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Abstract: We present a vision-based algorithm for the detection of multiple au-
tonomous vehicles for a pursuit-evasion game scenario. Our algorithm computes
estimates of the pose of multiple moving evaders from visual information collected
by multiple moving pursuers, without previous knowledge of the segmentation of the
image measurements or the number of moving evaders. We evaluate our algorithm in
pursuit-evasion games with unmanned ground and aerial vehicles.
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1. INTRODUCTION

In this paper we consider a pursuit-evasion game
scenario (Hespanha et al., 1999; Vidal et al., 2001;
Kim et al., 2001) in which a team of Unmanned
Aerial Vehicles (UAVs) and Unmanned Ground
Vehicles (UGVs) acting as pursuers tries to cap-
ture evaders within a bounded but unknown en-
vironment (see Fig. 1). Each pursuer is equipped
with a monocular camera that is used to detect
position, orientation and velocity of the evaders.

The problem of estimating the 3D pose of a
moving camera observing a single static object
is well studied in the computer vision commu-
nity (Faugeras and Luong, 2001; Hartley and Zis-
serman, 2000; Soatto et al., 1996; Tomasi and
Kanade, 1992). However, the case in which multi-
ple moving cameras observe multiple moving ob-
jects is very recent and only partially understood.

(Han and Kanade, 2000) proposed an algorithm
for reconstructing a scene containing multiple
moving points, some of them static and the oth-
ers moving linearly with constant speed. The al-
gorithm assumes a moving orthographic camera
and does not require previous segmentation of
the points. The case of a perspective camera was
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Fig. 1. Berkeley test-bed for pursuit-evasion games.

studied in (Shashua and Levin, 2001), also under
the assumption that points move linearly and with
constant speed.

(Costeira and Kanade, 1995) proposed an al-
gorithm for estimating the motion of multiple
moving objects relative to a static orthographic
camera, based on discrete image measurements
for each object. They use a factorization method
based on the fact that, under orthographic projec-
tion, discrete image measurements lie on a low-
dimensional linear variety. Unfortunately, under
full perspective projection such a variety is non-
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linear (Torr, 1998), hence factorization methods
cannot be used. However, (Irani, 1999) showed
that infinitesimal image measurements do lie on
a low-dimensional linear variety. She used the
so-called subspace constraints to obtain a multi-
frame algorithm for the estimation of the optical
flow of a moving camera observing a static scene.
She did not however use those constraints for
motion estimation or 3D reconstruction.

In this paper, we propose a unified geometric rep-
resentation of the perspective case that includes
all the previous special cases. We use the subspace
constraints to estimate the motion of multiple
moving objects as observed by multiple moving
cameras. We do not assume prior segmentation of
the image points, nor do we restrict the motion
of the objects to be linear or constant. Also, we
do not assume previous knowledge of the number
of moving objects. We show that the problem can
be completely solved up to a certain parametric
family that depends on the initial configuration of
the objects and the cameras.

2. NOTATION AND PROBLEM STATEMENT

The image x=[x, y, 1]T of a point q=[q1, q2, q3]
T

(in the camera frame), is assumed to satisfy the
perspective projection equation:

x = q/Z, (1)

where Z = q3 > 0 encodes the (unknown positive)
depth of the point q with respect to its image x.

The optical flow u at point q is defined as the
velocity of x in the image plane, i.e.,

[uT , 0]T = ẋ.

The motion of pursuers and evaders is modeled as
elements of SE(3) = {(R, T )|R ∈ SO(3), T ∈ R3}
(discrete case) and se(3) = {(ω̂, v)|ω̂ ∈ so(3), v ∈
R3} (differential case), where SO(3) and so(3)
are the space of rotation and skew-symmetric
matrices in R3×3, respectively.

Problem Statement: Let xi
j ∈ R3 be the image

of point qi ∈ R3, i = 1, . . . n in frame j = 0, . . . , m,
with j = 0 being the reference frame. Let {ui

j} be

the optical flow of point xi
0

between the reference
frame and frame j = 1, . . . , m. Given the images
{xi

j} and the flows {ui
j}, recover the number of

moving objects, the object to which each point
belongs to, the depth of the n points, the motion of
each one of the objects and that of the observers.

