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Abstract. In this paper, we present an analytic solution to the problem of estimating an unknown number of 2-D
and 3-D motion models from two-view point correspondences or optical flow. The key to our approach is to view the
estimation of multiple motion models as the estimation of a single multibody motion model. This is possible thanks to
two important algebraic facts. First, we show that all the image measurements, regardless of their associated motion
model, can be fit with a single real or complex polynomial. Second, we show that the parameters of the individual
motion model associated with an image measurement can be obtained from the derivatives of the polynomial at
that measurement. This leads to an algebraic motion segmentation and estimation algorithm that applies to most of
the two-view motion models that have been adopted in computer vision. Our experiments show that the proposed
algorithm out-performs existing algebraic and factorization-based methods in terms of efficiency and robustness,
and provides a good initialization for iterative techniques, such as Expectation Maximization, whose performance
strongly depends on good initialization.

Keywords: multibody structure from motion, motion segmentation, multibody epipolar constraint, multibody
fundamental matrix, multibody homography, and Generalized PCA (GPCA)

1. Introduction

An important problem in computer vision is to estimate
a model for the motion of a scene from the trajectories
of a set of 2-D feature points. This problem is well un-
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derstood when the relative motion between the scene
and the camera can be described with a single rigid-
body motion [14, 24]. For example, it is well-known
that two views of a scene are related by the epipo-
lar constraint [23] and that multiple views are related
by the multilinear constraints [15]. Such constraints
can be used to estimate a motion model using linear
techniques such as the eight-point algorithm and its
variations.

In this paper we address the more general case
of motion segmentation and estimation for dynamic
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scenes in which both the camera and an unknown
number of objects with unknown 3-D structure can
move independently. Thus, different regions of the
image may obey different 2-D or 3-D motion models
due to depth discontinuities, perspective effects,
multiple motions, etc. More specifically, we consider
the following problem:

Problem 1 (Multiple-Motion Segmentation and
Estimation)

Given a set of image measurements {(x j
1, x j

2)}N
j=1 taken

from two views of a motion sequence related by a
collection of n motion models {Mi }n

i=1, estimate the
number of motion models and their parameters with-
out knowing which image measurements correspond
to which motion model.

Depending on whether one is interested in under-
standing the motion in the 2-D image, or the motion
in 3-D space, the motion segmentation and estimation
problem can be divided into two main categories. 2-D
motion segmentation refers to the estimation of the 2-D
motion field in the image plane (optical flow), while
3-D motion segmentation refers to the estimation of
the 3-D motion (rotation and translation) of multiple
rigidly moving objects relative to the camera. When
the scene is static, one can model its 2-D motion with
a mixture of 2-D motion models such as translational,
affine or projective. Even though a single 3-D motion is
present, multiple 2-D motion models arise, because of
perspective effects, depth discontinuities, occlusions,
transparent motions, etc. In this case, the task of 2-D
motion segmentation is to estimate these models from
the image data. When the scene is dynamic one can still
model its motion with a mixture of 2-D motion mod-
els. Some of these models are due to independent 3-D
motions, e.g., when the motion of an object relative to
the camera can be well approximated by the affine mo-
tion model. Others are due to perspective effects and/or
depth discontinuities, e.g., when some of the 3-D mo-
tions are broken into different 2-D motions. The task
of 3-D motion segmentation is to obtain a collection
of 3-D motion models, in spite of perspective effects
and/or depth discontinuities.

1.1. Related Literature

Classical approaches to 2-D motion segmentation sep-
arate the image flow into different regions by looking

for flow discontinuities [3, 28], fitting a mixture of para-
metric models through successive computation of dom-
inant motions [16], or using a layered representation of
the motion field [6]. The problem has also been formal-
ized in a maximum likelihood framework [2, 17, 42, 43]
in which the estimation of the motion models and their
regions of support is done by alternating between the
segmentation of the image measurements and the es-
timation of the motion parameters using Expectation
Maximization (EM). EM-like approaches provide ro-
bust motion estimates by combining information over
large regions in the image. However, their convergence
to the optimal solution strongly depends on good ini-
tialization [27, 30]. Existing initialization techniques
obtain a 2-D motion representation from local patches
and cluster this representation using K-means [41]
or normalized cuts [27]. The drawback of these ap-
proaches is that they are based on a local computation
of 2-D motion, which is subject to the aperture problem
and to the estimation of a single model across motion
boundaries. Some of these problems can be partially
solved by incorporating multiple frames and a local
process that forces the clusters to be connected [22].

The 3-D motion segmentation problem has received
relatively less attention. Existing work [31] solves
this problem by successive computation of dominant
motions using methods from robust statistics. Such
methods fit a single motion model to all the image mea-
surements using RANSAC [8]. The measurements that
fit this motion model well (inliers) are removed from
the data set, and RANSAC is re-applied to the remain-
ing points to obtain a second motion model. This pro-
cess is repeated until most of the measurements have
been assigned to a model. Alternative approaches to
3-D motion segmentation [7] first cluster the features
corresponding to the same motion using e.g., K-means
or spectral clustering, and then estimate a single mo-
tion model for each group. This can also be done in a
probabilistic framework by alternating between feature
clustering and single-body motion estimation using the
EM algorithm. In order to deal with the initialization
problem of EM-like approaches, recent work has con-
centrated on the study of the geometry of dynamic
scenes, including the analysis of multiple points mov-
ing linearly with constant speed [10, 26] or in a conic
section [1], multiple points moving in a plane [29],
multiple translating planes [44], self-calibration from
multiple motions [9, 11], multiple moving objects seen
by an affine camera [4, 18, 20, 21, 33, 46, 47], and two-
object segmentation from two perspective views [45].
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Table 1. 2-D and 3-D motion models considered in this paper.

Motion models Model equations Model parameters Segmentation of

2-D translational x2 = x1 + Ti {Ti ∈ R2}n
i=1 Hyperplanes in C2

2-D similarity x2 = λi Ri x1 + Ti {Ri ∈ SO(2), λi ∈R+}n
i=1 Hyperplanes in C3

2-D affine x2 = Ai
[ x1

1

]
{Ai ∈ R2×3}n

i=1 Hyperplanes in C4

3-D translational 0 = xT
2 T̂i x1 {Ti ∈ R3}n

i=1 Hyperplanes in R3

3-D rigid-body 0 = xT
2 Fi x1 {Fi ∈ R3×3}n

i=1 Bilinear forms in R6

3-D homography x2 ∼ Hi x1 {Hi ∈ R3×3}n
i=1 Bilinear forms in C5

The case of multiple moving objects seen by two per-
spective views was recently studied in [38–40], which
proposed a generalization of the 8-point algorithm
based on the so-called multibody epipolar constraint
and its associated multibody fundamental matrix. The
method simultaneously recovers multiple fundamental
matrices using polynomial fitting and differentiation,
and can be extended to three perspective views via
the so-called multibody trifocal tensor [13]. To the
best of our knowledge, the only existing works on 3-
D motion segmentation from omnidirectional cameras
are [25, 32].

1.2. Contributions of This Paper

In this paper, we address the initialization of iterative
approaches to motion estimation and segmentation by
proposing a non-iterative algebraic solution to Prob-
lem 1 that applies to most 2-D and 3-D motion models
in computer vision, as detailed in Table 1.

