IEEE Workshop on Vision and Motion Computing, pp. 44-49, Orlando FL, December 2002

Segmentation of Dynamic Scenes from I mage I ntensities*

René Vidal

Shankar Sastry

Department of EECS, UC Berkeley
301 Cory Hall, Berkeley CA 94720
{rvidal,sastry } @eecs.berkeley.edu

Abstract

We present an algebraic geometric approach for seg-
menting both static and dynamic scenes from image inten-
sities. We introduce the multibody affine constraint as a
geometric relationship between the motion of multiple ob-
jects and the image intensities generated by them. This con-
straint is satisfied by all the pixels, regardless of the body to
which they belong and regardless of depth discontinuities or
perspective effects. We propose a polynomial factorization
technique that estimates the number of affine motion mod-
els as well as their motion parameters in polynomial time.
The factorization technique is used to initialize a nonlinear
algorithm that minimizes the algebraic error defined by the
multibody affine constraint. Our approach is based solely
on image intensities, hence it does not require feature track-
ing or correspondences. It is therefore a natural generaliza-
tion of the so-called direct methods in single-body structure
from motion to multiple moving objects. We present simu-
lation and experimental results that validate our approach.

1. Introduction

Segmentation of dynamic scenes is an important and
challenging problem in visual motion analysis. Most of its
difficulty is due to the need for simultaneous estimation of
the number of moving objects and their motions, as well as
the motion of the camera (egomaotion).

When the sequence is static, i.e. when either the camera
or the 3D world undergo a single 3D motion, one can model
the scene as a mixture of affine motion models. Even though
a single 3D motion is present, multiple 2D motion models
arise because of perspective effects and/or depth disconti-
nuities. In this case the task of 2D motion segmentation is
that of estimating these models from the image data. Clas-
sical approaches to 2D motion segmentation try to sepa-
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rate the image flow into different regions either by look-
ing for flow discontinuities [9], while imposing some reg-
ularity conditions [1], or by fitting a mixture of probabilis-
tic models [6, 14, 10]. The latter is usually done using an
iterative process that alternates between segmentation and
motion estimates using the EM algorithm. Alternative ap-
proaches are based on local features that incorporate spa-
tial and temporal motion information. Similar features are
grouped together using, for example, normalized cuts [8] or
the eigenvectors of a similarity matrix [15]. Once a 2D mo-
tion segmentation of the scene has been obtained, the affine
motion models are estimated separately using, for example,
the so-called direct methods [5].

When the scene is dynamic, i.e. when both the camera
and multiple objects move, one can still model the scene as
a mixture of affine motion models. Some of these models
are due to independent 3D motions, e.g. when the motion of
an object relative to the camera can be well approximated by
the affine motion model. Others are due to perspective ef-
fects and/or depth discontinuities, e.g. when some of the 3D
motions are broken into different 2D motions. The task of
3D motion segmentation is to obtain a collection of 3D mo-
tion models, in spite of perspective effects and/or depth dis-
continuities. This can be done by first extracting a collection
of 2D motion models and then merging regions that have
a consistent 3D motion. The estimation of the 2D motion
models is usually done in an ad-hoc fashion that first ex-
tracts the dominant affine motion using direct methods and
then subdivides the misaligned regions by computing the
next dominant motion [4]. Alternative feature-based meth-
ods infer the 3D motion models directly from a collection of
feature points. Previous work in this area includes [3, 7] for
points moving linearly with constant speed, [2] for objects
seen by an orthographic camera in multiple views, and [13]
for objects seen by a perspective camera in two views.

In this paper we propose an algebraic geometric ap-
proach to affine motion segmentation from image intensi-
ties. We show that one can estimate the number of affine
motion models and their parameters analytically, with no
need for feature tracking or correspondences. We introduce



the multibody affine constraint as a geometric relationship
between the multiple motions and the image intensities gen-
erated by them. This constraint is satisfied by all the pixels,
regardless of the body to which they belong and regardless
of depth discontinuities or perspective effects. We derive a
rank constraint on the image measurements from which one
can estimate the number of motions n. Given n, one can lin-
early solve for the multibody affine motion after embedding
all the image measurements in a higher-dimensional space.
Individual affine motions are recovered from the multibody
one using a novel polynomial factorization technique that
gives a unique global solution to the motion segmentation
problem. This technique is then used to initialize a nonlin-
ear algorithm that minimizes the algebraic error defined by
the multibody affine constraint. We present simulation and
experimental results that validate our approach.

