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Abstract

Controlled Invariance of Discrete Time Hybrid Systems

by

René Vidal

Master of Science in Electrical Engineering and Computer Sciences

University of California at Berkeley

Professor Shankar Sastry, Chair

In this thesis we study the problem of controller synthesis under reachability specifi-
cations for discrete time hybrid systems. First, we show that, without loss of generality, the
synthesis problem can be solved by a memoryless controller. Then, we establish conditions
on the uniquenes of the solution of the synthesis problem. Afterwards, we propose an algo-
rithm for computing the maximal controlled invariant set and the least restrictive controller.
We show how the algorithm can be encoded using quantifier elimination, which leads to a
semi-decidability result for definable systems. However, the computational complexity of the
algorithm is doubly exponential.

For linear discrete time systems with all sets specified by linear inequalities, a more
efficient (worst case exponential) implementation is proposed using linear programming and
Fourier elimination. If in addition the system is in controllable canonical form, the input is
scalar and unbounded, the disturbance is scalar and bounded and the initial set is a rectangle,
then the problem is decidable. To speed up the computation, we illustrate how the algorithm
can be approximated using robust semidefinite programming. This implementation is quite
efficient (polynomial) and is applicable to systems with ellipsoidal constraints as well.

Finally, we generalize the controlled invariance algorithm to discrete time hybrid sys-
tems, with some states and inputs taking values on the reals and others taking values on
a finite set. We show that this class of hybrid systems is a special case of a discrete time
system, and hence the controlled invariance problem is semi-decidable.



Chapter 1

Introduction

The design of controllers is one of the most active research topics in the area of hybrid
systems. Problems that have been addressed include hierarchical control [7, 29], distributed
control [27], and optimal control using dynamic programming techniques [4, 6, 30, 35] or
extensions of the maximum principle [17]. A substantial research effort has also been directed
towards solving control problems with reachability specifications, that is designing controllers
that guarantee that the state of the system will remain in a “good” part of the state space.
Such control problems turn out to be very important in applications, and are closely related to
the computation of the reachable states of a hybrid system and to the concept of controlled
invariance. The proposed solutions extend game theory methods for purely discrete [31,
37] and purely continuous [3, 21, 23] systems to certain classes of hybrid systems: timed
automata [19, 26], rectangular hybrid automata [40] and more general hybrid automata [25,
34, 38].

All of these techniques are concerned with hybrid systems whose continuous state
evolves in continuous time, according to differential equations or differential inclusions. Un-
like conventional continuous dynamical systems, little attention has been devoted to systems
where the continuous state evolves in discrete time, according to difference equations. Besides
being interesting in its own right, this class of hybrid systems can be used to approximate
hybrid systems with differential equations. Indeed, most of the techniques that have been
proposed for reachability computations for general continuous dynamics involve some form of
discretization of the continuous space [13, 18, 38, 8], followed by a reachability computation
on the resulting discrete time system.

On the other hand, different approximated solutions to related problems have been
studied. In [21] elliposidal methods are used to compute reachable sets of continuous time
affine systems. These methods have been generalized to a variety of similar problems in
control theory [20]. In fact, many control problems can be solved by semidefinite program-
ming [5], which has improved the time efficiency of many algorithms. Lately, semidefinite
programming has been extended to deal with uncertainty [16]. This opens an opportunity



to apply robust semidefinite programming to the design of controllers for systems subject to
disturbances.

Thesis Outline

In Section 2, we formulate the problem of controller synthesis for discrete time systems
under reachability specifications, introduce the concepts of maximal controlled invariant set
and least restrictive controller, and propose an algorithm for computing them. In Section 3
we review some concepts of mathematical logic and show how the algorithm can be imple-
mented using quantifier elimination. This immediately leads to a semi-decidability result
for discrete time systems whose continuous dynamics can be encoded in a decidable theory
of the reals. In Section 4, we implement the proposed algorithm for discrete time linear
systems with all the sets defined by linear inequalities. The implementation is based on a
more efficient method for performing quantifier elimination in the theory of linear constraints
using linear programming and Fourier elimination. We also show that the problem is decid-
able when the single-input single-disturbance linear discrete time system is in controllable
canonical form, the input is unbounded, and the safe set is a rectangle. Because the compu-
tational burden of exactly performing quantifier elimination, even for this class of systems
is still substantial, in Section 4.3 we also propose a method for approximating the solution
using semidefinite programming. This implementation is quite efficient (polynomial) and
is applicable to systems with ellipsoidal constraints as well. In Section 5 we generalize the
controlled invariance algorithm to discrete time hybrid systems, with some states and inputs
taking values on the reals and others taking values on a finite set. We show that this class
of hybrid systems is a special case of a discrete time system, and hence the controlled in-
variance problem is semi-decidable. Finally, in Section 6, we illustrate the proposed method
with some examples.



Chapter 2

Discrete Time Systems and Safety
Specifications

2.1 Basic Definitions

Let Y be a countable collection of variables and let Y denote its set of valuations,
that is the set of all possible assignments of these variables. We refer to variables whose
set of valuations is countable as discrete and to variables whose set of valuations is a subset
of a Euclidean space R™ as continuous. For a set Y we use Y° to denote the complement
of Y, 2Y to denote the set of all subsets of Y, Y* to denote the set of all finite sequences
of elements of Y, and Y* to denote the set of all infinite sequences. Since the dynamical
systems we will consider will be time invariant we will use y = {y[¢]}¥, to denote sequences.
We use A to denote conjunction, V to denote disjunction, = to denote negation, V to denote
the universal quantifier, and 3 to denote the existential quantifier.

The dynamics of a discrete time system are characterized by a reset relation that, given
the current value of the state and input, returns the possible next states of the system. More
formally:

Definition 1 (Discrete Time System (DTS)) A discrete time system H is a collection
H = (X,V,Init, f) consisting of a finite collection of state variables, X, a finite collection of
input variables, V, a set of initial states, Init C X, and a reset relation, f: X x V — 2%,

A DTS naturally characterizes a subset of the set of sequences from X x V.

Definition 2 (Execution of DTS) A sequence xy = (z,v) € (X x V)*U (X x V)¥ is
said to be an execulion of the discrete time system H if x[0] € Init, and for all k > 0
z[k + 1] € f(x[k], v[k]).

)



To ensure that every finite execution can be extended to an infinite execution we assume

that f(z,v) # 0 for all (z,v) € X x V. We call such a DTS non-blocking."

We denote the set of all executions of H starting at zo € X as Ex(z¢), and the set of
all executions of H by £g. Clearly, g = U'roEInit En(xo).

Our goal here is to design controllers for DTS. Assume that we are given a plant,
modeled as a DTS, and we would like to “steer” it using its input variables, so that its
executions satisfy certain properties. We assume that the input variables are partitioned
into two classes, V = U U D. U are assumed to be control variables, that is variables whose
valuations we can specify at will. D), on the other hand, are assumed to be disturbance
variables, over whose valuations we have no control (we say they are determined by the
environment) and that can potentially disrupt our plans. In this context a controller can be
defined as a feedback map.

Definition 3 (Controller) A controller, C, is a map C : X* — 2YV. A controller is called
non-blocking if C'(z) # 0 for allx € X*. A controller is called memoryless if for all z, 2" € X*
ending al the same state we have C(z) = C(z').

The interpretation is that, given the evolution of the plant state up to now, the con-
troller determines the set of allowable controls for the next transition. With this interpreta-
tion in mind, we define the set of closed loop causal executions as

EHC = {(l’,u,d) €&n |Vk > O,U[k] € C(l’lk)},

where z | denotes the subsequence of = consisting of its first & elements. Notice that a
memoryless controller can be characterized by a map ¢ : X — 2Y, and its set of closed loop
causal executions is simply

En, = {(z,u,d) € Eg | Yk > 0,ulk] € g(x[k])}.

Our goal is to use controllers to steer the executions of the plant, so that they satisfy
certain desirable properties. In this paper we will restrict our attention to a class of properties
known as safety properties: Given a set F' C X, we would like to find a non-blocking controller
that ensures that the state stays in F' for ever. We will say that a controller C' solves the
problem (H,0F), if and only if C' is non-blocking and for all (z,u,d) € g, x[k] € F for all
k > 0. If such a controller exists we say that the problem (H,OF) can be solved.

Even though safety properties are not the only properties of interest?, they turn out
to be very useful in applications. Many important problems, such as absence of collisions

IThe condition is only sufficient. Although it can be refined to be necessary as well, we will not pursue
this direction since the emphasis of this paper is controller synthesis.

20ther important properties are liveness properties (ensuring that the state eventually reaches a certain
set, visits a set infinitely often, etc.), stability, optimality, etc.



in transportation systems, mutual exclusion in distributed algorithms, etc., can be naturally
encoded as safety properties. Fortunately, it can be shown that for this class of properties
one can, without loss of generality, restrict attention to memoryless controllers.

Proposition 1 The problem (H,0F) can be solved if and only if it can be solved by a
memoryless controller.