The key to our approach is to view the estimation
of multiple motion models as the estimation of a sin-
gle, though more complex, multibody motion model
that is then factored into the original models. This is
achieved by (1) algebraically eliminating the feature
segmentation problem, (2) fitting a single multibody
motion model to all the image measurements, and (3)
segmenting the multibody motion model into its in-
dividual components. More specifically, our approach
proceeds as follows:

1. Eliminate Feature Segmentation: Find an algebraic
equation that is satisfied by all the image measure-
ments, regardless of the motion model associated
with each measurement. For the motion models con-
sidered in this paper, the i th motion model will be
typically defined by an algebraic equation of the
form f (x1, x2,Mi ) = 0, for i = 1, . . . , n. There-
fore, an algebraic equation that is satisfied by all the

data is

pn(x1, x2,M)

= f (x1, x2,M1) · · · · · f (x1, x2,Mn) = 0. (1)

Such an equation represents a single multibody mo-
tion model whose parameters M encode those of
the original motion models {Mi }n

i=1.
2. Multibody Motion Estimation: Estimate the param-

eters M of the multibody motion model from the
given image measurements. For the motion mod-
els considered in this paper, the parameters M will
correspond to the coefficients of a real or complex
polynomial pn of degree n. We will show that the
number of motions n and the coefficients M can be
obtained linearly after properly embedding the im-
age measurements into a higher-dimensional space.

3. Motion Segmentation: Recover the parameters of
the original motion models from the parameters of
the multibody motion model M, that is,

M %→ {Mi }n
i=1. (2)

We will show that the individual motion parameters
Mi can be computed from the derivatives of pn

evaluated at a collection of n image measurements
that can be obtained automatically from the data.

This new approach to motion segmentation offers
two important technical advantages over previously
known algebraic solutions to the segmentation of 3-D
translational [36] and rigid-body motions (fundamen-
tal matrices) [40] based on homogeneous polynomial
factorization:

1. It is based on polynomial differentiation rather than
polynomial factorization, which greatly improves
the efficiency, accuracy and robustness of the algo-
rithm.
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2. It applies to either feature point correspondences or
optical flow and includes most of the two-view mo-
tion models in computer vision: 2-D translational,
2-D similarity, 2-D affine, 3-D translational, 3-D
rigid-body motions (fundamental matrices), or 3-D
motions of planar scenes (homographies), as shown
in Table 1. The unification is achieved by embed-
ding some of the motion models into the complex
domain, which resolves cases such as 2-D affine
motions and 3-D homographies that could not be
easily handled in the real domain.

With respect to extant probabilistic methods, our
approach has the advantage of providing a global,
non-iterative solution that does not need initialization.
Therefore, our method can be used to initialize any it-
erative or optimization based technique, such as EM,
or else in a layered (multiscale) or hierarchical fashion
at the user’s discretion.

Although the derivation of the algorithm will assume
noise free data, the algorithm is designed to work with
a moderate level of noise, as we will point out shortly.
However, in its present form the algorithm does not
consider the presence of outliers in the data. Neverthe-
less, as a key step in our algorithm is to estimate the
multibody motion model, one can improve the robust-
ness of the estimate by using one of many existing ro-
bust (covariance) estimators, such as the M-estimators,
multivariate trimming (MVT), and influence function.1

However, a detailed account is beyond the scope of this
paper.

2. Segmenting Hyperplanes in CK

As we will see shortly, most 2-D and 3-D motion seg-
mentation problems are equivalent or can be reduced
to clustering data lying in multiple hyperplanes in R3,
C2, C3, or C4. Rather than solving this problem for
each particular case, we present in this section a uni-
fied solution to the common mathematical problem of
segmenting hyperplanes in CK with an arbitrary K by
adapting the Generalized PCA algorithm of [35, 37] to
the complex domain.

To that end, let z be a vector in CK and let zT be its
transpose without conjugation.2 A homogeneous poly-
nomial of degree n in z is a polynomial pn(z) such that
pn(λz) = λn pn(z) for all λ in C. The space of all homo-
geneous polynomials of degree n in K variables, Sn , is
a vector space of dimension Mn(K ) .= ( n+K−1

K−1 ) =
( n+K−1

n ). A particular basis for Sn is obtained by

considering all the monomials of degree n in K vari-
ables, that is zI .= zn1

1 zn2
2 · · · znK

K with 0 ≤ n j ≤ n for
j = 1, . . . , K , and n1 + n2 + · · · + nK = n. To rep-
resent Sn , it is convenient to define the Veronese map
νn : CK → CMn (K ) of degree n as [12]

νn : [z1, . . . , zK ]T %→ [. . . , zI , . . .]T

with the index I chosen in the degree-lexicographic
order. The Veronese map is also known as the poly-
nomial embedding in the machine learning commu-
nity. Using this notation, each polynomial pn(z) ∈
Sn can be written as a linear combination of the
monomials zI as

pn(z) = cT νn(z) =
∑

cn1,n2,...,nK zn1
1 zn2

2 · · · znK
K , (3)

where c ∈ CMn (K ) is the vector of coefficients.
Assume now that we are given a set of sample points

Z .= {z j ∈ CK }N
j=1 drawn from n ≥ 1 different hy-

perplanes {Pi ⊆ CK }n
i=1 of dimension K − 1. Without

knowing which points belong to which hyperplane, we
would like to determine the number of hyperplanes, a
basis for each hyperplane, and the segmentation of the
data points.

Notice that every (K − 1)-dimensional hyperplane
Pi ⊂ CK can be represented by its normal vector bi ∈
CK as

Pi
.=

{
z ∈ CK : bT

i z = bi1z1 + bi2z2 + · · ·
+ bi K zK = 0

}
. (4)

We assume that the hyperplanes are different from each
other, and hence the normal vectors {bi } are pairwise
linearly independent. For uniqueness, we also assume
that either the norm or the last entry of each bi is 1.

2.1. Eliminating Data Segmentation

We first notice that each point z ∈ Z, regardless of
which one of the n hyperplanes {Pi }n

i=1 it is associated
with, must satisfy the following homogeneous polyno-
mial of degree n in K complex variables

pn(z) .=
n∏

i=1

(
bT

i z
)

= cT νn(z)

=
∑

cn1,n2,...,nK zn1
1 zn2

2 · · · znK
K = 0, (5)

because we must have bT
i z = 0 for one of the bi .

In the context of motion segmentation, the vectors
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bi represent the parameters of each individual motion
model, and the coefficient vector c ∈ CMn (K ) represents
the multibody motion parameters. We call n the degree
of the multibody motion model.

2.2. Estimating the Degree and Parameters
of the Multibody Motion Model

Since the polynomial pn(z) = cT νn(z) must be satisfied
by all the data points Z = {z j ∈ CK }N

j=1, we have that
cT νn(z j ) = 0 for all j = 1, . . . , N . Therefore, we
obtain the following linear system on c

Lnc = 0 ∈ CN , (6)

where Ln
.= [νn(z1), νn(z2), . . . , νn(zN )]T ∈ CN×Mn (K ).

In order to solve for c, we first need to know the number
of hyperplanes n. The following lemma allows one to
compute n from the image measurements.