2. Preliminaries

Consider an dynamic scene with an unknown number of
independently and rigidly moving objects. We assume that
the motion of the sequence can be modeled as a mixture
of an unknown number n of affine motion models. Each
motion model is described by the equations

u(z,y) = anz+ay+as 1)
V(z,y) = a®+ axny+as (2
where w = [u,v,1]T € P2 is the optical flow of pixel
x = [x,y,1]T € P2 and ay1,. .., a3 are the affine motion

parameters.

If we assume that the surface of each object is Lamber-
tian, then the optical flow of pixel « is related to the partials
of the image intensity at pixel by the well-known bright-
ness constancy constraint

LU+ IV +1, =0. ©)
Combining (1), (2) and (3) we obtain the affine constraint
L (a11z+a12y+a13)+1y(as1 x+asey+ass)+1I, = 0, (4)
which can be compactly written as

a1l aiz2 a13 Y
y " Ax=[I, I, Ij]|ax axn axs| |y| =0, (5
0 0 1 1

where y = [I,,I,, I;]" € R3 is the vector of spatial and
temporal image derivatives, A € R3*3 is the affine mo-
tion, and = € P? is the vector of pixel coordinates. For
simplicity, we will represent x as an homogeneous vector
x = [z,v, 2] € R? from now on, unless otherwise stated.
In the presence of n = 1 motion, the affine constraint
yT' Az = 0 is bilinear on the image measurements (, y)

and linear on the affine motion A. Therefore, one can es-
timate A linearly from a collection of N > 6 image mea-
surements {(«/,y7)}’_, using equation (5).

In the presence of n motions, {4;}"_,, we cannot solve
the problem linearly because we do not know

1. The affine motion associated with each image mea-
surement (x, y), i.e. the segmentation of the data.

2. The number of affine motion models n.
Therefore, we are faced with the following problem:

Problem 1 (Multibody affine motion segmentation)
Given a set of image measurements {(x7,y7)}_, corre-
sponding to an unknown number of affine motions, estimate
the number of motions », the motion parameters {4;}" ,,
and the segmentation of the image measurements, i.e. the
motion model associated with each image measurement.

3. Multibody affine motion segmentation
3.1. The multibody affine constraint

Let (x, y) be an image measurement associated with any
motion. Then, there exists a matrix of motion parameters A,
satisfying the affine constraint y” 4,z = 0. Thus, regard-
less of the motion associated with the image measurement,
the following multibody affine constraint must be satisfied
by the number of affine motions n, the motion parameters
{4;}7, and the image measurement (x, y)

n

A(@,y) = [[(v"Aim) = 0. (6)

i=1

The multibody affine constraint converts Problem 1 into
that of solving for the number of affine motions n and
the motion parameters {A;}"_, from the nonlinear equa-
tion (6). This nonlinear constraint defines a homogeneous
polynomial of degree n in either « or y. For example, if we
let z = [z,v,2]T, then equation (6) viewed as a function
of a can be written as a linear combination of the following
monomials {z", 2" 1y, "1z, ... 2z"}. Itis readily seen
that there are M,, = (n+1)(n + 2)/2 different monomials.
Therefore, we can use the Veronese map of degree n, v, :
R3 — RMn [z,y, 2]T +— [2", 2" Ly, 2" 1z, ..., 2" 7T, to
write the multibody affine constraint (6) in bilinear form as
stated by the following Lemma (See [12] for the proof).

Lemma 1 (The bilinear multibody affine constraint)
The multibody affine constraint (6) can be written as

VUn (y)TAVn(w) =0, @)

where A € RM~»xMn js a matrix representation of the sym-
metric tensor product of all the affine matrices {A;}7 ;.



We call the matrix A the multibody affine motion since it is
a natural generalization of the affine motion model to the
case of multiple moving objects. Since equation (7) clearly
resembles the bilinear form of the affine constraint for a sin-
gle rigid body motion, we will refer to both equations (6)
and (7) as the multibody affine constraint.