Proof: The if part is obvious. For the only if part, assume, for the sake of contradiction,
that there exists a controller C': X* — 2V that solves the problem (H,OF), but there does
not exist a memoryless controller that solves the problem. Therefore, there must exist two
finite executions x; = (z;, u;, d;) € Ep, ¢ = 1,2, ending at the same state, x, at times k; and
ky respectively, such that yi # x2, and C(z1) # C(z2). Moreover, the information about
the way in which the state x is reached must be essential for subsequent control decisions.
Assume that z is reached via yi, but we choose to ignore this fact and apply controls after
k1 as though z had been reached via y;. Then, there must exist a continuation, x’, such
that the concatenation x| = (z,u},d]) = xax’ € En leaves the set F. In particular, since
X1 € En. and C solves (H,0OF), there must exist & > 0 such that 2|k + k] € F. Notice,
however, that the concatenation x4y = (24, u), dy) = x2x’ is also an element of Ey. Moreover,
X2X' € En.. But zhky+ k] = 2 [k1 + k] € F. This contradicts the assumption that C solves
the problem (H,OF). n

Motivated by Proposition 1, we restrict our attention to memoryless controllers from
now on.

2.2 Controlled Invariant Sets and Least Restric-

tive Controllers

The concept of controlled invariance turns out to be fundamental for the design of con-
trollers for safety specifications [25]. Roughly speaking, a set of states, W is called controlled
invariant if there exists a controller that ensures that all executions starting somewhere in
W remain in W for ever. More formally:

Definition 4 (Controlled invariant set) A set W C X is called a controlled invariant
set of H if there exists a non-blocking controller that solves the problem (H',OW), where
H' = (X,V,W, [) (the same as H, but with Init' = W ).

We say that the controller that solves the problem (H',OW) renders the set W invari-
ant. Also, given a set F' C X, a set W C F'is called a mazimal controlled invariant subset



of I, if it 1s controlled invariant and it is not a proper subset of any other controlled invari-
ant subset of F. The following lemma establishes the uniqueness of the maximal controlled
invariant set.

Lemma 1 The problem QH OF) can be solved if and only if there exists a unique mazimal
controlled invariant set, W, with Init C W CF.

Proof: For the if part, assume that such a W exists and consider a non-blocking controller
g that renders W invariant. Then &n, C EH/ since Init C w. Therefore, all x € £x, remain

for ever in W, and hence in F.

For the only if part, assume the problem (H,OF) can be solved by a non-blocking
controller g. We claim that there exists a controlled invariant set W with Init C W C F.
Consider the set

W = U U {:L'[k (z,u,d) € SHg(;z;O)}

o €Init k>0

By definition, Init € W. Since g solves the problem (H,OF), W C F. Moreover, for any
z[0] € W consider an execution (z,u,d), with arbitrary d € D* and u[k] € g(z[k]). Then
by definition of W, z[k] € W for all £ > 0. Therefore, the controller g renders the set W
invariant, which proves the claim.

To show that there exists a unique maximal controlled invariant set, let W be the family
of all controlled invariant sets W, with Init C W C F'| G be the family of the corresponding
non-blocking memoryless controllers that render each element of W invariant, and h : W — G
be the map assigning to each W € W its corresponding memoryless controller ¢ € G. By the
above discussion, W (and hence G) is non-empty. By the well-ordering theorem [32] there
exists a well-ordering relation for G. We define the memoryless controller

g(z) = min {h(W) |z € W},

where min is taken according to the order on G. Let

W:UW.

Wew

Clearly Init C W C F. If we show that W is also controlled invariant, then the class of
controlled invariant sets will be closed under arbitrary unions, and hence possess a unique
maximal element. Let xy = (z,u,d) be an execution of H starting at x[0] € W, with arbitrary
d € D* and u[k] € g(z[k]). Assume, for the sake of contradiction, that there exists £ > 0
such that z[k'] € W for all 0 < k' < k and z[k+1] ¢ W. Since J:[k] € W and ulk] € g(z[k]),
there exists W € W such that z[k] € W and u[k] € h(W). By assumption, h(W) solves
the problem (H',0OW) with Init’ = W. Therefore z[k + 1] € W C W, contradicting the
assumption that z[k + 1] & W. n



A useful and intuitive characterization of the concept of controlled invariance can be
given in terms of the operator Pre : 2% — 2% defined by

Pre(W)={z e W |3JueUVdeD, f(z,u,d)nW°=10}.

The operator returns the set of states € W for which v € U can be chosen such that, for
all choices of d € D, all the states that can be reached from z after one transition are also
in W. The following properties of the operator Pre are easy to establish and will be useful
in the subsequent discussion.

Proposition 2 The operator Pre has the following properties:

1. Pre is contracting, that is for all W C X, Pre(W) C W,
2. Pre is monotone, that is for all W, W' C X with W C W', Pre(W) C Pre(W’); and,

3. A set W C X s controlled invariant if and only if it is a fixed point of Pre, that ts if
and only if Pre(W) =W.

Proof: The first part follows from the definition. For the second part, notice that for all
x € Pre(W) there exists u € U such that for all d € D, f(z,u,d) C W. Since W C W', this
means that for the same u, and for all d, f(z,u,d) C W’, and therefore, x € Pre(W’).

We now turn our attention to the third part of the proposition. For the if part, assume
Pre(W) = W and consider the memoryless controller

9(z) = U rg W.

{{uEUWdED, fu,dnWe=0} zeW

By construction ¢ is non-blocking. Consider an execution (z,u,d) € £y, with z[0] € W,
and assume that for all 0 < k&' < k, z[k'] € W. Then z[k + 1] € f(z[k],ulk],d[k]) C W
by construction of g. Therefore, z[k] € W for all £ > 0 by induction. For the only if part,
notice that by definition Pre(W) C W. Assume there exists a non-blocking, memoryless
controller, ¢, that solves the problem (H’,O0W) with Init" = W. Consider an arbitrary
x € W and notice that by assumption there exists u € g(x) such that for all d € D and for
all ' € f(z,u,d), 2" € W. Therefore, x € Pre(W) and W C Pre(W). n

Many memoryless controllers may be able to solve a particular problem. Controllers
that impose less restrictions on the inputs they allow are in a sense better than controllers
that impose more restrictions. For example, controllers that impose fewer restrictions allow
more freedom if additional safety specifications are imposed, or if one is asked to optimize the
performance of the (safe) closed loop system with respect to other objectives. To quantify
this intuitive notion we introduce a partial order on the space of memoryless controllers. We
write g1 = g2 if for all z € X, ¢1(z) C ga(z).



Definition 5 (Least restrictive controller) A memoryless controller g : X — 2V that
solves the problem (H, F') is called least restrictive if it is maximal among the controllers
that solve (H,OF) in the partial order defined by <.

Lemma 2 A controller that renders a set W invariant exists if and only if a unique least
restrictive controller that renders W invariant exists.

Proof: The if part is obvious. For the only if part, assume that, given a set W, there exists
a controller g that renders W invariant. Let G be the collection of all controllers that render
W invariant and define § : X — 2V as

g€y

We claim that ¢ renders W invariant. Let x = (z,u,d) € &g, (xo) for some zo € W and
assume, for the sake of contradiction, that there exists k£ > () such that z[k'] € W for
all 0 < k' < k, but z[k + 1] € W. Now, by definition of g, there exists ¢ € G such that
u(z[k]) € g(x[k]). Since g renders W invariant and z[k] € W, z[k+1] € W, contradicting the
assumption that z[k + 1] € W. Therefore, the class of controllers that renders W invariant
is closed under arbitrary unions, and hence it possesses a unique maximal element. n

Notice that the least restrictive controller that renders a set W invariant must, by definition,
allow g(z) = U for all z ¢ W. Summarizing Lemmas 1 and 2 we have the following:

Theorem 1 The problem (H,OF) can be solved if and only if there exists:

1. a unique maximal controlled invariant set W with Init C W C F, and

2. a unique least restrictive controller, g, that renders W invariant.
Motivated by Theorem 1 we state the controlled invariance problem more formally.

Problem 1 (Controlled Invariance Problem (CIP)) Given a DTS and a set ' C X
compute the mazimal controlled invariant subsel of F, W the least restrictive controller, g,
that renders W invariant, and test whether Init C Ww.

2.3 Computation of W and §(z)

We first present a conceptual algorithm for solving the CIP for general DTS. Even
though there is no straightforward way of implementing this algorithm in the general case,
in subsequent sections we show how this can be done for special classes of DTS.
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Algorithm 1 (Controlled Invariance Algorithm)

initialization: W°=F W1 =X,1=0
while W= 0 (W')* £ 0 do

W = Pre(W?)

l=1+1
end while

set W = Niso w!
R {u€U|‘v’d€D, f(:zi,u,d)ﬂ(W)c:@} reW
set g(z) = .
U r g W

Theorem 2 W is the mazimal controlled invariant subset of F' and g s the least restrictive
controller that renders W invariant.

