
DynamicBoost: Boosting Time Series Generated by Dynamical Systems

René Vidal
Center for Imaging Science, Dept. of BME,

Johns Hopkins University, Baltimore MD, USA
rvidal@cis.jhu.edu http://www.vision.jhu.edu

Paolo Favaro
Department of Electrical Engineering and

Physics, Heriot-Watt University, Edinburgh, UK
p.favaro@hw.ac.uk http://www.eps.hw.ac.uk/˜pf21

Abstract

Boosting is a remarkably simple and flexible classi-
fication algorithm with widespread applications in com-
puter vision. However, the application of boosting to non-
Euclidean, infinite length, and time-varying data, such as
videos, is not straightforward. In dynamic textures, for ex-
ample, the temporal evolution of image intensities is cap-
tured by a linear dynamical system, whose parameters live
in a Stiefel manifold: clearly non-Euclidean.

In this paper, we present a novel boosting method for the
recognition of visual dynamical processes. Our key contri-
bution is the design of weak classifiers (features) that are
formulated as linear dynamical systems. The main advan-
tage of such features is that they can be applied to infinitely
long sequences and that they can be efficiently computed
by solving a set of Sylvester equations. We also present an
application of our method to dynamic texture classification.

1. Introduction
Classification and recognition problems have been the

mainstream areas of research in machine learning for the
past decades. Such problems have been motivated and
constantly driven by several applications in bioinformatics,
speech processing, medical imaging and computer vision,
such as DNA sequence classification, speech recognition,
handwritten digit recognition, object recognition, etc.

Given a set of points xi ∈ X with corresponding labels
zi ∈ Z = {−1,+1}, the goal of classification is to find a
mapping (classifier) h : X → Z that maps each new data x
into its corresponding label z = +1 or z = −1 by minimiz-
ing a loss function L : X × Z → R+. Among the several
existing methods for classification e.g. k-nearest neighbors,
linear classifiers, decision trees, neural networks, Bayesian
networks, support vector machines, hidden Markov models,
etc. [3], boosting [9, 5] is a remarkably simple approach that
has become particularly attractive over the past few years.
The key idea behind boosting is to first use weak classi-
fiers to deal with easy examples, to then learn strong classi-

fiers that deal with hard examples. More specifically, boost-
ing learns the classification function h incrementally from
a given set of weak classifiers, i.e. classifiers that perform
slightly better than chance. At each stage, boosting chooses
the weak classifier that minimizes the current loss. The out-
put of this weak classifier is then used to modify the loss
function so that data points that are currently misclassified
get boosted in importance. In this way, other weak classi-
fiers will be chosen so as to correct for these mistakes.

Boosting has found numerous applications in computer
vision, most notably in face detection [4, 13]. The most
typical setup consists of extracting Haar-like features in the
image, such as the difference between the sum of the pixel
intensities within two adjacent rectangular regions. The val-
ues of such features f(x) are then used to construct the
weak classifiers as h(x) = sign(f(x)−θ), where x is e.g. a
24×24 pixel sub-window of the image and θ is a threshold.
As boosting proceeds, good weak classifiers are selected,
which in turns results in the automatic selection of face-like
features. As these features can be computed extremely fast
using the integral image representation, face detection can
be performed in real-time.

However, the detection process is performed frame-by-
frame, without considering the dynamics of the video.
While this may be fine for problems such as face detec-
tion, there are other problems in computer vision where ex-
ploiting dynamical properties of the video is fundamental.
Consider for example video sequences of dynamic textures,
such as water, foliage, steam, etc. As shown in [2], such
videos can be accurately modeled as the output of linear
dynamical systems (LDS). The parameters of such LDS can
be learned from data using techniques from system identifi-
cation [8]. Once the parameters have been learned, one may
use them not only for synthesizing novel sequences, but also
for classification and recognition. For instance, if one has
a distance between two LDS, one can perform classifica-
tion using k-nearest neighbors. Of course the results are not
ideal, not only because k-nearest neighbors is too simple
of a classification method, but also because defining a dis-
tance between dynamical models is not straightforward, as

reported by recent works in this area [6, 1, 14].
The main contribution of this paper is to propose a gen-

eralization of boosting to the temporal domain for the pur-
pose of discriminating between time series data generated
by different dynamical systems. The development of such a
generalization faces significant technical challenges.