Example 1 (The two-body affine motion) In the case of
n = 2 affine motions A; = [b;;] € R3*® and Ay = [¢;5] €
R3*3, the multibody affine motion A € R6*¢ is given by:

biici1 A12 biiciz + bizcir bizaciz bizciz 4+ bizci2  bizcis

A21 A2z Azs Azq Aszs Aze
0 0 b11 +c11 0 bi2 + c12 b1z +c13
ba1co1 Aaz baicasz + bagcar baacoa baocas + bagcoz  bascas
0 0 ba1 + c21 0 bao + ca2 basg + ca3
0 0 0 0 0 1
where

A12 = bi1ci2 + bizcin , Ag2 = ba1caz + baaco1,
Az = bi1cez + ba1ci2 + bizca1 + baacrr, A21 = biice1 + baici,
A3 = by1ces + baiciz + bizca1 + bazerr, A2q = biacos + baacio,
Azs = biace3 + baaciz + bizcaz + bazci2, Azg = bi3ces + bazcis.

3.2. Estimation of the number of motions »
and of the multibody affine motion A

Notice that, by definition, the multibody affine motion
A depends explicitly on the number of affine motions n.
Therefore, even though the multibody affine constraint (7) is
linear in A, we cannot use it to estimate A without knowing
n in advance. Fortunately, we can derive a rank constraint
on the image measurements from which one can estimate n,
hence A. We rewrite the multibody affine constraint (7) as
(Un(y) ® vp(x))Ta = 0, where @ € RM: is the stack of
the columns of A and ® represents the Kronecker product.
Given a collection of image measurements {(a:j,yj)}j-\’zl,
the vector a satisfies the system of linear equations

P,a =0, (8)

where the ;" row of P,, € RN*M.. is (1, (y7) @ v (27))7,
forj=1,...,N.

In addition to equation (8), the matrix A has to satisfy
other constraints due to the fact that the 3”¢ row of each A;
equals eX' = [0,0,1]. We show in Appendix A (See also
Example 1) that Z,, = n(n+ 1)(n + 2)(3n + 5)/24 entries
of A are equal to zero and that the entry (M,,, M,,) is equal
to one. Therefore, in order to determine a we solve the
homogeneous equation

P,a =0, 9)

where @ € RM:—2n is the same as a with the zero entries
~ 2 . .

removed and P, € RV*(M.—Zx) js the same as P,, with the

columns associated to zero entries removed. The scale of a

is obtained by enforcing the additional constraint a »;2 = 1.
In order for the solution of (9) to be unique, we must have

rank(P,) = M2 — Z, — 1. (10)

This rank constraint on P, provides an effective criterion
to determine the number of affine motions n from the given
image intensities, as stated by the following Theorem.

Theorem 1 (Number of affine motion models) Let P,
RN*(M?=Z:) he the matrix in (9), but computed with the
Veronese map v; of degree 1 < ¢ < n. If rank(A4;) > 2
fori =1,...,n, N > M2 — Z, — 1 and at least 6 points
correspond to each motion, then

>M?2—Z;,—1, ifi<n,
rank(P) { = M2 — Z; — 1, if i=n, (11)
<M}-27;—-1, ifi>n.

Therefore, the number of affine motions n is given by

n = min{i : rank(P;) = M? — Z; — 1}. (12)

Proof:  The proof for the case of fundamental matrices
can be found in [12]. Since the polynomial yA;x is irre-
ducible when rank(A;) > 2, the proof is also valid for affine
matrices. m

In summary, we can use Theorem 1 to estimate the num-
ber of affine motions n incrementally from equation (12).
Given n, we can linearly solve for the multibody affine mo-
tion A from (9). Notice however that the minimum number
of image pixels needed is N > M?2—Z,,—1, which grows in
the order of O(n*) for large n. Since in practice the number
of mations is small, say n < 10, this is not a limitation. For
example, for n = 10 motions we need N > 2430 pixels,
which is easily satisfied by a 100 x 100 image.