Proof: To show that W is controlled invariant we show that it is a fixed point of Pre.
By definition Pre(W) c W. Conversely, consider = € W and assume, for the sake of
contradiction that = ¢ Pre(W). Then for all u € U thereexists d € D and 2’ € f(z,u,d) such
that 2’ ¢ W. Therefore, there is an [ such that 2’ ¢ W'. Hence z ¢ Pre(W') = W't D W,

which is a contradiction. Therefore W C Pre(W).

To show that W is maximal, consider a controlled invariant set W C F. Assume, for
the sake of contradiction, that there exists z[0] € W'\ W. Therefore, there exists [ > 0 such
that z[0] € W'. By definition of the operator Pre this implies that either z[0] € W'=!, or
for all u € U there exists d € D and 2z’ € f(z[0],u,d) such that 2/ € W'='. In the latter
case set z[1] = 2’. By induction, for all choices of u there exists a finite sequence that leaves
WO = F D W after at most [ steps. This contradicts the assumption that W is controlled
invariant.

Finally, to show ¢ is least restrictive, consider another controller, ¢, that renders W
invariant, and assume, for the sake of contradiction, that there exists € X and u € g(x) \
g(z). By construction of g, z € W. Since u ¢ g(x), there exists d € D and 2’ € f(x,u,d)
such that 2’ & W. This contradicts the assumption that g renders W invariant. n

To implement the controlled invariance algorithm one needs to be able to:

1. encode sets of states, perform intersection and complementation, and test for empti-
ness,

2. compute the Pre of a set, and

3. guarantee that a fixed point is reached after a finite number of iterations.
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For classes of DTS for which 1 and 2 are satisfied we say that the CIP is semi-decidable; if all
three conditions are satisfied we say that the CIP is decidable. As an example, consider finite
state machines (FSM), that is the class of DTS for which X, U and D are finite. In this case,
one can encode sets of states, perform intersection, complementation, test for emptiness and
compute Pre by enumeration (or other more efficient representations). Moreover, by the
monotonicity of W' and the fact that X is finite, the algorithm is guaranteed to terminate
in a finite number of steps. Therefore, the CIP is decidable for finite state machines.

In subsequent sections we show how the computation can be performed for DTS with
state and input taking values on a Euclidean space and transition relations given by certain
classes of functions of the state and input. We then generalize this approach to discrete time
hybrid systems, with some state and input variables taking values on a Euclidean space, and
others taking values on finite sets. Before we can present the details, however, we need to
introduce some notation from mathematical logic.
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Chapter 3

Mathematical Logic and Quantifier
Elimination

3.1 Languages, Models and Theories

The following discussion is based on [28]. For a more in depth treatment the reader is
referred to [11, 12].

A language L = {Ry,... , Ry, f1,-.., fm,Co,--. ,c1} is a set of symbols separated into
relations, Rq,..., R,, functions, fi,..., fn, and constants, co,... ,¢;. For example, P =
{<,+,—,0,1} and R = {<,+,—,-,0,1} are languages with (binary) relation <, (binary)
functions 4+, — and -, and constants 0 and 1.

Given a language £ and a set of variables {xy,zq,... ,v1,v9,...}, the terms of the
language are inductively defined. All the variables and all the constants are terms, and if
t1,...,1, are terms and f is an n-ary function, f(1,...,%,) is also a term. For instance, if

a, b and ¢ are positive integer constants and z; and z, are variables, ax; — bxy + ¢ is a term
of P and cm:f + bxrixy + ¢ is a term of R'.

An atomic formula of the language is of the form ¢, = ¢, or R(t4,...,t,), where R is
a n-ary relation and ¢;, 2 = 1,... ,n are terms. For example, ax1 — bz + ¢ < 0 is an atomic
formula of P and axf + bxixg + ¢ = 0 is an atomic formula of R. First order formulas (or
simply formulas) are recursively defined from atomic formulas:

1. atomic formulas are formulas,

2. if @, v are formulas, then so are ¢ A ¢ and —¢?,

Integer constants are generated inductively by repeatedly adding the constant 1 to itself.
“Disjunction, ¢ V ¢, is interpreted as —(—¢ A —=3)).
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3. if ¢ is a formula and z is a variable, then Jx | ¢ is also a formula®.

Formulas defined in a language £ are called L-formulas. For example, Mz < 3 is a P-
formula, where M € Q™*" and 8 € Q™ are constants, and = = (z1,...,,) are variables.
This becomes clear if we let m;; € Q be the ¢, element of M and 3; € Q be the ¢ element
of # and write Mz < (3 as

/\ (i (maz1+ ...+ mipz, — Bi) < 0]V [g (mapz1 + ...+ myx, — 3;) =0
=1
where ¢; i1s a positive common denominator of m;;, 7 = 1,... ,n and §;. With a similar

interpretation the following expression is also a P-formula
JuVd| (Mz < )N (MAz + MBu+ MCd < f3) (3.1)

where A, B, C'; M and 3 are constant matrices with rational coefficients and z, u and d are
variables.

The occurrence of a variable in a formula is free if it is not within the scope of a
quantifier; otherwise it is bound. For example, x is free, and u and d are bound in (3.1). We
often write ¢(z1,... ,x,) to indicate that x1,...,z, are the free variables of formula ¢. A
sentence is a formula with no free variables.

A model of a language £ consists of a non-empty set S and a semantic interpreta-
tion of the relations, functions and constants of £. For instance, (R,<,+,—,0,1) and
(R,<,+,—,-,0,1) with the usual interpretation for the symbols are models of P and R
respectively. Every sentence of the language is either true or false for a given model. Every
formula, ¢(x1,...,x,), of the language defines a subset of S™, namely the set of valuations
of x1,...,z, for which the formula is true. Conversely, we say that a set Y C 5™ is definable
in L if there exists a formula ¢(x1,... ,2,) in £ such that

Y ={(a1,...,a,) € S"| ¢(a1,... ,a,)}.

Two formulas ¢(z1,...,x,) and ¥(z1,...,x,) are equivalent in a model, denoted by ¢ =
¥, if for every valuation (a1,...,a,) of (z1,...,2,), ¢(a1,...,a,) is true if and only if
Y(ay, ..., a,)is true. Equivalent formulas define the same set.

Every model defines a theory, as the set of all sentences which hold in the model. For
example, we denote by Lin(R) the theory defined by the formulas of P which are true over
(R,<,+,—,0,1); in other words, Lin(R) is the theory of linear constraints. We denote by
OF(R) the theory defined by the formulas of R which are true over (R, <,+,—,-,0,1); in
other words, OF(R) is the theory of the real numbers as an ordered field.

3Universal quantification, Yz | ¢, is interpreted as —(3z | —~¢).
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3.2 Quantifier Elimination and Semi-decidability

The terminology introduced in the previous section provides a framework for defining
sets of states, by using formulas in an appropriate theory. It also provides a method for
performing intersection and complementation of sets, by taking conjunction and negation
of the corresponding formulas. One would also like to be able to determine whether a set
definable in the model is empty or not.

For some theories, it is possible to determine the sentences that belong to the theory.
The Tarski-Seidenberg decision procedure provides a way of doing this for OF(R). It can
be shown that OF(R) is decidable [33, 36], in other words, there exists a computational
procedure that after a finite number of steps determines whether an R-sentence belongs to
OF(R) or not. The decision procedure is based on quantifier elimination, an algorithm that

converts a formula ¢(xq,...,x,) to an equivalent quantifier free formula. Notice that this
provides a method for testing emptiness. A set Y = {(z1,...,2,) | é(x1,... ,2,)} is empty
if and only if the sentence 3z ... 3z, | ¢(x1,... ,x,) is equivalent to false.

To relate this to the problem at hand, we restrict our attention to CIP which are
“definable” in an appropriate theory.

Definition 6 (Definable CIP) A CIP, (H,0OF), is definable in a theory if X = R", U C
R™, D C R™ and the sets U, D, Init, f(z,u,d) for allx € X, w € U and d € D, and F
are definable in the same theory.
If (H,OF) and W! are definable in OF(R), then
Pl(z) = FuVdVe' |[t e WA[uc UA[(dEgD)V (2 & f(z,u,d))V (z' € WH] (3.2)

is a first order formula in the corresponding language. Therefore, each step of the controlled

invariance algorithm involves eliminating the quantifiers in (3.2) to obtain a quantifier free
formula defining W'*!. The fact that OF(R) is decidable immediately leads to the following:

Theorem 3 The class of CIP definable in OF(R) is semi-decidable.
Moreover, if (H,OF) is definable in OF(R) and W is a controlled invariant set also definable
in OF(R), then the set

{(z,u)|Vd € DV2' € f(z,u,d), 2’ € W}

describing the least restrictive controller that renders W invariant is also definable in OF(R).
Furthermore, quantifier elimination can be performed in this formula, to obtain an explicit
expression for the least restrictive controller. Finally, the question W N Init® = () can be
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decided. Therefore, if the algorithm happens to terminate in a finite number of steps, the
CIP can be completely solved.

