow matrix W ∈ R2n×m:

W =

[
U
V

]
.

3.1 Para-catadioptric Case

In the para-catadioptric case, let bip = (xi, yi, zi)T , for
i = 1, . . . , n, be the back-projection rays in the reference
frame. Following equation (6), define the matrix of rota-
tional flows Ψp and the matrix of translational flows Φp as:

Ψp =

[
{xy} {z − x2} −{y}

−{z − y2} −{xy} {x}

]
∈ R2n×3,

Φp =

[
{ 1+z−x2

λ(1+z) } { −xyλ(1+z)} { x
λ(1+z)}

{ −xyλ(1+z)} { 1+z−y2

λ(1+z) } {
y

λ(1+z)}

]
∈ R2n×3,

where (for example) {xy} = (x1y1, · · · , xnyn)T ∈ Rn.
Then, the optical flow matrix W ∈ R2n×m satisfies:

W = [Ψp Φp]2n×6

[
ω1 · · · ωm
v1 · · · vm

]

6×m
= SMT , (12)

where ωj and vj are the velocities of the object relative to
the camera in the jth frame. We call S ∈ R2n×6 the struc-
ture matrix and M ∈ Rm×6 the motion matrix. We con-
clude that, for general translation and rotation, the optical
flow matrix W has rank 6.

The rank constraint rank(W ) = 6 can be naturally used
to derive a factorization method for estimating the relative
velocities (ωj , vj) and scales λi from back-projection rays
bip and optical flows ẋij . We can do so by factorizingW into
its motion and structure components. For, consider the SVD
ofW = USVT and let S̃ = U and M̃ = VS . Then we have
S = S̃A and M = M̃A−T for some A ∈ R6×6. Let Ak be
the k-th column of A. Then the columns of A must satisfy:
S̃A1−3 = Ψp and S̃A4−6 = Φp. Since Ψp is known, A1−3

can be immediately computed. The remaining columns of
A and the vector of inverse scales {1/λ} ∈ Rn can be ob-
tained up to scale from:




−diag({( 1+z−x2

1+z }) S̃u 0 0

diag({ xy1+z}) 0 S̃u 0

−diag({ x
1+z}) 0 0 S̃u

diag({ xy1+z}) S̃v 0 0

−diag({( 1+z−y2

1+z }) 0 S̃v 0

−diag({ y
1+z}) 0 0 S̃v







{1/λ}
A4

A5

A6


 = 0.

where S̃u ∈ Rn×6 and S̃v ∈ Rn×6 are the upper and lower
part of S̃, respectively.

3.2 Central Panoramic Case

In the case of general central panoramic cameras, fol-
lowing equation (11), we define Ψc and Φc as:

Ψc =

[
{ xb2l−b3 } {−xb1+µb3

l−b3 } {−µb2l−b3 }
{yb2−µb3l−b3 } {−yb1l−b3 } { µb1l−b3}

]
∈ R2n×3,

Φc =

[
{µ−xlb1λµ } {−xlb2λµ } {x(1−lb3)

λµ }
{−ylb1λµ } {µ−ylb2λµ } {y(1−lb3)

λµ }

]
∈ R2n×3.

As described in Section 3.1, we can factorize the optical
flow matrix W into into its motion and structure compo-
nents. For, consider the SVD ofW = USVT and let S̃ = U
and M̃ = VS. Then we have S = S̃A and M = M̃A−T

for some A ∈ R6×6. Let Ak be the k-th column of A.
Then the columns of A must satisfy: S̃A1−3 = Ψc and
S̃A4−6 = Φc. Since Ψc is known, A1−3 can be imme-
diately computed. The remaining columns of A and the
vector of inverse scales {1/λ} ∈ Rn can be obtained up to



scale from:



diag({xlb1−µµ }) S̃u 0 0

diag({xlb2µ }) 0 S̃u 0

diag({x(lb3−1)
µ }) 0 0 S̃u

diag({ ylb1µ }) S̃v 0 0

diag({ ylb2−µµ }) 0 S̃v 0

diag({ y(lb3−1)
µ }) 0 0 S̃v







{1/λ}
A4

A5

A6


 = 0.

where S̃u ∈ Rn×6 and S̃v ∈ Rn×6 are the upper and lower
part of S̃, respectively.

3.3 Robot Navigation: Motion in the X-Y plane

Consider the special case where the camera is restricted
to move only in the X-Y plane. This is the case shows up,
for example, when a camera is attached to a mobile robot
(with the optical axis parallel to the Z axis) and the robot
can only rotate and translate along the ground plane. In
this case, the angular velocity is ω = (0, 0, ω3)T , the linear
velocity is v = (v1, v2, 0)T . Hence in the para-catadioptric
case (a similar simplification arises in the general central
panoramic case), we have:

[
u
v

]
=

[
−y
x

]
ω3 +

1

λ

[
1+z−x2

1+z
−xy
1+z

−xy
1+z

1+z−y2

1+z

][
v1

v2

]
. (13)

With this simplification, the we can apply an analogous
algorithm to that described in Section 3.1, except that here
the matrices of rotational flows Ψ ∈ R2n×1 and transla-
tional flows Φ ∈ R2n×2 are given by

Ψ =

[
−{y}
{x}

]
, Φ =

[
{ 1+z−x2

λ(1+z) } { −xyλ(1+z)}
{ −xyλ(1+z)} { 1+z−y2

λ(1+z) }

]
.

with

W = [Ψ Φ]2n×3



ω31

· · · ω3m

v11
· · · v1m

v21
· · · v2m




3×m

= SMT

where motion (ωj , vj) in frame j is ωj = (0, 0, ω3j )
T and

vj = (v1j , v2j , 0)T . We conclude that the optical flow sat-
isfies rank(W ) = 3.