3.3.Estimation of individual affine motions {4,}" ,

Given the multibody affine motion A € RM»*Mn e
now show how to compute the individual affine motions
{A; € R33}n . From a mathematical point of view,
this problem is equivalent to factoring the bi-homogeneous
polynomial A(«, y) into n bilinear expressions of the form
™ A;y. To the best of our knowledge, this is a hard prob-
lem in real algebra and we are not aware of an efficient so-
lution to it®. Nevertheless, the multibody affine segmenta-
tion problem is a particular case of the general factorization
problem in which the 37¢ row of each A; is of the form
[0,0,1]. This extra knowledge will allow us to convert the
bi-homogeneous factorization problem into a factorization

10f course it can be solved in double exponential time using Gréebner
basis and quantifier elimination.



of homogeneous polynomials, problem for which we devel-
oped a polynomial time solution in [11].

The conversion of one problem into the other goes as
follows. Let « be the coordinates of a pixel in the first image
frame. If the pixel undergoes motion A;, then its optical

flow w; is given by u; = A;& € R3,i=1,...,n. Since
vn ()T Av,, (2 H y Aiz) = H(yTui), (13)
i=1 i=1

we conclude that the vector @ = Av,,(z) € R~ represents
the coefficients of the homogeneous polynomial in y

(yTun) = UVn (y)T'& (14)

We call the vector @ = Av,(x) € RM» the multibody
optical flow associated to pixel x since it is a combina-
tion of all the optical flows {u;}?_; that the pixel can un-
dergo depending on the motion assomated with it?. We can
also interpret the vectors {u;}? ; as linear combinations
of the columns of A,. For example, A;e3 represents the
374 column of A;, hence @ = Aw,,(e3) is a “combination”
of all the 37¢ columns of each A,. Intuitively, this means
that if we knew how to recover the individual optical flows
{wu;}?_, from the multibody optical flow & = Av,, (), then
we would be able to recover the individual affine motions
{A;}7_, from A in a “column by column” basis®.

From equation (14), we observe that recovering the op-
tical flows {w;}? , associated with pixel = from the multi-
body optical flow & = Av,(x) is equivalent to factoring
the homogeneous polynomial of degree n, g,,(y), into the n
homogeneous polynomials of degree one {y”u,;} ;. We
showed in [11] that this polynomial factorization problem
has a unique solution (up to a scale for each factor) and that
it is algebraically equivalent to solving for the roots of a
polynomial of degree n in one variable, plus solving a lin-
ear system in n variables.

Given such a solution for the polynomial factorization
problem, we show now how to actually recover the affine
motions {A;}™ , from A. To this end, let e1,e2,e3 € R?
be the standard basis for R3. Then the 1¢, (M,, — n)t"
and M?" rows of A are given by v,,(e1)T A, v,,(e2)T A and
vn(e3)T A, respectively. Since

vn(e;)T Avy ( ﬁ

i=1

9n(y) = (Y ur)(y uz) -

e] Aix) (15)

we can compute the 5" row of 4;, a;; = A;; 1ATej, up to
ascale \;; € R,wherei=1,...,n,j =1, 2 by applying
polynomial factorization to the vector ATun(ej),j =1,2.

2Mathematically, the multibody optical flow 4 is the symmetric tensor
product of the individual optical flows {w;}7 ;.

3In a similar fashion, AT vy, (y) is the symmetric tensor product of the
vectors ATy, i.e. AT vy (y) is a“combination” of the rows of each A;.

In order to solve for the unknown scales, we apply poly-
nomial factorization to the vectors A7 v, (e; + e3) to obtain
vectors ¢;; = %glAiT(ej + e3) up to an unknown scale
7i; € R. Since Al'e3 = e3, we have that

’)/ij&ij = )\UELU —+ €3 (16)
for vectors a;; and ¢;; that correspond to the same matrix
A;. We can check which ¢;; corresponds to which a;; by
checking that ¢; [eg]xau = 0. Then the unknown scales
are given by:

Ny = — (€] aij)"[ey]es. 17)
l[€:5]x a1

We now have all the rows of each A; fully computed, ex-
cept that we do not know which row corresponds to which
matrix A;. The association of rows to matrices can be easily
determined by looking at the 37¢ column of each A;. Such
columns can be computed up to scale by applying polyno-
mial factorization to the last column of A, Av,(e3). The
scale of the 3"¢ column of A; is immediately determined,
since A;(3,3) = 1. Then, in order to know which row cor-
responds to which affine motion, we check that the 37¢ en-
try of the 1¢ row matches the 1°* entry of the 37¢ column.
Similarly, for the 2 row. We then obtain

Ai = [Min@in Ain@in 63]T i=1,...,n. (18)

Notice that this procedure for determining which row cor-
responds to which column fails when the entries (1,3) or
(2, 3) of two affine matrices are equal. We leave this case
as an open problem.