1. First of all, one could argue that the problem could be
easily solved by building an integral volume, comput-
ing scale-time Haar-like features, and then using stan-
dard AdaBoost. However, as capturing dynamical phe-
nomena may require several frames, computing such
features is no longer computationally straightforward.
Furthermore, such a construction fails to incorporate
the dynamical properties of the data to begin with.

2. Second, the discrimination of two different dynamical
systems must be performed from a finite set of sam-
ples. Therefore, one cannot hope to be able to discrim-
inate between any two stochastic processes. Often as-
sumptions of stationarity and ergodicity are required.

3. Even for simple dynamical systems, such as LDS, the
model parameters do not live in a Euclidean space. The
fundamental questions are then 1) how to define weak
classifiers for non Euclidean data, and 2) how to adapt
AdaBoost to operate on non Euclidean data.

In this paper, we address some of these issues by propos-
ing DynamicBoost, a generalization of AdaBoost to time se-
ries data generated by linear dynamical systems. The key to
our approach is to use dynamical systems to classify dynam-
ical systems. More specifically, we choose linear classifiers
in the Hilbert space of outputs of a LDS as weak classifiers.
Such classifiers can be computed efficiently, not in terms of
the infinite time series data, but rather in terms of the param-
eters of the LDS identified from finite samples. The exact
formula is in fact a dot product between a LDS associated
with the weak classifier and the LDS identified from time
series data. Thus, the weak classifiers are in fact dynamical
systems. Since these classifiers are also linear classifiers in
the space of outputs, the incremental selection of weak clas-
sifiers can be performed using standard AdaBoost. There-
fore, DynamicBoost requires only a particular definition of
weak classifiers, without any modification to the boosting
part. We also present experiments testing the performance
of DynamicBoost on the classification of dynamic textures.

To the best of our knowledge, our work is the first one
to extend AdaBoost to the temporal domain [15]. Existing
works have simply combined boosting with HMMs [7], or
run AdaBoost at each frame in a way that uses previous
history in evaluating the current frame [11]. However, none
of these works formally exploits dynamical systems theory.
For recent work extending boosting to the classification of
data on Riemannian manifolds the reader is referred to [12].

2. Preliminaries
2.1. AdaBoost

We begin with a description of (discrete) Adaboost in the
case of two classes. Our description is taken from [5], where
the reader is referred to for further details and extensions.

Given a training set {(xi, zi)}Ni=1, where xi ∈ X is a
vector and zi ∈ Z = {−1,+1} is a label, the goal of classi-
fication is to find a mapping h : X → Z that maps each new
data x ∈ X to its corresponding label z ∈ Z . Boosting is a
method for combining many weak classifiers {hm(x)}Mm=1,
i.e. classifiers that perform slightly above chance, to pro-
duce a strong classifier h(x) = sign

(∑M
m=1 cmhm(x)

)
,

where {cm} are constants to be determined. AdaBoost pro-
ceeds by sequentially applying a classification algorithm to
re-weighted versions of the training data and then taking a
weighted majority vote of the sequence of classifiers thus
produced. More specifically, AdaBoost operates as follows:

1. Start with weights wi = 1/N , i = 1, . . . , N .

2. Repeat for m = 1, 2, . . . ,M

(a) Fit the classifier hm(x) ∈ {−1, 1} using weights
wi on the training data.

(b) Compute εm =Ew[1z 6=hm(x)], cm =log
(

1−εm

εm

)
.

(c) Set wi ←
wi exp[cm1zi 6=hm(xi)]P
j wj exp[cm1zj 6=hm(xj)]

.

3. Output the classifier sign
(∑M

m=1 cmhm(x)
)
.

The function 1A is the indicator function, i.e. 1A = 1 if A
is true, and 0 otherwise.