The class of CIP definable in OF(R) is fairly broad. The class contains DTS with
polynomial constraints on u, d and Init and reset relations encoded by constraints on the
possible next states which are polynomials in z, v and d. Strictly speaking the problem
remains semi-decidable even if we add polynomial state dependent input constraints, i.e. at
each state, x, allow values of u and d that satisfy polynomial constraints in z, u and d.
This includes for example the closed loop system obtained by coupling the least restrictive
controller with the plant.

Although different methods have been proposed for performing quantifier elimination
in OF(R) [2, 33, 36], and the process can be automated using symbolic tools [14], the
quantifier elimination procedure is in general hard, both in theory and in practice, since the
solvability may be doubly exponential [22]. For the theory Lin(R), a somewhat more efficient
implementation can be derived using techniques from linear algebra and linear programming.
The next section shows how quantifier elimination in the theory Lin(R) can be performed
more efficiently for the formula (3.2) used in the controlled invariance algorithm.
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Chapter 4

CIP for Linear Discrete Time Systems

4.1 Exact Computation of W and g(z)

A linear CIP (LCIP) consists of

e a Linear DTS (LDTS), i.e. a DTS with X = R", U = {u € R™ | Fu <p} C R™,
D={deR"|Gd <~} CR"™, Init ={z € X|Jz <8} and a reset relation given by
flz,u,d) = {Az + Bu+ Cd}, where A € Q"*", Be Q"", C € Q™" F € Qnu"",
G e Qnraxna npeQre,y e Qne, Je Qi and § € Q™ with m,, mg and m; being the
number of constraints on the control, disturbance and initial conditions, respectively;
and,

e aset F'={zecR"| Mz <p} where M € Q™*", 3 € Q" and m is the number of

constraints on the state.

Notice that LDTS are non-blocking and deterministic, in the sense that for every state x
and every input (u,d) there exists a unique next state. Since the sets F', U and D are all
convex polygons, and the dynamics f are given by a linear map, a LCIP is definable in the
theory Lin(R), and therefore, according to the discussion in Section 3, it is semi-decidable.
We assume that the sets ' and U can be either bounded or unbounded, but D is bounded?.

For the LCIP it turns out that, after the [-th iteration, the set W' can be described
by m! linear constramts as {x € R"| M'z < '}, that is, Wl remains a convex polygon
Obviously, m® = m, M® = M and 8° = 3. Letting Al = MZA B'= M'B and (' = M'C,
(3.2) becomes

P z) = FuVd | [M'z < BIA[Eu< g A[(Gd > ~y)V (Alz + Blu + C'd < Y]
= [M'z < B)A[Bul| (Eu<n)ANd|(Gd>~)V (Az + Bu + C'd < 8Y)).

IThe theoretical discussion can be extended to unbounded D sets, but the computational implementation
is somewhat more involved.
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Thus, in each step of the algorithm, we need to be able to eliminate variables u and d
from the inner formulae, intersect the new constraints with the old ones and check if the new
set 1s empty. Notice that not all of the new constraints generated by quantifier elimination
may be necessary to define the set W', Also, some of the old constraints may become
redundant after adding the new ones. Hence, we also need to check the redundancy of the
constraints when doing the intersection.

4.1.1 Quantifier Elimination

We first perform quantifier elimination on d over the formula
¢z u)=Vd | (Gd >~)V (Az + Blu+ C'd < 5Y).
Let a7, l;;‘F and ¢ be the i-th row of Al, B! and C’l, respectively. Then, parsing ¢' leads to
1

'(z,u) = Vd | N(Gd >~) v (efd < B —alz —b]u).
=1

Consider § : R™*"a — R™ defined by 52'(6'1) = Imax (&fd) fori=1,... ,m"
:Gd<y

Proposition 3 ¢/(z,u) is equivalent to p'(z,u) = Alz + Blu < 8! — (5((:”).

Proof: If ¢ (x,u) is false then 3d* | (Gd* < ) A (eFd* > B! — alx — ?);‘Fu) for some 7. Since

5:(CY > eld*, we conclude that —¢' = —!, hence ¢! = ¢'. Similarly, if ¢!(z,u) is false,
3d* | (Gd* < y) A (eFd* > Bt — aTx — bTu) for some 2. Thus ¢' is false and ¢' = ', n

Therefore, the elimination of the V quantifier can be done by solving a finite collection
of linear programming problems. Since we have assumed that D is bounded, such an op-
timization problem is guaranteed to have a solution, and hence é(-) is well defined. Since
6(+) is applied to each row of C', in the sequel we will use 52'(6'1) and §(¢7) interchangeably.
Notice that, strictly speaking, 6(-) is not part Lin(R), but we use it as a shorthand for the
constant obtained by solving the linear programs.

Next, we perform quantifier elimination on u over the formula

it 4]0

(x) = Fu| (Fu <) A (Alz + Blu < ' = 6(Ch) o £llu ;

We will discuss two methods to eliminate u. The first is known as Fourier Elimination [15],
and the second, attributed to Cernikov [9], is an application of Farkas Lemma on duality

[10].



For the first method, assume we want to eliminate u; first.

. i
vector in R™ 7

HZZ[BZ] and gl(x):[ﬂl”(c;:)_/ilw].

Thus ¢/(x) is equivalent to Ju | H'u < ¢'(z).

E

Also define P! = {p|
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Let e; be the :-th unit

H! >0}, Q' =

{q | Hé1 < 0} and R' = {r | H!, = 0}, where Hfj refers to the 2,j element of the matrix
H'. Then ¢'(z) is equivalent to

AW

pEP! geQ!

[ (6) = 3 M) S w0 < r(€)le

M

reR!

)—ZHZU

lo< Z

Hence, after the elimination of u; we obtain

A A

. €q Alm . . 65 gl 5(@1)'
/\ /\ qu T [ 0 ] < [le _qu] 7 [ n
pEP! g€Q!UR! €p €,
l l E;nzz H, Uj
— [Hy —Hy) I (4.2)
Jj=2 Hm’ui J

Therefore, the elimination of the 3 quantifier is performed by taking nonnegative linear
combinations of all pairs of constraints so as to cancel the quantified variable. Note that if
all the coefficients of the quantified variable are positive (negative), then ¢! is true, and we
need not to eliminate the remaining variables. Otherwise, after u; has been eliminated, we
apply the same procedure to the constraints in (4.2), so as to eliminate us, . ..
the procedure is based on nonnegative row operations, it is clear that

s Up, . DinNce

meAﬂA% 0<Alp). (13)

] < A! [ gl = o) ] = (M'z < ") A
0 U

Where A =[AL AL € Q' *(m'+mau) §s 3 matrix with nonnegative entries such that A'H! = 0,
m! 1s the number of new constraints obtamed through quantifier elimination, M' = AZAI
Qm xn and B! = Al WB'=s(Ch) e € Q™. Notice that if the condition Abln > 0 is violated, then
W = 0. Otherwise, we just need to add the new constraints M’z < B! to the orlgmal set
Wi,

Although Fourier Elimination is attractive because of its simplicity, it is quite ineffi-
cient. In general, it generates many new constraints in the intermediate steps, and in the
worst case the method is exponential. This difficulty can be partially remedied since many of
the inequalities are likely to be redundant [10]. An alternative method [9] computes the rows

of Al directly as the extreme points of the set {\ € R™+m«| MIH —0AN > 0A Soab=11,
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where the last constraint is added to ensure that the set is a polytope. Although the extreme
points method is better than Fourier elimination, because it eliminates the costly interme-
diate steps, the computation of the extreme points is still costly and also generates a lot of
redundant constraints. A more efficient method [22] uses a generalized linear programming
formulation and an on-line convex hull construction to obtain an incremental inner approxi-
mation of the set defined by ¢!. The method considerably reduces the number of constraints
defining the resulting set.

4.1.2 Intersection, Emptiness and Redundancy

Provided that ALy > 0, the quantifier elimination procedure presented above computes
the set of states W' = {a|M'z < B!} that can be forced by u to transition into W'. To obtain
W such a set must be intersected with W'. Since both sets are convex, the intersection
can be carried out by simply appending M and 3! to M' and ', respectively. However, this
method of performing the intersection is likely to lead to a description of the set which is
larger than necessary since many of the constraints may be redundant. Algorithm 2 is aimed
at checking the emptiness of the intersection and then eliminate redundant constraints. In

the algorithm, [] denotes an empty matrix, 1 = (1...1)T € Q™' +m' and m;»T and f3! are the
Vi 3l
i-th rows of M} = [ %l ] and g} = [ gl ], respectively. Initially, M’ = M{ and 3’ = 3.

The idea behind the algorithm is that W' N W # 0 if and only if dz | M'z < [/,
which is equivalent to saying that min{t | M’z < ' 4 1t} < 0. Afterwards, if the problem
max{mgT:C | M'z < '} is feasible, and the constraint m;»T:L’ < f!is not redundant, then the
optimal value of the problem is 3/. Moreover, if the non-redundant constraint m;Tx < B is
removed from the optimization problem, then the new optimal value m* satisfies m* > ..