Lemma 1. Given a sufficient number of sample points
in general position on n hyperplanes in CK , we have

n = arg min
i

{rank(Li ) = Mi (K ) − 1}, (7)

and the equation Lnc = 0 determines the vector c up
to a nonzero scale.

Proof: The proof of this lemma can be found in [37]
and is a consequence of the basic algebraic fact that
there is a one-to-one correspondence between a polyno-
mial and its zero set. Therefore, there is no polynomial
of degree i < n that vanishes on all the points of the n
hyperplanes, hence we must have rank(Li ) = Mi (K )
for i < n. Conversely, there are multiple polynomials
of degree i > n, namely any multiple of pn(z),
which are satisfied by all the data, hence rank
(Li ) < Mi (K ) − 1 for i > n. Therefore, the case
i = n is the only one in which system Lnc = 0 has a
unique solution (up to scale).

According to this lemma, the number of hyperplanes
(or motions) can be uniquely determined from the
smallest i such that Li drops rank. Furthermore, if the
last entry of each bi is equal to one, so is the last entry
of c, hence one can solve for c uniquely in this case.

In the presence of noise, we cannot directly estimate
n from (7), because the matrix Li may be full rank for
all i ≥ 1. By borrowing tools from the model selection

literature [19], we may determine the number of hy-
perplanes (or motions) from noisy data as

n = arg min
i

{
σ 2

Mi (K )(Li )
∑Mi (K )−1

k=1 σ 2
k (Li )

+ κMi (K )
}
, (8)

where σk(Li ) is the kth singular value of Li and κ > 0
is a (weighting) parameter. Once n is determined, we
can solve for c in a least-squares sense as the singular
vector of Ln associated with its smallest singular value.
One can normalize c so that its last entry is 1, whenever
appropriate.

2.3. Segmenting the Multibody Motion Model

Given c, we now present an algorithm for computing
the parameters bi of each individual hyperplane (or
motion) from the derivatives of pn . To that end, we
consider the derivative of pn(z),

Dpn(z) .= ∂pn(z)
∂z

=
n∑

i=1

∏

&,=i

(
bT

& z
)
bi , (9)

and notice that if we evaluate Dpn(z) at a point z = yi
that belongs to only the i th hyperplane (or motion), i.e.
if yi is such that bT

i yi = 0, then we have Dpn(yi ) ∼
bi . Therefore, given c we can obtain the hyperplane
(motion) parameters as

bi = Dpn(z)
eT

K Dpn(z)

∣∣∣∣
z=yi

or bi = Dpn(z)
‖Dpn(z)‖

∣∣∣∣
z=yi

(10)

depending on whether eT
K bi = 1 or ‖bi‖ = 1, where

eK = [0, . . . , 0, 1]T ∈ CK and yi ∈ CK is a nonzero
vector such that bT

i yi = 0.
The rest of the problem is to find one point yi ∈ CK

in each one of the hyperplanes Pi = {z ∈ CK :
bT

i z = 0} for i = 1, . . . , n. To that end, notice that
we can always choose a point yn lying in one of the
hyperplanes as any of the points in the data set Z. How-
ever, in the presence of noise and outliers an arbitrary
point in Z may be far from all the hyperplanes. In order
to choose points close to the hyperplanes, we need to
be able to compute the distance from each data point
to its closest hyperplane, without knowing the normals
to the hyperplanes. The following lemma allows us to
compute a first order approximation to such a distance.3
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Lemma 2. Let z̃ ∈ Pi be the projection of a point
z ∈ CK onto its closest hyperplane Pi . Also let
'

.= [IK−1 0] ∈ R(K−1)×K or IK ∈ RK×K , depending
on whether eT

K bi = 1 or ‖bi‖ = 1 for i = 1, . . . , n,
respectively. Then the Euclidean distance from z to Pi

is given by

‖z − z̃‖ = n
|pn(z)|

‖'Dpn(z)‖
+ O(‖z − z̃‖2). (11)

Proof: It follows as a corollary of Lemma 1 in [37].

Thanks to Lemma 2, we can choose a point in the
data set close to one of the subspaces as:

yn = arg min
z∈Z

|pn(z)|
‖'Dpn(z)‖

, (12)

and then compute the normal vector at yn as

bn = Dpn(yn)/
(
eT

K Dpn(yn)
)

or

bi = Dpn(yi )/‖Dpn(yi )‖.

In order to find a point yn−1 in one of the remain-
ing hyperplanes, we could just remove the points in
Pn from Z and compute yn−1 similarly to (12), but
minimizing over Z \Pn , and so on. However, this pro-
cess is not very robust in the presence of noise, as it
depends on the choice of a threshold in order to deter-
mine which points belong to Pn . Therefore, we pro-
pose an alternative solution that penalizes choosing a
point from Pn in (12) by dividing the objective func-
tion by the distance from z toPn , namely |bT

n z|/‖'bn‖.
That is, we can choose a point in or close to

⋃n−1
i=1 Pi

as

yn−1 = arg min
z∈Z

|pn (z)|
‖'Dpn (z)‖ + δ

|bT
n z|

‖'bn‖ + δ
, (13)

where δ > 0 is a small positive number chosen to avoid
cases in which both the numerator and the denomina-
tor are zero (e.g., with perfect data). By repeating this
process for the remaining hyperplanes, we obtain the
Polynomial Differentiation Algorithm (Algorithm 1)
for segmenting hyperplanes in CK .

Notice that one could also choose the points yi in a
purely algebraic fashion, e.g., by intersecting a random
line with the hyperplanes [38], or else by dividing the
polynomial pn(z) by bT

n z [37]. However, we have cho-
sen to present the simpler Algorithm 1 instead, because
it has a better performance with noisy data and is not
very sensitive to the choice of δ.

3. 2-D Motion Segmentation by Segmenting
Hyperplanes in CK

This section considers the problem of segmenting a
collection of 2-D motion models from point corre-
spondences in two frames of a video sequence, or
from optical flow measurements at each pixel. We
show that when the image measurements are related
by a collection of 2-D translational, 2-D similarity
or 2-D affine motion models, the motion segmenta-
tion and estimation problem (Problem 1) is equiva-
lent to segmenting hyperplanes in C2, C3, or C4, re-
spectively. We solve this segmentation problem us-
ing the algebraic algorithm presented in the previous
section.
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3.1. Segmentation of 2-D Translational Motions:
Segmenting Hyperplanes in C2

3.1.1. The Case of Feature Points. Under the 2-D
translational motion model the two images are related
by one out of n possible 2-D translations {Ti ∈ R2}n

i=1.
That is, for each feature pair x1 ∈ R2 and x2 ∈ R2 there
exists a 2-D translation Ti ∈ R2 such that

x2 = x1 + Ti . (14)

Therefore, if we interpret the displacement of the fea-
tures (x2 − x1) and the 2-D translations Ti as complex
numbers (x2−x1) ∈ C and Ti ∈ C, then we can re-write
equation (14) as

bT
i z .= [Ti 1]

[
1

−(x2 − x1)

]
= 0 ∈ C2. (15)

This equation corresponds to a hyperplane in C2 whose
normal vector bi encodes the 2-D translational mo-
tion Ti . Therefore, the segmentation of 2-D transla-
tional motions from a set of point correspondences
{(x j