2.2. Dynamic Textures

A dynamic texture [2] is a generative model of videos
defined by a random process (yt, xt). The observed vari-
able yt ∈ Rp encodes the video frame at time t and the
hidden state variable xt ∈ Rn (typically n � p) encodes
the evolution of the video over time. The state and observed
variables are related through the following linear dynamical
system (LDS) equations

xt+1 = Axt + vt

yt = Cxt + µ + wt,
(1)

where A ∈ Rn×n is the state transition matrix, C ∈ Rm×n

is a matrix containing the principal components of the video
sequence, and µ ∈ Rp is the temporal mean of the video se-
quence. The driving noise process is vt

i.i.d.∼ N (0, Q), with
Q ∈ Rn×n, and the observed noise is wt

i.i.d.∼ N (0, R),
with R ∈ Rm×m, where N (0,Φ) is a zero-mean Gaussian
distribution with covariance Φ. We will also assume that the
initial state x0 is distributed as x0

i.i.d.∼ N (0,Σ).

The dynamic texture model is completely specified by
the parameters θ

.= (A,Q,C,R, µ, Σ) ∈ Θ. However,
notice that the space of LDS Θ is not a Euclidean space.
This is because for any invertible linear transformation
T ∈ GL(n), the models θ1 = (A,Q,C,R, µ, Σ) and
θ2 = (TAT−1, TQT>, CT−1, R, µ, TΣT>) generate the
same random process yt.

A number of methods are available to learn the parame-
ters of the dynamic texture from a training video sequence,
including asymptotically efficient methods such as N4SID
[8], maximum likelihood methods such as expectation-
maximization [10], and a suboptimal (but computationally
efficient) solution based on the singular value decomposi-
tion [2]. In order for these methods to operate correctly,
usually a number of assumptions on the dynamical systems
are made. In particular, it is usually assumed that the pro-
cess xt is stationary and ergodic. Under these assumptions,
the matrix Σ must satisfy the Lyapunov equation1

Σ = AΣA> + Q. (2)

Another typical assumption is that vt and wt′ are indepen-
dent for all t and t′, and that xt is independent of vt′ and wt′

for all t′ ≥ t. Loosely speaking, these assumptions guar-
antee that one can identify the parameters θ from a single
sample path of the random process yt.

3. DynamicBoost
In this section, we present the proposed boosting algo-

rithm for classifying time series data generated by LDS. As
we will see shortly, the main difference between Dynamic-
Boost and AdaBoost is in the selection of the weak classi-
fiers, not on the boosting of the weak classifiers. Therefore,
we will restrict our attention to the two-class problem, as
the multi-class case can be dealt with in the same way as
with normal AdaBoost.

Let {θi, zi}Ni=1 be a given collection of dynamical sys-
tems θi = (Ai, Qi, Ci, Ri, µi,Σi) ∈ Θ with corresponding
labels zi ∈ Z . The goal is to learn a classifier h : Θ → Z
that maps each new dynamical system θ ∈ Θ to its cor-
responding label z ∈ Z . As discussed at the end of the
previous section, a time series data generated by a LDS is
simply a sample path from a random process yt which can
be characterized by a set of parameters θ ∈ Θ. Thus, from
now on we will speak indistinctively of classifying time se-
ries generated by a LDS and classifying LDS.

For the purpose of defining a set of weak classifiers,
imagine we are given a time series yt ∈ Y , where Y is the
Hilbert space of all possible outputs of a dynamical system.
For any two time series yt and y′t, we will use the standard
dot product on Y , which is given by:

1Well know results from linear systems theory ensure that for all Q �
0, the Lyapunov equation (2) has a unique solution Σ � 0 when A is
stable, i.e. all eigenvalues µ of A are such that |µ| < 1.

< yt, y
′
t >=

∞∑
t=0

λty>t y′t, (3)

where λ ∈ (0, 1) is an exponential discount factor that al-
lows one to control the convergence of the series.

A hyperplane on Y with normal vector ht ∈ Y∗ (the dual
of Y as a vector space) is simply given by

H = {yt ∈ Y :< ht, yt >= φ} (4)

for some φ ∈ R. Therefore, we can define a weak classifier
simply as a linear classifier on Y , i.e. a classifier of the form

h(y) = sign
(∞∑

t=0

λth>t yt − φ
)
, (5)

where ht ∈ Rp and φ ∈ R are the parameters of the linear
classifier, and need to be chosen.

At a first sight, one may think that such a choice of weak
classifiers does not make much sense, because in order to
classify a time series yt ∈ Y , we need to generate an infinite
dimensional object ht ∈ Y∗. Similarly to the kernel trick,
our idea is to exploit the fact that yt is the output of a LDS so
as to show that, under certain conditions, the linear classifier
h yields a finite dimensional classifier on Θ. The details of
the derivation are left to the following two subsections.