Algorithm 2 (Emptiness and Redundancy Algorithm)

initialization M’ = M|, 8’ = g8, M =[], g+ =].
m* =min{t | M'z < '+ 1t}
if m* > 0 or Aby # 0 then
W = 0, terminate controlled invariance algorithm
else
for i = 1 to m! + m! do
remove m}’ from M’ and 3! from j'
m* = max{m! x| M'z < 3}
if m* > 3] then
add m;»T to M and M,
add B! to "+ and g’
end if

end for

end if
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if M+ = M! and gt = ! then
W = W', terminate controlled invariance algorithm

end if

The controlled invariance algorithm terminates if the redundancy algorithm concludes
that either Abp % 0 or Wi N W! = (in which case W = 0), or if all the new constraints
are redundant (in which case W! = W = W)2 Otherwise, upon termination of the
redundancy algorithm, the process is repeated for W!*!. An obvious optimization of the
code involves terminating both algorithms if after all new constraints in M'z < 3" have been
tested, M'*! and B'*! are still empty. Notice that for all [ the set W' is a convex polygon
as claimed.

In the next section, we study situations where the algorithm is guaranteed to terminate
in a finite number of steps. In Section 6, we will provide an example which actually converges
after an infinite number of iterations. This will prove that:

Theorem 4 The LCIP is semi-decidable.

4.2 Decidable Special Cases

We first summarize some of the observations made so far about situations where the
algorithm terminates in a finite number of steps.

Proposition 4 For an LCIP with U = R"™, if either one of the columns of M B is compo-
nentwise positive (negative), or if rank(MB) = min{m,n}, the algorithm terminates in a
finite number of steps.

Proof: If one of the columns of M B is positive (negative), there is no A > 0 other than
A = 0 such that ATMB = 0. Thus W = F, g(z) = U for all € X, and the algorithm
terminates in the first iteration. If rank(MB) = m, the only solution of ATMB = 0 is
A = 0, thus we obtain the same result as in the previous case. Finally, if rank(MB) = n,
then \"TMB =0 = ATMA = 0. Thus, if \T(3—§(MC)) > 0, we have W = F and g(z)=1U
for all z € X; otherwise, we have W = 0 and g(z) = U for all z € X. Again, the algorithm
terminates in the first iteration. n

Next, we limit our attention to the case F' = [aq, /1] X ... X [y, B,] C R™ with o; < 3;
and [, 3] CR,2=1...n, u € R, and d € [dy,d3] C R. To remind ourselves of the fact

?Note that any redundant constraint in the original description of F will be eliminated the first time the
redundancy algorithm is invoked by the controlled invariance algorithm.
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that u and d are scalar, we use b and ¢ instead of B and C'. We also assume that (A, b) is in
controllable canonical form, that is

0 1 0 0 0 0 c
0 0 1 0 0 0 C
zlk+1] = : ol xRl | ulk]+ : d[k]. (4.4)
O 1 Cp—1
| Gn1  Gp2 Gnn i | 1 i | Cp, i

In this case 1'(z) is equivalent to

T

Ful Ny <2 <B) A Nlajor = 8(—¢jo1) < @ < Bimy — 6(cjm1)) A

=1 7=2
(an — Z anjr; —6(—cy) < w Z ApjTj — ) ) (4.5)

From the last expression, it is clear that given z1 € [aq, (1], 2,7 = 2...n exists if and only
if
aj = max(aj,aj1 — 6(=¢j-1)) < min(By, fio — (i) =B, j=2...n

and u exists if and only if
—6(—cn) < B — b(cn).
It is straightforward to see that in the I-th iteration (0 <1< n) W'is defined by:
W= [ad, 8] x [ab 8] % . % [ofyr. Bl % ol Blsa] X adyr Blas] x .. x [oh 8],
where
1704'__11_5(03'—1)) I+1<j<n
371 —6(cim)  1+1<j<n

This means that after n iterations, the maximal controlled invariant set remains un-
changed, and the least restrictive controller is given by the last constraint in (4.5), but with
a, and 3, replaced by o”~! and 377!, respectively. This result can be summarized as follows:

Lemma 3 Given system ({.4) with F = [a1, 1] X ... X [@n, 8] CR™, U =R and D =
[dy,d3] C R, the solution to the CIP, oblained after at most n ilerations of the algorithm, is
given by:

_ ) g1 _gn-1
. {{x|/\;f;1a; ten e b il Ny (7 <87) A (lel <2580

0] otherwise

otherwise

i(z) = {I{J“ | o™t —6(—cn) Sut 370 anz; < BT - 5(cn)} ifreWw
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Note that if at the first iteration, we compute

al = ay, a} = max(a;, a}_l —6(cj-1)) 2

Bi=p, B =min (8,8, —8(cja)) 2

then the problem can be solved in one iteration.

Theorem 5 For systems of the form (4.4) with F = [ay, £1] X ... X [an, 3] CR™, U =R
and D = [dy,dy] C R, the LCIP is decidable.

The conditions of Theorem 5 for decidability are somewhat demanding. If, for example,
u is bounded, that is, U = [uy,us] C R, then the new constraints added to z during each
iteration may change the bounds on z to a non-rectangular polyhedron. For example, in the
first iteration, the following constraints are added to z:

(Ozn — Zam‘l‘]‘ — 5(—Cn) < Uz) /\ (ul < Bn — Zanjxj - 5(Cn)) :

In this case, the CIP is no longer decidable, and the system falls into the more general class of
systems described at the beginning of the section. We conjecture that the LCIP is decidable
in a much more general setting, using a completely different algorithm that exploits the

stabilizability of the pairs (A, B) and (A, C') and the observability of the pair (A, M).

4.3 Approximate Computation of W and g(z)

One of the disadvantages of the exact calculation proposed in Section 4.1 is that the
computation of Pre is still worst case exponential. In this section, we present an algorithm
based on semidefinite programming that computes an approximated solution to the LCIP.
As a result, we also obtain an algorithm that approximates the solution of the CIP for LDTS
with ellipsoidal constraints, i.e. when the sets F', U and D are ellipsoids.

First, we show how to compute an ellipsoidal approximation of W' = Pre(W?), and
then generalize the procedure to get an ellipsoidal approximation of W!. As a result, we ob-
tain a polynomial time algorithm for approximating the computation of Pre at each iteration
of the controlled invariance algorithm. As we will see in Section 6, the proposed method is
very fast and gives a good estimation of the controlled invariance set.

Ellipsoids are represented as & (P, ) = {z | (x — 2)TP~1(x — %) < 1} where P = 0
is a positive definite shape matriz, and z is the center of the ellipsoid. An equivalent rep-
resentation, obtained by using Schur complements, is given by the linear matrix inequality
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(LMI):
= 0.

This second representation allows the ellipsoids to be flat whenever P is positive semidefinite
(P > 0). Unless otherwise stated, we will assume that ellipsoids are non flat. A third
equivalent representation is &(F, %) = {z |z = & + Ez,||z|| < 1} where E = PY2. To
make the subsequent LMIs more readable, we may use a * to denote elements in the lower
triangular part of a symmetric matrix. Further, for a positive semidefinite matrix £, we will
use the trace tr(F) as a measure of the size of the ellipsoid &(F, ).

Returning to the problem at hand, we assume that sets /', U and D are given by the
ellipsoids F' = W9 = & (Qo, %), U = &(T,4),D = &(A,d), respectively, where (g = 0 €
Q' =0e Qe A=0eQramd 7€ Q" ue Q, and d € Q4.

At each iteration of the controlled invariance algorithm we need to compute
W = Pre(W') = {z € W' |3u; € UVd, € D, Az + Buj+ Cd, € W'}

For the first iteration, the inner formula is equivalent to

QO A$+BUO—|—Od0 —io
*

Vdo | |A72(do — d)l| <1 = 1

= 0. (4.6)

The following lemma [16] will allow us to replace the universal quantifier in (4.6) by an
existential quantifier.

Lemma 4 Let F = FT, L = L7 and R = RT be given matrices of appropriate size. Then

__pT
(VZI1Z| <1 = F+ LIR+ (LZR)T = 0) <= (3720| [F TRIR L ] z()).

LT T

Applying Lemma 4 to Z = A~Y?(dy — ci),

f’

[ A;z;—|—Bu0—|—CcZ—:&O] L,_[CAW
]« 1 T 0

]andR:[O 1],

we obtain the equivalent formula

Oy Az + Bug+Cd— 2y CA/?
EITO | >k 1 — 70 0 t 0
* 0 7'0]



24

Note that we do not need to keep the constraint 7o > 0, since it is implicitly implied by the
LMI whenever C' # 0. Indeed, the LMI implies that 0 < 79 < 1. Consequently,

Qo z—3 0 0 0
* 1 0 0 0

Pre(W°) = {z| Jup € U3y, | 0 0 Q wvn CAY?2| =0}, (4.7)
0 0 * 1—7 0
0 0 * 0 ol

where vg; = Az + Bug + Cd— Zg.