In summary, we obtain {A;}? , from A as follows:

1. Set the 37 row of each A, to [0, 0, 1].

2. Compute the 37¢ column of each A; up to scale by ap-
plying polynomial factorization to the M:" column of
A, Av,(es). Since the entry (3, 3) of each A; is equal
to 1, the scale of the 37¢ column of each A; equals the
inverse of the its 37 entry.

3. The 1% and 2"¢ rows of each A;, @;; and @;2, can be
computed up to scale by applying polynomial factor-
ization to the 1¢ and (M,,—n)*" rows of A;, ATv,,(e1)
and ATv,, (ez), respectively.

4. The scale of the 15 and 2" row of each A4;, \;; and
A2, can be obtained from equation (17), where ¢;; and
;o are obtained by applying polynomial factorization
to the vectors A7v,,(e; + e3) and ATv, (es + e3), re-
spectively. In equation (17), the ¢;; associated with
a;; is determined by checking that ¢;; les]xa;; = 0.

5. In order to know which row corresponds to which
affine motion, we check that the 37¢ entry of the 15¢
row matches the 15 entry of the 37¢ column. Simi-
larly for the 2"¢ row.



3.4. Nonlinear motion segmentation

The segmentation algorithm described in the previous
section provides a unique global solution to the multibody
affine motion segmentation problem. Although the prob-
lem is nonlinear, the solution is based on linear algebraic
techniques thanks to the embedding of the image data into
a higher-dimensional space via the \eronese map. How-
ever, such a linear solution is obtained at the cost of ne-
glecting the algebraic structure of the multibody affine mo-
tion A. Recall that we treat the M2 — Z,, ~ O(n?) entries
of A as unknowns, although there are only 6n unknowns
in {A;}7_,. While it is algebraically correct to neglect the
internal structure of A provided that the conditions of Theo-
rem 1 are met, the estimation of A can become numerically
unstable in the presence of noise.

In this section, we propose a simple nonlinear segmenta-
tion algorithm that directly recovers the affine motion mod-
els {A4;}™ ,, without previously computing A. We assume
that the number of motion has been previously estimated
from equation (12) and search for the 6n affine parameters
that minimize the algebraic error defined by the multibody
affine constraint. That is, we minimize the error:

N n 2
7An)=Z<H<yﬂ'TAimj>> )

j=1 \i=1

E(A, ...

Notice that if n = 1, the minimization of E reduces to the
standard linear least squares estimation of a single affine
motion model. For n > 2 we use standard optimization
routines starting from the solution provided by the factor-
ization algorithm.

4. Experiments

We first test the proposed approach on synthetically gen-
erated data. We randomly pick n = 2,3, 4 collections of
N = 600 pixel coordinates and apply a different (randomly
chosen) affine motion model to each one of them to generate
their optical flows. From the optical flow associated to each
pixel, we randomly choose a vector y of spatial and tem-
poral image derivatives satisfying the brightness constancy
constraint (3). Uniform noise from 0% to 5% is added to
the partial derivatives y. We run 1000 trials for each noise
level. For each trial the error between the true affine mo-
tions {A4;}"_, and the estimates { A;}"_, is computed as

1on J 14— A4
error = — — > %. (20)
nZ{ I

=1
Figure 1 plots the mean error as a function of the noise
level. In all the trials, the number of affine motions was cor-
rectly estimated from equation (12) as n = 2, 3, 4*. Notice

4We declared the rank of P, to berifo,i1/(o1 44+ 0r) <e
where o; is the i-th singular value of P,, and e = 3 x 10~3.

that the estimates of the factorization algorithm are within
6% of the true affine motions for n = 2, even for a noise
level of 5% in the image derivatives. However the perfor-
mance deteriorates for n = 3. This is expected, because
the factorization algorithm uses an over-parameterized rep-
resentation of the multibody affine matrix. On the other
hand, the estimates of the nonlinear algorithm are within
2.1%, 8.2% and 13.3% of the ground truth for n = 2,3
and 4, respectively. The nonlinear algorithm is less sensi-
tive to noise, because it uses a minimal parameterization of
the multibody affine motion.