3.1. Static weak classifiers

For the sake of simplicity, let us first assume that ht is
constant, i.e. ht = h0 for all t ≥ 0. Also, for the sake of
simplicity, assume that the time series is generated without
noise, i.e. vt = 0 and wt = 0. From equation (1) we have

yt = CAtx0 + µ. (6)

Therefore, we have that

< ht, yt > =
∞∑

t=0

λth>0 (CAtx0 + µ)

= h>0 C(I − λA)−1x0 + (1− λ)−1h>0 µ.

(7)

The last step requires that λA be stable, i.e. all the eigenval-
ues µ of λA must be such that |µ| < 1. As a consequence,
we obtain a family of classifiers on θ = (A,C, x0)

h(θ) = sign
(
h>0 C(I−λA)−1x0+(1−λ)−1h>0 µ−φ

)
(8)

parameterized by the choice of h0, φ and λ.
An important property of the proposed classifier is that it

can be computed in closed form, as we have shown. How-
ever, when yt is an image sequence, h0 ∈ Rp is an image.
Therefore, even after the huge simplification of choosing ht

to be constant, we still have a problem of high dimension-
ality. To deal with this issue, similarly to the case of face
recognition, we can choose h0 to be a Haar-like feature. In
fact, as C ∈ Rp×n, where the order of the system n is much
smaller than the number of pixels p, each column of C can

also be seen as an image. Therefore, from a computational
perspective, the proposed weak classifiers can be thought of
as applying Haar-like features to n images. As the number
of frames in a video is F � n, we see already that by ex-
ploiting the fact that the video is the output of a dynamical
model, we obtain significant gains in complexity.

Another property of the classifier is that it is invariant
with respect to a change of basis for x0. Recall from the
previous section that if we apply a transformation x0 →
Tx0, then A→ TAT−1 and C → CT−1. Therefore,

h>0 C(I−λA)−1x0 → h>0 CT−1(I−λTAT−1)−1Tx0

= h>0 (T−1(I − λTAT−1)T)−1x0

= h>0 C(I − λA)−1x0

(9)

and so changes of basis for the representation of the dynam-
ical system do not affect the classifier.

3.2. Dynamic weak classifiers

In the previous subsection, we assumed that the classifier
ht is constant, i.e. ht = h0 for all t ≥ 0. Another choice for
ht is to assume that it is the output of a dynamical system
θ̃ = (Ã, C̃, x̃0, µ̃) of the same form as in equation (1), but
without noise. More specifically, we define ht as

ht = C̃Ãtx̃0 + µ̃, (10)

where Ã ∈ Rñ×ñ, C̃ ∈ Rp×ñ and µ̃ ∈ Rp. Notice that the
order of the classifier ñ, need not coincide with the order of
the LDS n, but the dimension of the output p must be the
same.

As in the previous subsection, the question is whether we
can evaluate this weak classifier efficiently on a dynamical
system θ. Again, under the assumption of no noise, i.e.
vt = 0 and wt = 0, we have that

< ht, yt >=
∞∑

t=0

λt(x̃>0 (Ãt)>C̃> + µ̃>)(CAtx0 + µ)

=x̃>0 Px0 + x̃>0 (I − λÃ>)−1C̃>µ+

µ̃>C(I − λA)−1x0 + (1− λ)−1µ̃>µ,

(11)

where P =
∑∞

t=0 λt(Ãt)>C̃>CAt ∈ Rñ×n. In order for
the sum to converge, and so for P to be well defined, it is
necessary that λA⊗ Ã be stable. Then, after separating the
infinite sum into the first term and the remaining ones, it can
be seen that P must satisfy the Sylvester’s equation2

P = C̃T C + λÃT PA. (12)

We thus obtain a family of classifiers on θ = (A,C, x0, µ),
parameterized by the choice of Ã, C̃, x̃0, µ̃ and λ

h(θ) = sign(x̃>0 Px0 + · · ·+ (1− λ)−1µ̃>µ− φ). (13)
2Notice that the Lyapunov equation in (2) is a special case of the

Sylvester’s equation with Ã = A, C̃ = C and λ = 1.

As in the case of static classifiers, notice that the dynamic
classifiers can also be computed in closed form by solving
a Sylvester’s equation, which is linear in P .