1, x j
2)}N

j=1 is equivalent to clustering data {z j ∈
C2}N

j=1 lying in n hyperplanes in C2 with normal vec-
tors {bi ∈ C2}n

i=1. As such, we can obtain the mo-
tion parameters {bi ∈ C2}n

i=1 by applying Algorithm 1
with K = 2 and ' = [1 0] to a collection of N ≥
Mn(2) − 1 = n image measurements {z j ∈ C2}N

j=1 in
general position on the n hyperplanes. The original real
motion parameters are then given as

Ti = [Re(bi1), Im(bi1)]T , for i = 1, . . . , n. (16)

3.1.2. The Case of Translational Optical Flow.
Imagine now that rather than a collection of feature
points we are given the optical flow {u j ∈ R2}N

j=1 be-
tween two consecutive views of a video sequence. If
we assume that the optical flow is piecewise constant,
i.e. the optical flow of every pixel in the image takes
only n possible values {Ti ∈ R2}n

i=1, then at each pixel
j ∈ {1, . . . , N } there exists a motion Ti such that

u j = Ti . (17)

The problem is now to estimate the n motion models
{Ti }n

i=1 from the optical flow measurements {u j }N
j=1.

This problem can be solved using the same technique as
in the case of feature points after replacing x2−x1 = u.

3.2. Segmentation of 2-D Similarity Motions:
Segmenting Hyperplanes in C3

3.2.1. The Case of Feature Points. In this case, we
assume that for each feature point (x1, x2) there exists
a 2-D rigid-body motion (Ri , Ti ) ∈ SE(2) and a scale
λi ∈ R+ such that

x2 = λi Ri x1 + Ti =λi

[
cos(θi ) − sin(θi )

sin(θi ) cos(θi )

]
x1 + Ti .

(18)

If we interpret the rotation as a unitary complex number
Ri = exp (θi

√
−1) ∈ C, and the translation vector and

the image features as points in the complex plane Ti ,
x1, x2 ∈ C, then we can write the 2-D similarity motion
model as the following hyperplane in C3:

bT
i z .= [λi Ri Ti 1]




x1

1
−x2



 = 0. (19)

Therefore, the segmentation of 2-D similarity motions
is equivalent to segmenting hyperplanes in C3. As such,
we can apply Algorithm 1 with K = 3 and ' = [I2 0]
to a collection of N ≥ Mn(3) − 1 ∼ O(n2) image
measurements {z j ∈ C3}N

j=1 in general position on
the hyperplanes to obtain the motion parameters {bi ∈
C3}n

i=1. The original real motion parameters are then
given as

λi = |bi1|, θi = , bi1, and Ti = [Re(bi2), Im(bi2)]T ,

for i = 1, . . . , n. (20)

3.2.2. The Case of Optical Flow. Let {u j ∈ R2}N
j=1 be

N measurements of the optical flow at the N pixels
{x j ∈ R2}N

j=1. We assume that the optical flow can
be modeled as a collection of n 2-D similarity motion
models as u = λi Ri x+Ti . Therefore, the segmentation
of 2-D similarity motions from optical flow measure-
ments can be solved as in the case of feature points,
after replacing x2 = u and x1 = x.

3.3. Segmentation of 2-D Affine Motions:
Segmenting Hyperplanes in C4

3.3.1. The Case of Feature Points. In this case, we
assume that the images are related by a collection of
n 2-D affine motion models {Ai ∈ R2×3}n

i=1. That is,
for each feature pair (x1, x2) there exists a 2-D affine
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motion Ai such that

x2 = Ai

[ x1

1

]
=

[
a11 a12 a13

a21 a22 a23

]

i

[ x1

1

]
. (21)

Therefore, if we interpret x2 as a complex number x2 ∈
C, but we still think of x1 as a vector in R2, then we have

x2 = aT
i

[ x1

1

]
=

[
a11+a21

√
−1, a12+a22

√
−1,

a13+a23
√

−1
]

i

[ x1

1

]
. (22)

This equation represents the following hyperplane in
C4

bT
i z =

[
aT

i 1
]



x1

1
−x2



 = 0, (23)

where the normal vector bi ∈ C4 encodes the affine mo-
tion parameters and the data point z ∈ C4 encodes the
image measurements x1 ∈ R2 and x2 ∈ C. Therefore,
the segmentation of 2-D affine motion models is equiv-
alent to segmenting hyperplanes in C4. As such, we can
apply Algorithm 1 with K = 4 and ' = [I3 0] to a col-
lection of N ≥ Mn(4)−1 ∼ O(n3) image measureme-
nts {z j ∈ C4}N

j=1 in general position to obtain the
motion parameters {bi ∈ C4}n

i=1. The original affine
motion models are then obtained as

Ai =
[

Re(bi1) Re(bi2) Re(bi3)
Im(bi1) Im(bi2) Im(bi3)

]
∈ R2×3, (24)

for i = 1, . . . , n.

3.3.2. The Case of Affine Optical Flow. In this case,
the optical flow u is modeled as being generated by a
collection of n affine motion models {Ai ∈ R2×3}n

i=1
of the form

u = Ai

[ x
1

]
. (25)

Therefore, the segmentation of 2-D affine motions can
be solved as in the case of feature points, after replacing
x2 = u and x1 = x.

4. 3-D Motion Segmentation

This section considers the problem of segmenting a
collection of 3-D motion models from measurements
of either the position of a set of feature points in two
frames of a video sequence, or optical flow measure-
ments at each pixel. We show that for the 3-D transla-
tional, 3-D rigid and 3-D homography motion models,

the motion segmentation problem is equivalent to seg-
menting hyperplanes or bilinear forms in R3, R6 or C5,
respectively. We develop extensions of Algorithm 1 to
deal with the bilinear cases.

4.1. Segmentation of 3-D Translational Motions:
Segmenting Hyperplanes in R3

4.1.1. The Case of Feature Points. In this case, we
assume that the scene can be modeled as a mixture
of purely translational motion models, {Ti ∈ R3}n

i=1,
where Ti represents the translation (calibrated case) or
the epipole (uncalibrated case) of object i relative to
the camera between the two frames. We assume that
the epipoles are different in a projective sense, i.e. they
are different up to a nonzero scalar.

Given the images x1 ∈ P2 and x2 ∈ P2 of a point in
object i in the first and second frames, the images and
the 3-D translational motion are related by the well-
known epipolar constraint for linear motions

−xT
2 T̂i x1 = T T

i (x2 × x1) = T T
i ! = 0, (26)

where ! = (x2 × x1) ∈ R3 is known as the epipolar
line associated with the image pair (x1, x2) and T̂ ∈
so(3) denotes the skew-symmetric matrix generating
the cross product by T .

Therefore, the segmentation of 3-D translational mo-
tions is equivalent to clustering data (epipolar lines) ly-
ing in a collection of hyperplanes in R3 whose normal
vectors are the n epipoles {Ti }n

i=1. As such, we can apply
Algorithm 1 with K = 3 and ' = I3 to N ≥ Mn(3) −
1 ∼ O(n2) epipolar lines ! j = x j

1 × x j
2}N

j=1 in gen-
eral position to estimate the epipoles {Ti }n

i=1 from the
derivatives of the polynomial pn(!) = (T T

1 !) · · · (T T
n !)

as

Ti = Dpn(yi )/‖Dpn(yi )‖, i = 1, . . . , n. (27)

Note that when choosing the points yi in Algorithm 1
we take ' = I3. This is because in the case of 3-D tran-
slational motions the last entry of each epipole is not
constrained to be equal to one. In fact, the amount of
translation ‖Ti‖ is lost under perspective projection and
cannot be recovered from the image measurements.
Hence, we assume the norm of each epipole to be one.