To be consistent with the notation, we always use
the superscript to enumerate the n different points
and/or the object to which the point belongs to.
We omit the superscript when we refer to a generic
single point and/or object. The subscript is always
used to enumerate the m different camera frames.

3. ESTIMATING THE RELATIVE POSE OF
A SINGLE EVADER IN MULTIPLE VIEWS

Let us start with the simplest case of a sin-
gle pursuer taking images of one evader. Let
(Re(t), Te(t)) ∈ SE(3) and (Rp(t), Tp(t)) ∈ SE(3)
be the poses of the evader and the pursuer at time
t with respect to a fixed reference frame. Let Q
be a point located on the evader with coordinates
q ∈ R3 relative to the evader frame. The coordi-
nates of Q relative to the reference frame are:

qe(t) = Re(t)q + Te(t)

and the coordinates of Q relative to the pursuer
frame are:

qep(t) =RT
p (t)Re(t)q + RT

p (t)(Te(t) − Tp(t)). (2)

3.1 Differential Case

Differentiating (2) yields:

q̇ep = (ṘT
p Re + RT

p Ṙe)q

ṘT
p (Te − Tp) + RT

p (Ṫe − Ṫp).
(3)

Combining (2) and (3) gives:

q̇ep = (ṘT
p Rp + RT

p ṘeR
T
e Rp)qep+

RT
p (Ṫe − Ṫp − ṘeR

T
e (Te − Tp)).

(4)

Since ṘRT ∈ so(3), R̂T ω = RT ω̂R and ṘT R =
−RT ṘRT R (Murray et al., 1994), we may define
the angular velocities ωp, ωe ∈ R3 by:

ω̂e = ṘeR
T
e and ω̂p = ṘpR

T
p . (5)

Combining (4) and (5) yields:

q̇ep=[RT
p(ωe−ωp)] × qep+RT

p(Ṫe−Ṫp−ω̂e(Te−Tp))

=ω̂qep + v,

where ω and v are the angular and translational
velocities of the evader relative to the pursuer.

Under perspective projection, the optical flow u

of point Q is then given by:

u =
d

dt

(qep

Z

)
=

1

Z

[
1 0 −x
0 1 −y

]
q̇ep

=

[
−xy 1 + x2 −y 1/Z 0 −x/Z

−(1 + y2) xy x 0 1/Z −y/Z

][
ω
v

]

where qep = (X, Y, Z)T and (x, y, 1)T = qep/Z.

Assume that the pursuer has measurements for
the optical flow ui

j = (ui
j , v

i
j)

T of point xi
0, i =

1...n between frames j = 0 and j = 1...m, and
define the matrix of rotational flows Ψ and the
matrix of translational flows Φ as:

Ψ =

[
−{xy} {1 + x2} −{y}

−{1 + y2} {xy} {x}

]
∈ R2n×3,

Φ =

[
{1/Z} 0 −{x/Z}

0 {1/Z} −{y/Z}

]
∈ R2n×3.

where (for example) {xy}T = [x1y1, · · · , xnyn].



Also let

U =




u1

1 · · · u1

m

...
...

un
1
· · · un

m


 and V =




v1

1 · · · v1

m

...
...

vn
1
· · · vn

m


 .

Then, the optical flow matrix W∈R2n×m satisfies:

W =

[
U
V

]
= [Ψ Φ]2n×6

[
ω1 · · · ωm

v1 · · · vm

]

6×m

= SMT

where ωj and vj are the velocities of the evader
relative to the pursuer in the jth frame.

We call S ∈ R2n×6 the structure matrix and
M ∈ Rm×6 the motion matrix. We conclude that,
for general translation and rotation, the optical
flow matrix W has rank 6.

We would like to estimate the relative velocities
(ωj , vj) and depth Zi from image points xi

0
and

optical flows ui
j . We can do so by factorizing W

into its motion and structure components. For,
consider the SVD of W = UΣVT and let S̃ = U
and M̃ = VΣ. Then we have S = S̃A and
M = M̃A−T for some A ∈ R6×6. Let Ak be the
k-th column of A. Then the columns of A must
satisfy:

S̃A1−3 = Ψ and S̃A4−6 = Φ.