As described in Section 3.1, we can factorize the opti-
cal flow matrixW into into its motion and structure compo-
nents. For, consider the SVD ofW = USVT and let S̃ = U
and M̃ = VS. Then we have S = S̃A and M = M̃A−T

for some A ∈ R3×3. Let Ak be the k-th column of A. Then
the columns ofAmust satisfy: S̃A1 = Ψc and S̃A2−3 = Φ.
Since Ψ is known, A1 can be immediately computed. The
remaining columns of A and the vector of inverse scales

{1/λ} ∈ Rn can be obtained up to scale from:



−diag({( 1+z−x2

1+z }) S̃u 0

diag({ xy1+z }) 0 S̃u

diag({ xy1+z }) S̃v 0

−diag({( 1+z−y2

1+z }) 0 S̃v






{1/λ}
A2

A3


 = 0.

where S̃u ∈ Rn×6 and S̃v ∈ Rn×6 are the upper and lower
part of S̃, respectively.

4 Experimental Results

Here we evaluate the performance of the proposed mo-
tion estimation algorithm in the case where a nonholonomic
mobile robot moving in theX-Y plane is viewed by a static
para-catadioptric camera. The robot is equipped with GPS
sensors with an accuracy of 2cm. We use the GPS measure-
ments as the ground truth with which we evaluate the per-
formance of our motion estimation algorithm. One of the
seven frames of the image sequence is shown in Figure 3.

The optical flow (shown on the left column of Fig-
ure 3), was computed using Black’s algorithm available at
http://www.cs.brown.edu/people/black/ignc.html. We first
used the optical flow to segment the pixels corresponding to
the moving object from those of the background. This was
done simply by looking at pixels for which the norm of the
optical flow is larger than a threshold. The right column of
Figure 3 shows the motion segmentation result. Only the
pixels in the images with large enough flow vectors were
used to estimate the motion of the robot.

Figure 4 plots the ground truth as well as the estimated
rotational velocity ωz and translational velocity (vx, vy) for
each frame. Figure 5 shows the root mean squared error for
the motion estimates. Notice that the estimates for angular
velocity are considerable more noisy than linear velocity.
This is because not as much optical flow is generated when
the robot rotates in the scene as compared to when it trans-
lates.

5 Conclusions and Future Research

We have presented an algorithm for infinitesimal motion
estimation from multiple central panoramic views. Our al-
gorithm is a factorization approach based on the fact that op-
tical flows across many frames lie on a 6 dimensional sub-
space of a higher-dimensional space. We presented experi-
mental results that show that our algorithm can effectively
recover camera motion from multiple catadioptric views.

Future work will include extending our algorithm to
motion segmentation and estimation for multiple indepen-
dently moving objects. We also plan to apply our results to
the problems of pursuit-evasion games [17], mobile robot
navigation and formation control [4].



Figure 3. The optical flow and motion seg-
mentation of a robot in an image sequence.
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Figure 4. Motion estimation results.
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shakernia and shankar sastry. In IEEE International Confer-
ence on Robotics and Automation, 2003. Submitted.

[5] C. Geyer and K. Daniilidis. A unifying theory for central
panoramic systems and practical implications. In Proc. of
the European Conference on Computer Vision, 2000.

[6] C. Geyer and K. Daniilidis. Structure and motion from un-
calibrated catadioptric views. In IEEE Conf. on Computer
Vision and Pattern Recognition., pages 279–286, 2001.

[7] C. Geyer and K. Daniilidis. Paracatadioptric camera calibra-
tion. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 4(24):1–10, April 2002.

[8] J. Gluckman and S. Nayar. Ego-motion and omnidirectional
cameras. In Proceedings of IEEE 6th International Confer-
ence on Computer Vision, pages 999–1005, 1998.

[9] D. Heeger and A. Jepson. Subspace methods for recovering
rigid motion. Int. J. on Computer Vision, 7(2):95–117, 1992.

[10] M. Irani. Multi-frame optical flow estimation using sub-
space constraints. In IEEE International Conference on
Computer Vision, volume 2, pages 626–633, 1999.

[11] S. Nayar. Catadioptric omnidirectional camera. In IEEE
Conf. on Computer Vision and Pattern Recognition, pages
482–488, Puerto Rico, 1997.

[12] C. J. Poelman and T. Kanade. A paraperspective fac-
torization method for shape and motion recovery. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
19(3):206–18, 1997.

[13] T. Svoboda, T. Pajdla, and V. Hlavac. Epipolar geometry for
panoramic cameras. In 5th European Conference on Com-
puter Vision, pages 218–231, 1998.

[14] C. Tomasi and T. Kanade. Shape and motion from im-
age streams under orthography. Int. J. on Computer Vision,
9(2):137–154, 1992.

[15] P. H. S. Torr. Geometric motion segmentation and
model selection. Phil. Trans. Royal Society of London A,
356(1740):1321–1340, 1998.

[16] R. Vassallo, J. Santos-Victor, and J. Schneebeli. A gen-
eral approach for egomotion estimation with omnidirec-
tional images. In Proceedings of IEEE Workshop on Omni-
directional Vision, pages 97–103, 2002.

[17] R. Vidal, O. Shakernia, J. Kim, D. Shim, and S. Sastry. Prob-
abilistic pursuit-evasion games: theory, implementation and
experimental evaluation. IEEE Transactions on Robotics
and Automation, 2002. To appear.

[18] R. Vidal, S. Soatto, and S. Sastry. A factorization method
for 3D multi-body motion estimation and segmentation. In
Proceedings of 40th Annual Allerton Conference on Com-
munication, Control, and Computing, 2002. To appear.