An alternative method for computing the n epipoles
from the N epipolar lines is to first evaluate the epipole
associated with each epipolar line {! j }N

j=1 as Dpn(! j )
and then apply any clustering algorithm that deals with
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projective data to the points {Dpn(! j )}N
j=1. For exam-

ple, one can apply spectral clustering using the absolute
value of the angle between Dpn(! j ) and Dpn(! j ′

) as a
pairwise distance between image pairs j and j ′.

4.1.2. The Case of Optical Flow. In the case of optical
flow generated by purely translating objects, we have
that uT T̂i x = 0, where the optical flow u is augmented
as a three-dimensional vector as u = [u, v, 0]T ∈ R3.
Therefore, one can estimate the translations {Ti ∈
R3}n

i=1 as before by replacing x2 = u and x1 = x.

4.2. Segmentation of 3-D Rigid-Body Motions:
Segmenting Bilinear Forms in R6

In this section, we consider the problem of segmenting
multiple 3-D rigid-body motions from point correspon-
dences in two perspective views. That is, we assume
that the motion of the objects relative to the camera
between the two views can be modeled as a mixture of
3-D rigid-body motions {(Ri , Ti ) ∈ SE(3)}n

i=1, where
Ri ∈ SO(3) is the relative rotation and Ti ∈ R3 is the
relative translation. We assume that Ti ,= 0, so that we
can represent each motion with a nonzero rank-2 fun-
damental matrix Fi = T̂i Ri ∈ R3×3. We also assume
that the fundamental matrices are different from each
other in a projective sense.

Recall that given an image pair (x1, x2), there exists
a motion i such that the following epipolar constraint
[23] is satisfied

xT
2 Fi x1 = 0. (28)

Therefore, the following multibody epipolar con-
straint [38] must be satisfied by the number of inde-
pendent motions n, the fundamental matrices {Fi }n

i=1
and the image pair (x1, x2), regardless of the object to
which the image pair belongs

pn(x1, x2) .=
n∏

i=1

(
xT

2 Fi x1
)

= 0. (29)

As shown in [38], this constraint can be written in bi-
linear form as

νn(x2)TFνn(x1) = 0, (30)

where F ∈ RMn (3)×Mn (3) is the so-called multibody fun-
damental matrix.

When the number of motions n is known, one can
linearly estimate F from N ≥ Mn(3)2 − 1 ∼ O(n4)
image pairs in general position by solving the linear
system Ln f = 0, where f ∈ RMn (3)2

is the stack of
the rows of F and Ln ∈ RN×Mn (3)2

is a matrix whose
j th row is (νn(x j

2) ⊗ νn(x j
1))T with ⊗ the Kronecker

product. When n is unknown, one can estimate n as [38]

n = min{i : rank(Li ) = Mi (3)2 − 1}, (31)

where Li is computed using the Veronese map of degree
i . However, in the presence of noise in the image mea-
surements, we cannot directly estimate n from (31), be-
cause the matrix Li may be full rank for all i ≥ 1. Foll-
owing (8), we determine the number of motions from
noisy data as

n = arg min
i

{
σ 2

M2
i (3)(Li )

∑M2
i (3)−1

k=1 σ 2
k (Li )

+ κ M2
i (3)

}

, (32)

where σk(Li ) is the kth singular value of Li and κ > 0
is a (weighting) parameter. Given n, we compute F as
the least-squares solution to Ln f = 0.

Given n and F , we now show how to estimate
the individual fundamental matrices {Fi }n

i=1 by taking
derivatives of the multibody epipolar constraint. Recall
that, given a point x1 ∈ P2 in the first image frame,
the epipolar lines associated with it are defined as
!i

.= Fi x1 ∈ R3, i = 1, . . . , n. Therefore, if the image
pair (x1, x2) corresponds to motion i , i.e. if
xT

2 Fi x1 = 0, then

∂

∂x2
νn(x2)TFνn(x1) =

n∑

i=1

∏

!,=i

(
xT

2 F!x1
)
(Fi x1)

=
∏

!,=i

(
xT

2 F!x1
)
(Fi x1) ∼ !i . (33)

In other words, the partial derivative of the multi-
body epipolar constraint with respect to x2 evaluated
at (x1, x2) is proportional to the epipolar line associated
with (x1, x2) in the second view. Similarly, the partial
derivative of the multibody epipolar constraint with re-
spect to x1 evaluated at (x1, x2) is proportional to the
epipolar line associated with (x1, x2) in the first view.
Therefore, given a set of image pairs {(x j

1, x j
2)}N

j=1 and
the multibody fundamental matrix F ∈ RMn (3)×Mn (3),
we can estimate a collection of epipolar lines {! j }N

j=1
associated with each image pair.4 As described in
Section 4.1, this collection of epipolar lines must pass
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through the n epipoles {Ti }n
i=1. Therefore, if the n

epipoles are different in a projective sense,5 we can ap-
ply Algorithm 1 with K = 3 and ' = I3 to the epipolar
lines {! j }N

j=1 to obtain the n epipoles {Ti }n
i=1 up to a

scale factor, as in Eq. (27). We can then compute the n
fundamental matrices {Fi }n

i=1 by assigning the image
pair (x j

1, x j
2) to group i if i = arg min!=1,...n(T T

i ! j )2

and then applying the eight-point algorithm to the im-
age pairs in group i = 1, . . . , n.

4.3. Segmentation of 3-D Homographies:
Segmenting Bilinear Forms in C5

The motion segmentation scheme described in the pre-
vious section assumes that the displacement of each
object between the two views relative to the camera is
nonzero, i.e. Ti ,= 0. Otherwise, the individual fund-
amental matrices are zero, hence the motions can-
not be segmented. Furthermore, the segmentation
scheme also requires that the 3-D points be in general
configuration. Otherwise, one cannot uniquely recover
each fundamental matrix from its epipolar constraint.
The latter case occurs, for example, in the case of a
planar structure, i.e. when the 3-D points lie in a plane,
as shown in [14].

Both in the case of a purely rotating object (with re-
spect to the camera center) or in the case of a planar
3-D structure, the motion model between the two views
x1 ∈ P2 and x2 ∈ P2 can be described with a homog-
raphy matrix H ∈ R3×3 that results in the following
homography constraint [14]

x2 ∼ H x1
.=




h11 h12 h13

h21 h22 h23

h31 h32 h33



 x1. (34)

Therefore, in this section we consider the problem of
segmenting a scene whose 3-D motion can be modeled
with n different homographies {Hi }n

i=1. Note that in
this case the n homographies do not necessarily corre-
spond to n different rigid-body motions. This is because
it could be the case that one rigidly moving object con-
sists of two or more planes, hence its rigid-body motion
will lead to two or more homographies. Therefore, the
n homographies can represent anything from 1 up to n
rigid-body motions.