Since Ψ is known, A1−3 can be immediately com-
puted. The remaining columns of A and the vector
of the depths {1/Z} can be obtained up to scale
from:




−I S̃u 0 0

−I 0 S̃v 0

diag({x}) 0 0 S̃u

diag({y}) 0 0 S̃v

0 S̃v 0 0

0 0 S̃u 0







{1/Z}
A4

A5

A6


 = 0.

where S̃u ∈ Rn×6 and S̃v ∈ Rn×6 are the upper
and lower part of S̃, respectively. To summarize,
given the image points of at least 4 points on one
evader, and the optical flow of those points in at
least 6 frames, one can estimate depth Z of each
point and the angular and translational velocities
ω and v of the evader, relative to the pursuer.

3.2 Discrete Case

We consider equation (2) at two time instants, t
and t0 and eliminate q to obtain:

qep(t) =Rp(t)
T Re(t)Re(t0)

T Rp(t0)qep(t0)+

Rp(t)
T (Te(t) − Tp(t))−

Rp(t)
T Re(t)Re(t0)

T (Te(t0) − Tp(t0))

=R(t, t0)qep(t0) + T (t, t0)

where (R(t, t0), T (t, t0)) can be interpreted as the
change in the relative pose of the evader with
respect to the pursuer between times t0 and t.

There are a number of methods to estimate (R, T )
from image measurements. Here we choose a sim-
ple linear method based on the rank deficiency
of the multiple view matrix (Ma et al., 2001),
because it exploits the fact that the depth vector
is known.

Assume that we take measurements at discrete
time instants t = t1...tm, and let Rj = R(tj , t0),
Tj = T (tj , t0) and qj = qep(tj). Then we have:

qi
j =Rjq

i
0 + Tj

Zi
jx

i
j =ZiRjx

i
0

+ Tj

0 =Zix̂i
jRjx

i
0 + x̂i

jTj .

Solving for (Rj , Tj) is equivalent to finding vectors
Rj = [r11, r12, r13, r21, r22, r23, r31, r32, r33]

T ∈ R9

and Tj = Tj ∈ R3, j = 1, . . . , m, such that:

Pj

[
Rj

Tj

]
=




Z1x̂1

j ∗ x1

0

T
x̂1

j

Z2x̂2

j ∗ x2

0

T
x̂2

j

...
...

Znx̂n
j ∗ xn

0

T
x̂n

j




[
Rj

Tj

]
= 0 ∈ R3n, (6)

where A∗B is the Kronecker product of A and B.

It can be shown that Pj is of rank 11 if more
than n ≥ 6 points in general position are given.
In that case, the kernel of Pj is unique, and so
is (Rj , Tj). However, in the presence of noise, Rj

may not be an element of SO(3). In order to
obtain an element of SO(3) we proceed as follows:
Let R̃j ∈ R3×3 and T̃j ∈ R3 be the (unique)
solution of (6). Such a solution is obtained as
the eigenvector of Pj associated to the smallest

eigenvalue. Let R̃j = UjΣjV
T
j be the SVD of R̃j .

Then the solution of (6) in SO(3) × R3 is:

Rj = sign(det(UjV
T
j )) UjV

T
j ∈ SO(3) (7)

Tj =
sign(det(UjV

T
j ))

3

√
det(Σj)

T̃j ∈ R3. (8)

4. ESTIMATING THE RELATIVE POSE OF
MULTIPLE EVADERS IN MULTIPLE VIEWS

So far, we have assumed that the scene contains a
single moving evader. Now, we consider the case
in which a single pursuer observes ne evaders. The
new optical flow matrix W will contain additional
rows corresponding to measurements from the dif-
ferent evaders. However, we cannot directly apply
the equations in the previous section to solve for
the relative motion of each evader, because we do
not know which measurements in W correspond
to which evader. We therefore need to consider
the segmentation problem first, i.e., the problem
of separating all the measurements into ne classes:

Ik = {i ∈ {1...n}| ∀j ∈ {1...m} xi
j ∈ evader k}.



Furthermore, we assume that ne itself is unknown.