4.3.1 Inner approximations of W and g(x)

As a first stage towards computing an inner approximation of W and g(z), we compute
the maximal inner approximation &(Fy,#1) of Pre(W?). Such approximation must satisfy:

D z—29 0 0 0
* 1 0 0 0
Vo € E(Fy, 1) Juo € Uy | 0 0 Q v  CAYZ | =0,
0 0 x 1 —7 0
0 0 * 0 7ol
This formula is equivalent to:
Qo 1 —To+ F1z 0 0 0
* 1 0 0 0
VZ7||Z||§17 due € U dry | 0 0 Qo o1 + AFqz CAI/Q E(L
0 0 * 1—7g 0
0 0 * 0 7ol

where 091 = Az; + Bug + Cd — Zo. In order to apply Lemma 4 to

Qpiy—dg 0 0 0 Ey 0
« 1 0 0 0 0 0

Folo o 0 s ca”2|l c=o an R=[858?8] andzz[g 0]’
0 0 * 1—7’0 0 0 0 )
0 0 * 0 Tol 0 0

we first exchange the quantifiers from Vz, ||z|| < 1, Jug € U I7rg to Jug € U7y Vz,||2]| < 1.
Notice that exchanging the quantifiers may reduce the size of the set we want to approximate,
and hence the inner ellipsoid we are seeking may be conservative.

Since ||z]| < 1 is equivalent to ||Z|| < 1, Lemma 4 can be applied. After appropri-
ate column and row permutations, the ellipsoidal inner approximation of Pre(W?) can be
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obtained by solving the SDP

maximize tr(F£)
subject to FE; = 0,

[ QO .’1?1 - {i’o E1 F U — ﬁ
* 1—9 0 zo,[* ’ ]zo,
| * 0 "}/0]
Qo do CAY? AE,
* 1 —790—"0 0 0
* 0 Tol 0 = 0.
| * 0 0 ’)/0]

Now, we seek to compute an inner approximation of Pre”™(W?). For such an approxi-
mation to be as close as possible to the true one, instead of using the previously computed
ellipsoidal approximation, we keep the exact representation of Pre(W?) as in (4.7), then we
compute an LMI inner approximation® of Pre*(W?) and so on. It is straightforward to see
that this procedure leads to the following inner approximation of Pre™(W?):

{$|E|u0"'um—1EUEITO--.Tm_1| 20$—1$0 =0
—QO Vi—1,m CAI/Q ce Aj—loAl/Q: m
* 1= Z?;:nl—j 7 0 0
M 0 Tm-il 0 = 0},
L * 0 0 Tm—lj 1.

with v,y , = Az +

inner approximation of Pre™(W?) is obtained as:

maximize tr(FE,,)
suject to K, = 0,

Z;S AY(Bupyioj + C’a?) — &g, for all j = 1...m. Then the ellipsoidal

QO Zi'm - i’o Em F o m—1
* 1 — Yoy 0 i(),[ i u] >0,
* 1 .

| 0 rym_ll =0

Qo Dj_1m CAV? AITIOAY? AR, 1™

* 5j,m 0 0 0

S (T | 0 0

=0,
0 0 T 0
| 0 0 0 ’}/m—lj h ]':1
With 0 1m = Aldp + 3370 AY(Bupyij + Cd) — &, for all 5 = 1...m, and §;,, = 1 —

m—1 )
Zi:m_]‘ Ti — Ym—1-

3In general we do not obtain an exact representation because we exchange the quantifiers to apply Lemma

4.
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The controlled invariance algorithm stops if at some iteration m, we have F,, = F,,_4
and &,, = &,,_;. In such a case, an ellipsoidal approximation &(T',,, %) C §(z) of the least
restrictive controller at state z is obtained as:

maximize tr(I',,)

. r wi—a 1"
' -
subject to F_m = 0, (i — )T 1 = 0, | N
Qo W1, CAYZ ... AIFICAY2 ASBT,
* 5]‘7m 0 e 0 0
* 0 T—j 1 0 0
: : : : : = 0,
0 0 Tm—11 0
| 0 0 e 0 Ym—-11 ] i

where t;_1, = Az + 33922 AN Buppie; + Cd) + Ai™(Bit, + Cd) — &, for all j = 1...m.

Comment 1 Recall that Pre is monolone, hence & (D, 3,) C Pre™(WP). Therefore, if
the sequence of ellipsoids converges, then W exists and the limil of the sequence is an inner
approximation of W. On the other hand, for fized m, Pre™(W?) is an ouler approzimation
of Vj/, hence E(Qp, &) is not guaranteed to be either an inner or an outer approzimation

of W if il exists.

Because we exchanged the order of quantifiers, the above procedure may lead to very
conservative inner approximations of both the controlled invariant set and the least restrictive
controller. Hence we propose an alternative heuristic algorithm that mixes both inner and
outer approximations of Pre.

4.3.2 A less conservative “heuristic” approach

We first compute a polytope containing Pre(W?) in (4.7) by solving a series of SDPs
of the type

maximize w] x

subject to o x—xo]io’[F uo_u]tﬁ,

* 1 * 1

[ Oy Az + Bug+ Cd — 39 CA?
* 1—m 0 =0,
* 0 7ol

where the vectors w; € R",z = 1...p are chosen arbitrarily. Then an outer approximation
of Pre(W?) is given by {z | Mz < 3} where w! is the i-th row of M and f; is the optimal
value of the i-th semidefinite program, : = 1...p.
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Then we compute an ellipsoidal inner approximation &(Fy, #1) of the obtained poly-
tope. We want Vz|||z|| < 1, M(%,+FE12) < 8. This is equivalent to AI_, w! &, +||Frwi|| < 8.
Notice that £; = 0 implies 3; — w! 2; > 0. Hence, we can use Schur complements to rewrite
these constraints as a set of LMIs. Therefore, the ellipsoidal approximation of Pre(W?) is
obtained as the solution of the SDP:

maximize tr(F)
(Bi —wld )l Byw; ]” (4.8)

= 0.
(Fow)™ Bi—wlin | ="

subject to  F; = 0,

Letting ; = E2?, we can compute an approximation of Pre’(W?) by using the same two
step procedure. Generalizing, we get an ellipsoidal approximation & (Q,,, Z,,) of Pre™(W?).

Finally, if the algorithm stops at iteration m, an ellipsoidal approximation & (I, , t,,)
of the least restrictive controller at z can be obtained by solving the SDP:

maximize tr(l',,)

: (Bi = 2Fi,) . Thz ]°
subject to 1", = 0, [ (T 2)T 8 — T, _ =0,
where [3;, for : = 1...p, is the solution of the SDP
maximize z!u
. r u—1u
-
subject to [ (u—a)T 1 ] = 0,
Vo Az 4 ButCd— iy CAY?
* 1 — 7,1 0 = 0.

* 0 T—11

Comment 2 Notice that, £1(Qy,, Tn) is, in general, neither an inner nor an ouler approwi-
mation of Pre™ (W?). Hence, the limit of the sequence of ellipsoids, if exists, is not guarranted
to be an inner approrimation of W in this case.
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Chapter 5

CIP for Discrete Time Hybrid
Systems

As we mentioned in Section 2 the CIP is decidable for finite state machines, that is
DTS whose states and inputs take on a finite number of values. In Section 3, we also argued
that the CIP is semi-decidable for a wide class of DTS whose states and inputs are real
valued. In this section we bring these two observations together and discuss the CIP for
discrete time hybrid systems, that is DTS with some states and inputs taking values in finite
sets and others taking values on the reals.

5.1 Discrete Time Hybrid Systems

The following discussion is based on a discrete time version of the hybrid automata
of [25, 24]. State variables are partitioned as S = @ U X, with Q being a finite set. We
use s = (¢,z) € S to denote the state of the system, with ¢ € Q and 2 € X denoting
the discrete and continuous state, respectively. Similarly, input variables are partitioned as
V=TYUUUAUD. We use (v,u) to denote the control inputs of the system, with v € X
and u € U denoting the discrete and continuous control inputs, respectively. Finally, we use
(6,d) to denote the disturbance inputs of the system, with 6 € A and d € D denoting the
discrete and continuous disturbance inputs, respectively.

Definition 7 (Discrete Time Hybrid System (DTHS)) A discrete time hybrid system
is a collection H = (S, V, Init, Inv, r, R) consisting of a finite collection of state variables,
S, a finite collection of input variables, V', a set of initial states, Init C S, an invariant set
Inv C S x V, a continuous reset relation, r : S x V. — 2% and a discrete reset relation

R:SxV — 28,
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Definition 8 (Execution of DTHS) A sequence x = (s,v) € (S x V)*U (S x V)¥ is said
to be an execution of the discrete lime hybrid system H if s[0] € Init, and for all k >0,

o slk+ 1] € R(s[k],v[k]), or
o (slk],v[k]) € Inv, q[k] = q[k + 1] and z[k 4 1] € r(s[k], v]k]).