An important difference between segmentation of
fundamental matrices and segmentation of homogra-
phy matrices is that we cannot take the product of the

individual homography constraints, as we did in (29)
with the epipolar constraints, because (34) yields two
linearly independent equations per image pair. In prin-
ciple, one could resolve this difficulty by considering
a line !2 passing through the image point in the sec-
ond view x2, i.e. !T

2 x2 = 0, so that the homography
constraint can be rewritten as a single equation
!T

2 H x1 = 0. This approach indeed leads to a method
for computing a multibody homography H analogous
to the multibody fundamental matrix F . However, it
is unclear how to factorize such H into the individual
homographies {Hi }n

i=1. In this section, we resolve this
difficulty by working in the complex domain.

4.3.1. Complexification of Homographies. We in-
terpret x2 ∈ P2 as a point in CP by considering the
first two coordinates of x2 as a complex number and
appending a one to it. However, we still think of x1 as a
point in P2. With this interpretation, we can rewrite (34)
as

x2 ∼ H 1,2x1

.=
[

h11+h21
√

−1 h12+h22
√

−1 h13 +h23
√

−1
h31 h32 h33

]

x1,

(35)

where H 1,2 ∈ C2×3 now represents a complex homog-
raphy6 obtained by complexifying the first two rows
of H (as indicated by the superscripts). Let w2 be the
vector in CP perpendicular to x2, i.e. if x2 = [ z

1 ] then
w2 = [ 1

−z ]. Then we can rewrite (35) as the following
complex bilinear constraint

wT
2 H 1,2x1 = 0, (36)

which we call the complex homography constraint.
Thanks to (36), we can interpret the motion segmen-

tation problem as one in which we are given image data
{x j

1 ∈ P2}N
j=1 and {w j

2 ∈ CP}N
j=1 related by a collection

of n complex homographies {H 1,2
i ∈ C2×3}n

i=1. Then
each image pair (x1, w2) has to satisfy the multibody
homography constraint

n∏

i=1

(
w T

2 H 1,2
i x1

)
= νn(w2)TH1,2νn(x1) = 0, (37)

regardless of which complex homography is associ-
ated with the image pair. We call the matrix H1,2 ∈
CMn (2)×Mn (3) the multibody homography.
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Now, since the multibody homography con-
straint (37) is linear in the multibody homography
H1,2, when n is known we can linearly solve for H1,2

from (37) given N ≥ Mn(2)Mn(3) − (Mn(3) + 1)/2 ∼
O(n3) image pairs in general position.7 When n is un-
known, one can estimate it as8

n = min{i : rank(Li ) = Mi (2)Mi (3) − 1}, (38)

where Li ∈ CN×Mi (3)Mi (2) is a matrix whose j th row is
(νi (w

j
2) ⊗ νi (x

j
1))T . As before, in the presence of noise

in the image measurements, we determine the number
of motions from noisy data as

n = arg min
i

{
σ 2

Mi (2)Mi (3)(Li )
∑Mi (2)Mi (3)−1

k=1 σ 2
k (Li )

+ κ Mi (2)Mi (3)
}
,

(39)

where σk(Li ) is the kth singular value of Li and κ > 0
is a parameter.

4.3.2. Decomposition of the Multibody Homography.
Given the multibody homographyH1,2 ∈ CMn (2)×Mn (3),
the rest of the problem is to recover the individual ho-
mographies {H 1,2

i }n
i=1 or {Hi }n

i=1. In the case of funda-
mental matrices discussed in Section 4.2, the key for
solving the problem was the fact that fundamental ma-
trices are of rank 2, hence one can cluster epipolar lines
based on the epipoles. Note that here we cannot do the
same with real homographies Hi ∈ R3×3, because in
general they are full rank. Nevertheless, if we work with
the complex homographies H 1,2

i ∈ C2×3 instead, they
automatically have rank 2. We call the only vector in
the kernel of a complex homography H 1,2 its complex
epipole, and denote it by e1,2 ∈ C3. That is, we have
H 1,2e1,2 = 0.

For the sake of simplicity, let us first consider the
case in which the complex homographies H 1,2

i have
different complex epipoles. Once the multibody ho-
mography matrixH1,2 is obtained, similarly to the case
of epipolar lines of fundamental matrices (33), we can
associate a complex epipolar line

! j ∼ ∂νn(w2)TH1,2νn(x1)
∂x1

∣∣∣∣
(x1,w2)=(x j

1 ,w
j
2)

∈ CP2

(40)

with each image pair (x j
1, w j

2). Given this set of N ≥
Mn(3)−1 complex epipolar lines {! j }N

j=1 in general po-
sition, we can apply Algorithm 1 with K = 3 and ' =

I3 to estimate the n complex epipoles {e1,2
i ∈ C3}n

i=1
up to a scale factor. Since the n complex epipoles are
different, we can cluster the original image measure-
ments by assigning image pair (x j

1, x j
2) to group i if

i = arg min!=1,...,n |eT
! !

j |2. Once the image pairs have
been clustered, the estimation of each homography be-
comes a simple linear problem.

Remark 1 (Direct Extraction of Homographies from
H1,2). There is yet another way to obtain individual
Hi from H1,2 without segmenting the image pairs first.
Once the complex epipoles e1,2

i are known, one can
compute the following linear combination of the rows
of H 1,2

i (up to scale) from the derivatives of the multi-
body homography constraint at e1,2

i

w T H 1,2
i ∼ ∂νn(w)TH1,2νn(x)

∂x

∣∣∣∣
x=e1,2

i

∈ CP2, ∀w ∈ C2.

(41)

In particular, if we take w = [1, 0]T and w = [0, 1]T

we obtain the first and second row of H 1,2
i (up to scale),

respectively. By choosing additional w’s one obtains
more linear combinations from which the rows of Hi

can be linearly and uniquely determined.

4.3.3. Epipoles of Complex Homographies. The al-
gorithm presented in the previous subsection assumes
that the n complex epipoles are different. However, two
different real homographies may have the same com-
plex epipole (see Example 1). In fact, one can show that
the set of complex homographies that share the same
epipole e1,2 is a five-dimensional subset (hence a zero-
measure subset) of all real homography matrices. We
then want to know under what conditions the complex
epipoles are guaranteed to be different. The following
lemma gives a condition.

Lemma 3. If the third rows of two real non-singular
homography matrices H1 and H2 ∈ R3×3 are different
(in a projective sense) then the associated complex
epipoles e1,2

1 and e1,2
2 ∈ C3 must be different (in a

projective sense).

Proof: Let H1 and H2 ∈ R3×3 be two different ho-
mographies and let hT

1 and hT
2 ∈ R3 be their respective

third rows. Suppose that the two homographies share
the same complex epipole e, i.e. H 1,2

1 e = H 1,2
2 e = 0.

Then, the complexifications of the first two rows of H1

and H2 are orthogonal to e, hence they must be in the
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(complex) plane spanned by hT
1 and hT

2 . Therefore, all
the three rows of H1 or H2 are linearly dependent on
hT

1 and hT
2 . This contradicts the assumption that H1 and

H2 are non-singular.