Assume that each pursuer tracks nk image points
for evader k and let n =

∑
nk be the total number

of points tracked. If the segmentation of these
points were known, then the multi-body optical
flow matrix could be written as:

W =




U1

...
Une

V1

...
Vne




=




S̃u1 · · · 0
...

. . .
...

0 · · · S̃une

S̃v1 · · · 0
...

. . .
...

0 · · · S̃vne







M̃T
1

...

M̃T
ne


 = S̃M̃T

=S̃




A1 · · · 0
...

. . .
...

0 · · · Ane







A−1

1
· · · 0

...
. . .

...
0 · · · A−1

ne


 M̃T

=S̃AA−1M̃T = SMT .

where S̃uk and S̃vk ∈ Rnk
×6, k = 1...ne, S̃ and

S ∈ R2n×6ne , A ∈ R6ne×6ne and M̃, M ∈ Rm×6ne .
In reality, the segmentation is unknown and the
rows of W may be in a different order. However,
such a permutation does not affect the rank of W .
We conclude that

ne = rank(W )/6. (9)

Furthermore, the permutation will affect the rows
of S̃ hence those of S, but A, M̃ and M are
unaffected. Therefore, from the SVD of W = UΣV
we have UUT =




P



S̃u1S̃

T
u1

0
. . .

0 S̃une
S̃T

une


P T P



S̃u1S̃

T
v1

0
. . .

0 S̃une
S̃T

vne


P T

P




S̃v1S̃
T
u1 0
. . .

0 S̃vne
S̃T

une


P T P



S̃v1S̃

T
v1 0
. . .

0 S̃vne
S̃T

vne


P T




,

where P ∈ Rn×n is the unknown permutation.

We define the segmentation matrix Σ as the sum
of the diagonal blocks of UUT , i.e.,

Σ = P




S̃u1S̃
T
u1 + S̃v1S̃

T
v1 0
. . .

0 S̃une
S̃T

une
+ S̃vne

S̃T
vne


P T .

Then, Σij > 0 if and only if image points i and j
belong to the same evader. Therefore the matrix Σ
can be used to determine the class to which each
image point belongs to.

Once the segmentation problem has been solved,
one can apply the algorithms in Section 3 to
estimate the motion of each object separately.

5. ABSOLUTE POSE ESTIMATION

So far, we have shown how to obtain the rela-
tive position, orientation and velocities of multiple
moving evaders with respect to a single moving
pursuer. However, for the pursuit-evasion scenario
that we are considering (Vidal et al., 2001), ab-
solute position and orientation is needed. In this
section, we show that it is not possible to solve
the problem from image measurements only, un-
less some additional constraints are imposed. We
consider additional constraints such as known po-
sition for the pursuers and concentration of the
image points corresponding to each evader. We
also consider the case in which multiple pursuers
share their measurements.

5.1 Pose and velocity of the pursuers

In practice, not all the image measurements will
correspond to the moving evaders. Some image
points will correspond to 3D points in the back-
ground, which are actually not moving. Therefore,
matrix W will be segmented into ne + 1 classes,
one of them corresponding to static points. While
points on each evader are concentrated in a spe-
cific region of the image, points on the background
are distributed all over the image. Therefore, given
the segmentation of the ne +1 classes, the class of
static points can be identified as the one with the
largest spatial standard deviation in all frames.

Let the class of static points be the zeroth class.
Also, let (ωk

j , vk
j ) and (Rk

j , T k
j ) be the estimates of

relative motion for class k in frame j as obtained
by the algorithms in Sections 3 and 4. The zeroth

class contains information about the motion of the
pursuer only. More explicitly, we have:

w0

j = −RT
pjωpj λ0v0

j = −RT
pj Ṫpj (10)

R0

j = RT
pjRp0 λ0T 0

j = −RT
pj(Tpj − Tp0) (11)

where λ0 is the unknown scale lost under perspec-
tive projection. We are now interested in recover-
ing the absolute motion (Rp0, Tp0) and (ωpj , vpj),
(Rpj , Tpj), j = 1...m. We can see from equations
(10) and (11) that this cannot be done, because
there are 12m + 7 unknowns and 12m equations.
Therefore, the absolute motion of the pursuer can
be estimated up to a 7-parameter family, given
(for example) by the initial rotation and trans-
lation of the pursuer and the scale lost under
perspective projection.