Error vs. noise: factorization algorithm Error vs. noise: nonlinear algorithm
5

—=- n=2
20| - n=3

15

& n=2
—-©- n=3
A n=4

10

o8
S

Figure 1. Error in the estimation of the affine
models as a function of noise in the image
partial derivatives.

We also tested the proposed approach by segmenting the
real scene shown in Figure 2. The scene displays a leader-
follower configuration with two robots moving in a circle
and a static background. Even though the follower is track-
ing the leader, their 3D motions are not identical, yet they
are similar enough to make their segmentation challenging.

We computed the image partial derivatives using stan-
dard derivative filters in one dimension and smoothing fil-
ters in the other two dimensions. Out of the 150 x 200 pixels
in the image derivatives, we extracted N = 1995 pixels for
which |I;| > § = 0.115. We observed experimentally that
it is important for the numerical stability of the algorithm
not to consider pixels which are actually not moving.

Figure 2. Two robot sequence

Figure 3 shows the results of applying our factorization
technique to the image sequence. Notice that each one of
the moving robots is correctly segmented.



(a) Robot 1 ﬂ 7(;)7Er)ackgr0tjnd

Figure 3. Segmentation results

(b) Robot 2

5. Conclusions and Future Work

We have proposed a geometric approach for the analysis
of dynamic scenes from image intensities. We showed that
one can determine the number of affine motions and the mo-
tion parameters directly from image intensities with no prior
segmentation or correspondences and in spite of perspective
effects or depth discontinuities. Our solution is based on
a clear geometric interpretation the multibody affine con-
straint which transforms the affine motion segmentation
problem into that of factoring homogeneous polynomials.
Since the latter problem has a unique global solution, so
does the motion segmentation problem. We used such a so-
lution to initialize a nonlinear algorithm that minimizes the
error defined by the multibody affine constraint. We pre-
sented simulation and experimental results validating the
proposed approach. We conclude that the current imple-
mentation of the factorization algorithm is sensitive to noise
due to an over-parameterized representation of the multi-
body affine motion. The nonlinear algorithm has an im-
proved performance, because it uses a minimal representa-
tion. Future work will include the development of an opti-
mal segmentation technique based on the multibody affine
constraint. Since this constraint is segmentation indepen-
dent, we expect to obtain an EM-type algorithm in which
the expectation step is completely eliminated.
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Appendix A: Zeros of the multi-affine matrix

In addition to equation (8), the matrix A has to satisfy
other constraints due to the fact that the 3”¢ row of each
A; equals el = [0,0,1]. In order to determine these addi-
tional constraints, consider the polynomial A(x,y) in (6),
where z = [z,y,z]T and y = [I,, I,,, I;]*. We observe that
the monomials of yA;x involving I; must also involve z.
Therefore, the coefficients of monomials in A(z, y) which
are multiples of 7727 with 0 < j < i < n are zero. Since
the number of monomials which are multiples of ;27 is the
number of polynomials of degree (n — ¢) in 2 variables (I,
and I,)) times the number of polynomials of degree (n — j)
in 2 variables (z and y), i.e. (n —i+1)(n—j+ 1), the
number of zeros in A Is:

n i—1

Zn=3Y (n—i+Dm—j+1)=3 (n—i+1)(2n+3—i)i

i=15=0 i=1 2

n

_ (n+1)(2n+3) o B3ntd G, I,
= 2 Zz 2 ;11 +2;11

1=1

n(n+1) {(n+1)(2n+3) _ (3n+4)(2n+1) n n(nJrl)}

2 2 2 4
n(n+ 1)(n + 2)(3n + 5)

24
In order to obtain the entries of the A that are zero, for each
row of A associated to I}, i = 1,...,n, we look for the
columns of A associated to 27, for 5 = 0,...,3— 1. Finally,
notice that the last monomial of A(x, y) is exactly (I;z)™,
hence the entry (M,,, M,,) of A is one.