Example 1 (One-Motion/Multi-Planes–Multi-Motions/
One-Plane). A homography is generally of the form
H = R + T πT , where (R, T ) is the camera mo-
tion and π is the plane normal. If the homographies
come from different planes (different π ) undergoing
the same rigid-body motion with Tz ,= 0, then the
associated complex epipoles will always be differ-
ent since their third rows depend on πT

i . However,
if one plane with the normal vector π = [0, 0, 1]T

undergoes different translational motions of the form
Ti = [Tix , Tiy, Tiz]T , then all the complex epipoles are
equal to e1,2

i = [
√

−1,−1,0]T . To avoid this problem,
one can complexify the first and third rows of H in-
stead of the first two. The new complex epipoles will
be e1,3

i = [Tix +Tiz
√

−1, Tiy, −1]T , which in general
are different for different translational motions.

Unfortunately, the condition in Lemma 3 is suffi-
cient, but not necessary, as shown by the following
example.

Example 2 (Complex Epipole of a Rotational Homogra-
phy). Suppose that a homography H is induced from
a rotation, i.e. H = R = [r T

1 ; r T
2 ; r T

3 ] ∈ SO(3). The co-
mplexification gives two row vectors r T

1 +
√

−1 r T
2

and r T
3 . It is easy to check that the complex epipole is

e = r1 +
√

−1 r2, which is orthogonal to both vec-
tors. This shows that Lemma 3 is only sufficient but
not necessary, because rotations in the XY -plane share
the same last row [0, 0, 1] but in general they lead to
different complex epipoles.

In order to find a condition that is both necessary
and sufficient, let H 1,2, H 2,3, H 1,3 ∈ C2×3 be the three
different complex homographies associated with a real
homography matrix H ∈ R3×3 obtained by complex-
ifying rows (1, 2), (2, 3), and (1, 3), respectively. Let
e1,2, e2,3, e1,3 ∈ C3 be the three corresponding com-
plex epipoles. We have the following result.

Theorem 1 (Complex Epipoles of Real Homogra-
phies). Two non-singular real homography matrices
H1 and H2 ∈ R3×3 are different (in a projective sense)
if and only if they have different sets of complex epipoles
(e1,2, e2,3, e1,3).

Proof: The sufficiency is obvious according to the
definition of the complex epipoles. We only have to
show the necessity and we show it by contradiction.
Assume that the two sets of complex epipoles are the
same up to scale. According to Lemma 3, each of the
three rows of H1 and H2 must be equal up to a (probably
different) scale. That is H2 = DH1 for some diagonal
matrix D .= diag{d1, d2, d3} ∈ R3×3. Let hT

1 , hT
2 , hT

3
be the three rows of H1. If d1 ,= d2, the two vectors
(d1hT

1 +
√

−1d2hT
2 , hT

3 ) span a different plane in C3

from that spanned by (hT
1 +

√
−1 hT

2 , hT
3 ). Otherwise,

we have

d1hT
1 +

√
−1d2hT

2 = α
(
hT

1 +
√

−1hT
2

)
+ βhT

3

for some α, β not identically zero. This gives α = d2

and (d1 −d2)hT
1 = βhT

3 , which contradicts that the ma-
trix H1 is non-singular. Thus, the two epipoles e1,2

1 and
e1,2

2 must be different. Therefore, in order for the sets
of epipoles to coincide, we must have d1 = d2 = d3.
That is, H1 and H2 are equal in the projective sense.

Theorem 1 guarantees that two different homogra-
phies will have two different epipoles for some com-
plexification. However, if we are given n ≥ 3 different
homograhies, it could still be the case that none of
the three complexifications results in n different com-
plex epipoles. In order to handle this rare degenerate
case, we can first apply our motion segmentation algo-
rithm to each one of the three complexifications, thus
obtaining three possible groupings of the image mea-
surements. The number of groups may be strictly less
than n for each one of the three groupings. In the case
of perfect data, the correct grouping into n motions can
be obtained by assigning two image pairs to the same
motion if and only if they belong to the same group for
each one of the three groupings. In the case of noisy
image measurements, one needs to combine multiple
segmentations into a single one, e.g., by merging the
probabilities of membership to each group using Bayes
rule.9

5. Experiments on Real and Synthetic Images

In this section, we evaluate our motion segmentation
algorithms on both real and synthetic data. We compare
our results with those of existing algebraic motion seg-
mentation methods and use our algorithms to initialize
iterative techniques.
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Figure 1. Segmenting the optical flow of the two-robot sequence by clustering lines in C2.

5.1. 2-D Translational Motions

We first test our polynomial differentiation algo-
rithm (PDA) on a 12-frame video sequence consist-
ing of an aerial view of two robots moving on the
ground. The robots are purposely moving slowly,
so that it is harder to distinguish their optical flow
from the noise. At each frame, we apply Algo-
rithm 1 with K = 2, ' = [1 0], κ = 10−6

and δ = 0.02 to the optical flow of all N = 240 × 352
pixels in the image. We compute the opti-
cal flow using Black’s code, which is avail-
able at http://www.cs.brown.edu/people/black/
ignc.html. The leftmost column of Fig. 1 displays the
x and y coordinates of the optical flow for frames 4
and 10, showing that it is not so simple to distinguish
the three clusters from the raw data. The remaining
columns of Fig. 1 show the segmentation of the image
pixels into three 2-D translational motion models. The
motion of the two robots and that of the background
are correctly segmented.

We also test our algorithm on two outdoor se-
quences taken by a moving camera tracking a car
moving in front of a parking lot and a building
(sequences A and B), and one indoor sequence
taken by a moving camera tracking a person mov-
ing his head (sequence C), as shown in Fig. 2. The
data for these sequences are taken from [21] and

consist of point correspondences in multiple views,
which are available at http://www.suri.it.okayama-
u.ac.jp/data.html. For each pair of consecutive
frames we apply Algorithm 1 with K = 2, ' = [1 0]
and δ = 0.02 to the point correspondences. For all se-
quences and for every pair of frames the number of
motions is correctly estimated as n = 2 for all val-
ues of κ ∈ [2, 20] 10−7. For sequence A, our algorithm
gives a perfect segmentation for all pairs of frames. For
sequence B, our algorithm gives a perfect segmentation
for all pairs of frames, except for 2 frames in which
one point is misclassified. The average percentage of
correct classification over the 17 frames is 99.8%. For
sequence C, however, our algorithm has poor perfor-
mance during the first and last 20 frames. This is be-
cause for these frames the camera and head motions
are strongly correlated, and the interframe motion is
just a few pixels. Therefore, it is very difficult to tell
the motions apart from local information. However, if
we combine all pairwise segmentations into a single
segmentation,9 our algorithms gives a percentage of
correct classification of 100.0% for all three sequences
as shown in Table 2. Table 2 also shows results reported
in [21] from existing multiframe algorithms for motion
segmentation. The comparison is somewhat unfair, be-
cause our algorithm uses only two views at a time and a
simple 2-D translational motion model, while the other
algorithms use multiple frames and a rigid-body motion
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Figure 2. Segmenting the point correspondences of sequences A, B and C for each pair of consecutive frames by clustering lines in C2. First
row: first frame of the sequence with point correspondences superimposed. Second row: last frame of the sequence with point correspondences
superimposed. Third row: displacement of the correspondences between first and last frames. Fourth row: percentage of correct classification
for each pair of consecutive frames.

model for affine cameras. Furthermore, our algorithm
is purely algebraic, while the others use iterative re-
finement to deal with noise. Nevertheless, the only
algorithm having a comparable performance to ours
is Kanatani’s multi-stage optimization algorithm [21],
which is based on solving a series of EM-like iterative
optimization problems, at the expense of a significant
increase in computation.