For the case of a single pursuer, this ambiguity
is not relevant, since it is equivalent to choos-
ing the reference frame, which can be chosen to
coincide with the initial location of the pursuer,
i.e., (Rp0, Tp0) = (I, 0). For the case of multiple
pursuers, we resolve this ambiguity by using addi-
tional information on the motion of the pursuers.



For example, we assume that the position of the
pursuers Tpj , j = 0...m is known from GPS mea-
surements. Given that information, one can solve
linearly for λ0 and RT

pj , j = 0...m from (11). Then,

solving for (ωpj , Ṫpj), j = 1...m is trivial from (10).

5.2 Pose and velocities of the evaders

Given λ0, (ωpj , Ṫpj), j = 1...m and (Rpj , Tpj), j =

0...m we would like to solve for λk, (ωk
ej , Ṫ

k
ej), j =

1...m and (Rk
ej , T

k
e0), j = 0...m, k = 1...ne from:

wk
j =RT

pj(ω
k
ej − ωpj) (12)

λkvk
j =RT

pj(Ṫ
k
ej − Ṫpj − ŵk

ej(T
k
ej − Tpj)) (13)

Rk
j =RT

pjR
k
ejR

kT
e0 Rp0 (14)

λkT k
j =RT

pj(T
k
ej−Tpj−Rk

ejR
kT
e0 (T k

e0−Tp0)). (15)

Again, we observe that the motion of the evaders
can be recovered up to a 7ne-parameter family
given by the initial pose of each evader and the
unknown scales lost under perspective projection.

In order to resolve the translation ambiguity T k
eo,

we assume that image points corresponding to
each evader are concentrated in a specific region
of the image. Therefore, the average of the 3D
points associated to those image points well ap-
proximates the position of the evader relative to
the pursuer (up to scale). We then approximate
the initial position of each evader as:

T k
e0 ≈ λkRp0

∑

i∈Ik

xi
0
Zi

0

nk
+ Tp0 (16)

Combining (14), (15) and (16), the position of the
evaders in the remaining frames is given by:

T k
ej ≈ λkRpj


T k

j + Rk
j

∑

i∈Ik

xi
0Z

i
0

nk


 + Tpj (17)

In relation to the rotation ambiguity, we observe
that it is not possible to estimate Rk

e0. One can
only estimate Rk

ejR
kT
e0 which is the orientation of

the evader relative to its initial configuration.

Finally, assuming that the initial orientation of
the evaders is known, (ωk

ej , Ṫ
k
ej) can be trivially

obtained from (12) and (13). We conclude that,
given the assumptions, the motion of each evader
can be completely solved with (Rk

ej , ω
k
ej) obtained

uniquely, and (T k
ej , Ṫ

k
ej) obtained up to a scale λk.

In order to determine the unknown scales, some
additional information is needed. In (Vidal et
al., 2001) we assumed a flat terrain with known
ground level. Here, we show how this can be done
when two pursuers observe the same evader, which
can be detected when the estimates of the two
pursuers for (Rej , ωej) match. Since T k

e0 in (16)
must be the same for both pursuers, one can solve
for the 2 unknown scales from those 3 equations.

6. SIMULATIONS AND EXPERIMENTS

We evaluate the performance of our motion algo-
rithm in a simulated game with one aerial pursuer
and one ground evader. The pursuer observes and
tracks 12 static points plus 12 points on the mov-
ing evader for 105 seconds. Random noise with
1 pixel standard deviation is added to the image
measurements. Figure 2 shows the motion esti-
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Fig. 2. Pursuer and evader motion estimates.



mates for a particular game. The dashed trajecto-
ries correspond to the ground truth while the solid
trajectories correspond to the estimates given by
our vision-based algorithm. We observe that there
is no noticeable difference between the motion
estimates for the pursuer and the ground truth.
In relation to the motion of the evader, there is
a maximum error of 0.017 rad/sec for angular
velocity and 2.384 m/sec for translational velocity.
This latter error corresponds to high frequency
components in the estimates and can be easily
eliminated with a low pass filter.