One can check that a DTHS is non-blocking if for all (s,v) either R(s,v) # @ or
(s,v) € Inv and r(s,v) # 0.

Like their continuous time counterparts, DTHS can be thought of as directed graphs,
with nodes Q and edges (¢, ¢’) for all ¢, ¢’ € Q such that

Jx, 32" € X, Jv € V such that (¢',2) € R(q,z,v).

With each node, ¢ € Q, of the graph we associate a set of initial conditions, an invariance
relation and a transition relation given by

Init, = {z € X|(q,z) € Init},
hovy(0) = {z€X|(go0) € Inv),
ro(z,v) = {2' e X |z €r(qz,v)}.

With each edge, (¢, ¢’) of the graph we associate a guard relation and a reset relation given

by

GQQ'(U) = {LL’ € X | El;l,'/ € X7 (q/7$/) € R(q,x,v)},
qu/(x,v) = {xl € X | (qlvxl) € R(q,;z:,v)}.

For pairs (¢, q') which are not edges of the graph, we can set G,y(v) = Ry (z,v) = 0 for all
z € X and v € V. Notice that a guard relation G, (v) can be explicitly included in the
definition of a DTHS. These two definitions of a DTHS are equivalent if Vo € G, (v) we
have R(q,z,v)N ({¢'} x X) # 0 and empty otherwise. We will assume that a guard relation
is explicitly defined from now on.

Theorem 6 DTHS are a special case of DTS. Therefore all the properties in Section 2 about
general DTS (existence of mazimal controlled invariant sets, least restrictive controllers, etec.)
are inherited by DTHS.

Proof: A DTHS H = (S, V, Init, Inv,r, R) can be viewed as a DTS, H= (S, V, Init, f) with

flg,z,v) = R(q,z,v)U ({q} x {2’ € X|(¢,z,v) € Inv Az’ € r(q,z,v)})
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5.2 CIP for Definable DTHS

As before, a CIP (H,OF) consists of a DTHS H and aset /' C S. F can be decomposed
into a collection of subsets F, C X, ¢ € Q, by setting

F,={zeX]|(q,z) € F}.

We say that a CIP (H,OF) is definable in a theory of the reals, if X = R”, U C R™,
D C R"™ and the sets U, D, Init,, Inv,(v), ry(z,v), Gy (v), Ryy(x,v), and F, are definable
in the same theory, for all ¢,¢' € Q, z € X and v € V.

Recall that, given a set W C S, the solution of the CIP is related to the computation
of the set Pre(W). For a DTHS the formula (s) defining Pre(W) can be expressed as

JveYdueUVée AVde DV € Q,

[z € Invy(v) = ro(z,v,u,6,d) S WA [z € Goy(v) = Ryp(a,0,u,6,d) Wy, (5.1)

where W, = {z € X | (¢,2) € W}. For a CIP with W, definable in OF(R), the quantifiers
in ¢(s) can be eliminated from right to left using the standard elimination procedure for

OF(R) [33, 36] as follows:

1. The formula after all the quantifiers is a first order formula in OF(R), since it can be
rewritten as

(g, z,0,u,6,d,¢") = [~(xz € Invy) V (Vo' =(2" € ry(z,v,u,6,d)) V' € WA
[~(z € Gyy) V (V2 =(2" € Ryp(2,0,u,6,d)) Va' € Wy)].

The two universal quantifiers over z’ can be eliminated in the standard way, so we can
assume that ¢ is in quantifier free form.

2. The universal quantifier over ¢’ can be eliminated by noting that

Pa(q, z,0,u,6,d) =Vq' € Q, Pi(g,v,v,u,6,d,q) = N\ jeqi(g, v, v,u,6,d,q').
3. The universal quantifier over d can be eliminated by noting that

Ps3(q,x,v,u,0) =Vd € D, (g, z,v,u,6,d) =Vd —(d € D)V y(q,z,v,u,b,d),

on which the standard universal quantifier elimination can be performed.
4. The universal quantifier over ¢ can be eliminated by taking another conjunction
Va(q, v u,6,d) =V € A, ¥s(q,z,v,u,6) = Nsea ¥3(q, z,v,u,0).
5. The existential quantifier over u can be eliminated by noting that
Ys(q,z,v) = Ju € U, Yy(q,z,v,u) = Fu (u € U) V ipu(q,z,v,u),

on which the standard existential quantifier elimination can be performed.
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6. The existential quantifier over v can be eliminated by taking a disjunction

?7/}(qu) =Jv € T7 ?7/}5(q,;l?,1)) = Vue“r ?7/J5(q,$,’0)-

An induction argument over this procedure, together with the fact that OF(R) is decidable,
suggests the following generalization of Theorem 3.

Theorem 7 The class of CIP (H,OF) definable in OF(R), where H is a DTHS, is semi-
decidable.

5.3 CIP for Linear Discrete Time Hybrid Systems

Linear discrete time hybrid systems (LDTHS) are strictly more general than LDTS,
even if all reset relations are restricted to be linear maps. The full hierarchy of the classes
of systems considered in this paper is shown in Figure 5.1.

As before, a linear CIP (LCIP) consists of

e a LDTHS, i.e. a DTHS with X, U and D the same as those of a LDTS, Init, = {z €
X[ Jgx < 0y}, Invy ={z € X | Kz < Ky}, Gop = {2 € X | Lyga < &g}, mola,v) =
{A,z+ Bu+C,d} if x € Inv, and empty otherwise, Ry, (z,v) = {Apx+ Bygu+Cyypd}
if € Gy and empty otherwise, A, € Q"*", B, € Q"™+, C, € Q"*"4 A, € Q"*",
B,y € Qe Copp € Q7 J, € Qminia” f, € Qminia, K, € QMinva*” g, € Qminva,
Ly € QMoad*™ £ 0 € QMo | with mipi g, Miny, and my .. being the number of
constraints on the initial conditions, invariant and guard relations, respectively; and

e a collection of sets F, = {z € R"| M,z < 3,} where M, € Q™«*" 3, € Q™ and m, is
the number of constraints on the continuous state.

Notice that we have assumed ¥ = A = (), without loss of generality.

Provided that Inv,N G, = §, LDTHS are non-blocking and deterministic, in the sense
that for every state s and every input v there exists a unique next state. Since the sets F,
U, D, Inv,, G, are all convex polygons, and the dynamics r and R are given by linear
maps, the LCIP is definable in the theory Lin(R), and therefore, according to the discussion
in Section 3, it is semi-decidable. We assume that the sets ', U, Inv,, GG, can be either

bounded or unbounded, but D is bounded.

For a LDTHS (5.1) can be simplified to

{reW,Nnlnv, | Ju e UVd e D, ryz,u,d) € W,}U
{r e W,NGyy |FueUVde D, Ry(z,u,d) € Wy}.
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DTS

U

DTHS
FSM

LDTS

HSHie

Figure 5.1: A classification of DTS

To compute Pre(W?) we can use the implementation of Algorithm 1 proposed in Section 4.
For subsequent iterations, each W, usually consists of many disjoint convex polygons. Hence,
the method of Section 4 is no longer applicable, because the formula describing W, has not
only conjunctions but also disjunctions. To overcome this limitation, assume that at certain
iteration we need to compute the formula ¢(z) = Ju € U Vd € D,V /\f‘zlgbé(;r:,u,d),
where 9} (z, u,d) is an atomic formula in Lin(R). By the DeMorgan’s law, ¢ is equivalent to

m kl km m
Ju e U~ 3d|deDA/\v§;p¢;ﬁ(x,u,d)] =3ueU-|\/--\/ 3d|deDAr A\ -]
i=1 J1=1 jm=1 =1

Notice that d can now be eliminated by Fourier elimination. Then ¢ is equivalent to

JuelU /\21:1 T /\f::l vﬁl_‘®j1~njm (3;7 u)
where @, (z,u)=3d|d e DAAL, _"17/);‘,(:17, u,d). Therefore, by further applying DeMor-
gan’s law and Fourier elimination, u can also be eliminated to obtain a first order formula
describing Pre(W). However, it is important to mention that applying DeMorgan’s law
generates a combinatorial number of constraints, and hence the method is not computation-
ally attractive. Also notice that there is no advantage on restricting F, to be defined by
conjunctions only, unless Algorithm 1 converges in the first iteration.

In [39] an alternative method is proposed for performing quantifier elimination on lin-
ear inequalities with both conjunctions and disjunctions. The method reduces the number
of terms in a formula by using geometrical and logical considerations and by an early detec-
tion of superfluous branches. The method is also worst case exponential and therefore the

complexity of the CIP problem is the same for LDTS and LDTHS.
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Chapter 6

Experimental Results

The algorithms proposed in Sections 4.1, 4.3 and 5.3 were implemented in MATLAB
and LMITOOL. In this section, we present four examples that were solved using these im-
plementations. The first example is worked out analytically to show the way the algorithm
works. The second example completes the prove of Theorem 4. The third example com-
pares the ellipsoidal approximation against the exact solution. To initialize the SDP based
algorithm, we take inner ellipsoidal approximations of the original safe set F' and the set of
feasible controls U, and an outer ellipsoidal approximation of the set of feasible disturbances
D. The last example illustrates the algorithm for discrete time hybrid systems.