5.2. 3-D Translational Motions

In this section, we compare our polynomial differentia-
tion algorithm (PDA) with the polynomial factorization
algorithm (PFA) of [36] and a variation of the Expec-
tation Maximization algorithm (EM) for segmenting
hyperplanes in R3. For an image size of 500 × 500
pixels, we randomly generate two sets of points in
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Figure 3. Segmenting 3-D translational motions by clustering planes in R3. Top: comparing our algorithm with PFA and EM as a function of
noise in the image features. Bottom: performance of PFA as a function of the number of motions for different levels of noise.

3-D space related by multiple randomly chosen 3-D
translational motions. These two sets of 3-D points are
then projected onto the image plane to generate a set of
point correspondences, which are then corrupted with
zero-mean Gaussian noise with a standard deviation
between 0 and 1 pixels.

Table 2. A comparison of the percentage of correct classifica-
tion given by our two-view algebraic algorithm (PDA) with re-
spect to that of extant multiframe optimization-based algorithms
for sequences A, B, C.

Sequence A B C

Number of points 136 63 73
Number of frames 30 17 100
Costeira-Kanade 60.3% 71.3% 58.8%
Ichimura 92.6% 80.1% 68.3%
Kanatani: subspace separation 59.3% 99.5% 98.9%
Kanatani: affine subspace separation 81.8% 99.7% 67.5%
Kanatani: multi-stage optimization 100.0% 100.0% 100.0%
PDA: mean over consecutive pairs 100.0% 99.8% 86.4%

of frames
PDA: including all frames 100.0% 100.0% 100.0%

Figures 3(a) and (b) show the performance of all
the algorithms as a function of the level of noise for
n = 2 moving objects. The performance measures
are the mean error between the estimated and the true
epipoles (in degrees), and the mean percentage of cor-
rectly segmented point correspondences using 1000 tri-
als for each level of noise. Notice that PDA gives a
translation error of less than 1.3◦ and a percentage of
correct classification of over 96%. Therefore, PDA re-
duces the translation error to approximately 1/3 and im-
proves the classification performance by about 2% with
respect to PFA. Notice also that EM with the epipoles
initialized at random yields a nonzero error in the noise
free case, because it frequently converges to a local
minimum. In fact, PDA outperforms EM when a sin-
gle random initialization for EM is used. However, if
we use PDA to initialize EM (PDA + EM), the perfor-
mance of both EM and PDA improves, showing that our
algorithm can be effectively used to initialize iterative
approaches to motion segmentation. Furthermore, the
number of iterations of PDA + EM is approximately
50% with respect to EM randomly initialized, hence
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Figure 4. Segmenting two 3-D translational motions by clustering planes in R3.

Figure 5. Segmenting 3-D homographies by clustering complex bilinear forms in C5.

there is also a gain in computing time. We also evalu-
ate the performance of PDA as a function of the number
of moving objects for different levels of noise, as shown
in Figs. 3(c) and (d). As expected, the performance de-
teriorates with the number of moving objects, though
the translation error is still below 8◦ and the percentage
of correct classification is over 78%.

We also test the performance of PDA on a 320×240
video sequence containing a truck and a car undergoing
two 3-D translational motions, as shown in Fig. 4(a).
We apply Algorithm 1 with K = 3, ' = I3 and δ =
0.02 to the (real) epipolar lines obtained from a total of
N = 92 point correspondences, 44 in the truck and 48

in the car, obtained using the tracking algorithm in [5].
The number of motions is correctly estimated as n = 2
for all κ ∈ [4, 90] · 10−4. Notice that PDA gives a
perfect segmentation of the correspondences, as shown
in Fig. 4(b). The two epipoles are estimated with an
error of 5.9◦ for the truck and 1.7◦ for the car.

5.3. 3-D Homographies

In this section, we test the performance of our algorithm
for segmenting rigid-body motions of planar 3-D struc-
tures, as described in Section 4.3. Figures 5(a) and (b)
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show two frames of a 2048 × 1536 video sequence
with two moving objects: a cube and a checkerboard.
Notice that although there are only two rigid-body mo-
tions, the scene contains three different homographies,
each one associated with each one of the three visi-
ble planar structures. Furthermore, notice that the top
side of the cube and the checkerboard have approxi-
mately the same normals. We manually tracked a total
of N = 147 features: 98 in the cube (49 in each of the
two visible sides) and 49 in the checkerboard. We ap-
plied our algorithm in Section 4.3 to segment the im-
age data and obtained a 97% of correct classification,
as shown in Fig. 5(c).

In order to test the performance of the algorithm as
a function of noise, we further added zero-mean Gaus-
sian noise with standard deviation between 0 and 1 pix-
els to the features, after rectifying the features in the
second view in order to simulate the noise free case.
Figure 5(d) shows the mean percentage of correct clas-
sification for 1000 trials per level of noise. The percent-
age of correct classification of our algorithm is between
80% and 100%, which gives a very good initial estimate
for any of the existing iterative/optimization/EM based
motion segmentation schemes.

6. Conclusions

We have presented a unified algebraic approach to 2-D
and 3-D motion segmentation from feature point corre-
spondences or optical flow. Contrary to extant methods,
our approach does not iterate between feature segmen-
tation and motion estimation. Instead, it computes a
single multibody motion model that is satisfied by all
the image measurements and then extracts the original
motion models from the derivatives of the multibody
one. Experiments showed that our algorithm not only
outperforms existing algebraic and factorization-based
methods, but also provides a good initialization for it-
erative techniques, such as EM, which are strongly de-
pendent on good initialization.

Notes

1. Our ongoing work has shown that the multivariate trimming
method is the most effective robust statistical technique for the
estimation and segmentation of multiple motions.

2. For simplicity, we will not follow the standard definition of Her-
mitian transpose, which involves conjugating the entries of z.

3. This first order approximation is known in the computer vision
community as the Sampson distance to an implicit surface [14].

4. Remember from Section 4.1 that in the case of purely translating
objects the epipolar lines were readily obtained as x1×x2. Here the
calculation is more involved because of the rotational component
of the rigid-body motions.

5. Notice that this is not a strong assumption. If two individual fun-
damental matrices share the same (left) epipoles, one can consider
the right epipoles (in the first image frame) instead, because it is
extremely rare that two motions give rise to the same left and right
epipoles. In fact, this happens only when the rotation axes of the
two motions are equal to each other and parallel to the translation
direction [38].

6. Strictly speaking, we embed each real homography matrix into
an affine complex matrix.

7. The multibody homography constraint gives two equations per
image pair, and there are (Mn(2) − 1)Mn(3) complex entries in
H1,2 and Mn(3) real entries (the last row).

8. The proof is analogous to that of Lemma 1.
9. A simple, though not necessarily optimal, way of combining mul-

tiple segmentations into a single one is to compute for each seg-
mentation the probability that an image measurement belongs to
each one of the motions. Such probabilities of membership can
be combined into a single one using the Bayes rule. A point is
then assigned to the group yielding the maximum probability of
membership. We used this method in our experiments.
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