We evaluate the performance of the segmentation
part of the algorithm in a real video sequence with
one pursuer and two evaders. Figure 3(a) shows
one frame of the sequence with the corresponding
optical flow superimposed. Optical flow is com-
puted using Black’s algorithm (Black, 1996). Each
frame of the sequence has 200× 150 pixels. Their
optical flows are used to build the segmentation
matrix and find the independent motions. Fig-
ures 3(b)-(c) show the results of the segmentation.
Groups 1 and 2 correspond to the each one of the
moving evaders, while group 3 corresponds to the
background, which is the correct segmentation.

(a) Optical flow (b) Group 1

(c) Group 2 (d) Group 3

Fig. 3. Segmentation results for a pursuit-evasion
game between 1 pursuer and 2 evaders.

7. CONCLUSIONS

We proposed a vision-based algorithm for detect-
ing multiple moving evaders as observed by multi-
ple moving pursuers in multiple frames. The pro-
posed algorithm does not assume prior segmenta-
tion of the image points or previous knowledge of
the number of evaders. Through simulations and
experiments we showed the applicability of our
algorithm to the control of multiple autonomous
vehicles for a pursuit-evasion game scenario. Fu-
ture work will include real-time implementation
of the algorithm and experimental results on the
Berkeley fleet of autonomous vehicles.

8. REFERENCES

Black, M. (1996). http://www.cs.brown.edu/

people/black/ignc.html.
Costeira, J. and T. Kanade (1995). Multi-body

factorization methods for motion analysis. In:
IEEE International Conference on Computer
Vision. pp. 1071–1076.

Faugeras, O. and Q.-T. Luong (2001). Geometry
of Multiple Images. The MIT Press.

Han, M. and T. Kanade (2000). Reconstruction
of a scene with multiple linearly moving ob-
jects. In: International Conference on Com-
puter Vision and Pattern Recognition. Vol. 2.
pp. 542–549.

Hartley, R. and A. Zisserman (2000). Multiple
View Geometry in Computer Vision. Cam-
bridge.

Hespanha, J., H.J. Kim and S. Sastry (1999).
Multiple-agent probabilistic pursuit-evasion
games. In: IEEE Conference on Decision and
Control. pp. 2432–2437.

Irani, M. (1999). Multi-frame optical flow estima-
tion using subspace constraints. In: IEEE In-
ternational Conference on Computer Vision.
pp. 626–633.

Kim, H.J., R. Vidal, D. Shim, O. Shakernia and
S. Sastry (2001). A hierarchical approach
to probabilistic pursuit-evasion games with
unmanned ground and aerial vehicles. In:
IEEE Conference on Decision and Control.
pp. 1243–1248.

Ma, Y., R. Vidal, K. Huang and S. Sastry (2001).
New rank deficiency condition for multiple
view geometry of point features. UIUC, CSL
Tech. Report, UILU-ENG 01-2208 (DC-200).

Murray, R. M., Z. Li and S. S. Sastry (1994). A
Mathematical Introduction to Robotic Manip-
ulation. CRC press Inc.

Shashua, A. and A. Levin (2001). Multi-frame
infinitesimal motion model for the recon-
struction of (dynamic) scenes with multi-
ple linearly moving objects. In: IEEE In-
ternational Conference on Computer Vision.
Vol. 2. pp. 592–599.

Soatto, S., R. Frezza and P. Perona (1996). Motion
estimation via dynamic vision. IEEE Trans-
actions on Automatic Control 41(3), 393–
413.

Tomasi, C. and T. Kanade (1992). Shape and
motion from image streams under orthogra-
phy. International Journal of Computer Vi-
sion 9(2), 137–154.

Torr, P. H. S. (1998). Geometric motion segmen-
tation and model selection. Phil. Trans. Royal
Society of London A 356(1740), 1321–1340.

Vidal, R., S. Rashid, C. Sharp, O. Shakernia, H.J.
Kim and S. Sastry (2001). Pursuit-evasion
games with unmanned ground and aerial ve-
hicles. In: IEEE International Conference on
Robotics and Automation. pp. 2948–2955.