6.1 Example 1

The LDTS is defined by U =R, D = [-1,1],

11 80

0 1 0 1 1 -1 40
A‘[11}’B_[1]’0_[1]’M_ | oo | adB=gg
11 70

1. Initialization M® = M, 5° = 3 .
2. Iteration 1

(a) Computing A, ?), ¢

1 2 1 9
. —1 -9 . —1 . —9
A=1_1 4 b= 4 ‘=1 o
1 0 1 0



(b) Computing possible new constraints.

(¢) Computing new M and 3

1
—1

M = 1
—1

0

3. Iteration 2
(a) Computing A, ?), ¢

1
-1 -
-1

1
-9 _

o
Il
N O O NN

IN

AN /AN /N

I

1
-1
-1

1
-2

(b) Computing possible new constraints

9 9

[ 2] 2 |
-2 -2
[t 2] 0"

IN

AU

U

0 <116 = Redundant
[ 80 | [0 ]
[1 1]_80_—[1 1]_2_

229 < 158 = Redundant

[1 1] ig —[1 1] 0

—2x9 < 1-()8 :> Not Redundant-

[ 80 ] [0
[1 1]_70_—[1 1]
0 <150 = Redundant

80
40
pt=1| 80
70
108
1 2
-1 -2
= | -1 ¢ = 0
1 0
-2 -2

. Here P? = {1,4}, Q* = {5} and R* =)

[ 108 ]
[1 2}_ 80_—[1 2]_2_
229 < 262 = Redundant

[ 108 | [ 2]
[1 2] 70_—[1 2]_0_

—2z4 < 2-46 = Redundant

o

L 0 -

34

Here P' = {1,4}, Q' = {2,3} and R' = {)
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(¢) Therefore W and §(z) converge to

1 1 80
-1 -1 40
W={z|| 1 =1|z<| 80
—1 1 70
0 —2 108
{u € U|u>max(—38 — x1 — 229, —80 — x1, =52 — 21 — x2)
g(x) = u < min(78 — xy — 22,70 — 21)} ifzeW
U otherwise

Figure 6.1 shows the plot obtained by MATLAB.

Initial Set Final Set
100

or WO=F
-20
40
-60
-80 -80
R0 =0 0 50 100 e T R— 0 50 100

Figure 6.1: Iterations of the algorithm for Example 1

6.2 Example 2

In this example, we use the system defined in Example 1, but with

11 100
-1 - 50
M=1 | df=1 1
-3 1 —50

It is straightforward to see that the only new constraint added in the [-th iteration is

[0 mi]z < B, where m; = —10 - 3! and 3 = —210 — 265(3'=! — 1). Therefore after an



infinite number of iterations, W and g(x) converge to

w

U %)= (5

{u€U|u2maX(18—$1—

)}

41‘2

g(z) :
U

100 — 1, —52—5 — X1 — .fL'Q)

v < min(98 — x1 — 229, —52 — 11 + 223)}

if:EEW

else

Figure 6.2 shows the plot obtained by MATLAB for the first three iterations.

Initial Set
80
60
40
20
0
% 50 100
Second Iteration
80
60
40 w2
20
1] —X
% 50 100

-20

X
20
/X
% 50 100

First Iteration

80
60
40
w1
0 50 100

20

0

Third Iteration

80

60

40

Figure 6.2: Iterations of the algorithm for Example 2

6.3 Example 3

In this example, we consider the LDTS defined by

0 1] 0 1 1
P P L R
1 17 30 1 0 0.25
—1-9 40 0 1 0.25
M=\ s B=]| E=1_1 o] 2nd =05
—3 1] 70 0—1 0.5
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Figure 6.3 shows a comparison of the exact method (the dashed polytope) and the
heuristic SDP approach. In this case the ellipsoidal approximation is a proper subset of the
exact maximal controlled invariant set. It is also worth noting that the exact LP method
took several hours to compute the safe set, while the heuristic approach took less than a
minute of computation time.

80 80
701

60

50(
Inner pprox of

Safe Set

a0t

30t LP based converged

Heuristic SDP based
convel

_10F

—20 L L L L L L ,
-30 -20 -10 0 10 20 30 40 50

Showing the algorithm iterations. Showing the converged result.

Figure 6.3: Comparison of heuristic SDP approach and LP approach for example 3.

6.4 Example 4

Consider the water tank system [1] shown in Figure 6.4. For ¢ = 1,2, let x; denote the
volume of water in Tank 7, and d; denote the flow of water out of Tank z. Let u denote the
flow of water into the system, dedicated exclusively to either Tank 1 or Tank 2 at each point
in time. The control task is to keep the water volumes above levels [; and [;, respectively.
This is to be achieved by a switched control strategy that switches the inflow to Tank 1
whenever z1 < r; and to Tank 2 whenever z; < ry. We assume that z1[0] > ry > ; > 0 and
x[0] > ry > I > 0. The continuous dynamics of the water tank are discretized with period
7, so that it can be modeled as the following LDTHS:

Q:{172}7 XZRQa U:[umau]\/f] and D:[dmadM]Q;

Init = Q x {:L’ € X: (51?1 27“1)/\(51?2 27“2)}3

Invi={z e X2y >ro}, Invg={z € X : 2y > 1 };

G12:{$ € X DX < 7"2}’ G21:{$ (= X Try > 7"1};

TQ(xauad) =T+ T(bgu - d)7 bl = (170)7 62 = (07 1)7

Riz(z,u,d) = Ry (z,u,d) =2 — 7d.



38

We apply the controlled invariance algorithm to a water tank system with the following
parameters: u, =0, upy =12, d,, =0, dpyr =1, 7 =1, r1 =ry =20 and [; = [; = 10. The
controlled invariance algorithm converges after 11 iterations to the following solution:

A

W, = {zeX|z>(10,20)Vz>(21,11)}
W, = {zeX|z>(20,10)Vz>(11,21)}

[max(11 — x1,0),12] 2 > (10,21)

g(l,z) = [max(22 — x1,0),12] 2 > (10,20) A 2y < 21
[0,12] otherwise
[max(11 — 29,0),12] 2 > (21,10)

§(2,z) = [max(22 — 22,0),12] 2 > (20,10) A 27 < 21
[0,12] otherwise

Finally, for each (¢,z) € Q x X we apply a control that minimizes the flow of water
into the system, namely u*(¢,z) = min{u | v € g(q,z)}. Figure 6.5 shows the maximal
controlled invariant set plotted in white, as well as one execution of the system starting
at s[0] = (1,11,21). Solid trajectories correspond to transitions within the corresponding
discrete state, while dashed trajectories correspoond to transitions within the other discrete
state or from one state to the other. Notice that the controller applies the minimum possible
control to keep the state in the safe set, and hence the execution is always in the boundary
of the maximal controlled invariant set.

* w
X/ H X2 <12
X1 g=1 L — ——|g=2
X2 X1 =w-vl X1=-vl
r2 X2 =-v2 X2 =w-v2
rl X2>r2 | xl>rl
* xl<rl
vl v2
Figure 6.4: The water tank system
o=1 a=2
20 20 ,
\"© x[4]
' X[5]
15 15
Ox[0]
10 ) 10 S
X[l] X[1]
10 15 20 10 15 20

X X

Figure 6.5: Maximal controlled invariant set
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Chapter 7

Conclusions and Future Work

We showed that the problem of computing the maximal controlled invariant set and
the least restrictive controller for discrete time systems is well posed and proposed a general
algorithm for carrying out the computation. We then specialized the algorithm to linear
discrete time systems with convex polygonal constraints, and showed how it can be imple-
mented using linear programming and Fourier elimination. The decidability of the problem
was also analyzed, and some simple, but interesting cases were found to be decidable. Then,
we proposed a robust semidefinite programming based algorithm to approximate the solu-
tion of the CIP for systems with ellipsoidal constraints. The algorithm is quite efficient as
compared to the exact solution for linear constraints and gives good approximations of the
maximal controlled invariant set.

We then extended the proposed method to discrete time hybrid systems. It was shown
that the CIP can also be posed as a quantifier elimination problem, and can be solved using
Fourier elimination.

We are currently working on sufficient conditions under which the problem is decidable.
So far, it seems that the decidability property is not only dependent on the system itself,
but also on the initial set, as shown by Example 6.2. It would also be very useful to find
a general procedure to eliminate the existential quantifier in a LMI. Such a procedure will
avoid the exchange of quantifiers, and hence keep an exact representation of Pre at each
iteration of the controlled invariance algorithm. Then a tight ellipsoidal approximation of
Pre can be computed and the controlled invariance algorithm can be repeated.
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