Remark 1 (Static versus dynamic classifiers) Notice that
when ñ = 1 and Ã = 1, then C̃ ∈ Rp×1, P ∈ R1×n,
and P (I − λA) = C̃>C. Hence P = C̃T C(I − λA)−1.
Therefore, x̃T

0 Px0 = x̃T
0 C̃T C(I − λA)−1x0, and so by

letting h0 = C̃x̃0+µ̃ we obtain the static classifier ht = h0

described in the previous subsection.

The calculation of the dynamic classifiers involves the
computation of C̃T C, which has linear complexity in p,
plus the computation of P from the Sylvester’s equation,
which has cubic complexity in nñ, because to compute P
one needs to invert (Inñ−λÃ⊗A) ∈ Rnñ×nñ. As typically
p � max(n, ñ), the bottleneck is on the computation of
C̃>C. As before, in order to reduce the computational com-
plexity, we can choose C̃ in a particular way. Recall that
each column of C, Ci i = 1, . . . n, is an image. Therefore,
C̃Ci can be thought of as applying ñ filters to an image. By
choosing such filters to have a small support, e.g. Haar-like
features, the computational complexity can be significantly
reduced. In face classification, for example, one typically
chooses image features that are supported on a few pixels
in the image (say a 20 × 20 window). In what regards the
choice of the dimension ñ, it is unclear how one may go
about choosing it. Intuitively, ñ should be of the same order
or smaller than the dimension of the individual LDS ni. For
instance, one may choose ñ = mini=1,...,N{ni}.

Remark 2 (Invariance with respect to initial conditions)
In some applications, one may be interested in comparing
dynamical systems in a way that does not depend on the
initial conditions. However, the weak classifiers we have
proposed have been defined in such a way that they depend
explicitly on the initial conditions, as they involve expres-
sions of the form x̃>0 Px0. As proposed in [14], one may
achieve invariance with respect to the initial conditions by
taking the expectation over x̃0, x0. This yields a classifier
of the form h(θ) = sign(trace(PS) + (1−λ)−1µ̃>µ−φ),
where S = E(x0x̃

>
0). For simplicity, one may set S = I .

3.3. Boosting weak classifiers

In the previous two sections, we proposed a family of
weak classifiers for dynamical systems. Such classifiers can
be applied either to a time series data yt or to a LDS iden-
tified from it. Notice that the Adaboost algorithm described
in Section 2.1 depends solely on the values of the weak clas-
sifiers hm at the data points. Therefore, in order to boost the
weak classifiers for dynamical systems, we simply apply
AdaBoost or any of its extensions to the chosen weak clas-
sifiers. In other words, the boosting part is not modified, in
spite of the fact that the data lives on a non-Euclidean space.

4. Experiments
Experiments on synthetic data. We first compare the
performance of the two proposed classifiers (static and dy-
namic) against a simple texture classifier sign(h>0 y0 − φ)
applied to the first measurement y0 of the time series data.

The comparison is done on the synthetic data set shown
in Figure 1. On the left we show the first frame of several
8× 8 pixel and 20 frame long subsequences extracted from
a simulated snow fall sequence. Synthetic snowflakes move
from top to bottom while oscillating sideways. On the right
we show the first frame of several subsequences extracted
from another sequence where the snowflakes undergo a cir-
cular motion. The main motivation for choosing these two
sequences is that it is very difficult to distinguish the two
classes from a single snapshot; instead, discrimination is
easier when dynamics are taken into account.

In our comparison, we use N = 1000 sample subse-
quences from both sequences. For each sample, we identify
a LDS (A,C, x0, µ) of order n = 3. We use M = 400 weak
classifiers, with randomly chosen parameters h0, (h0, λ),
and (Ã, C̃, x̃0, λ) for the texture, static, and dynamic classi-
fiers, respectively. For the static and dynamic classifiers, we
do not use the temporal mean, i.e. we set µ = 0 and µ̃ = 0 in
the corresponding formulae for the weak classifiers. For the
dynamic classifier, the state dimension is chosen as ñ = 4.

Figure 2 shows the performance (test error) of AdaBoost
for the three weak classifiers. As one can notice, the pro-
posed dynamic classifiers achieve the best performance.

Figure 1. Synthetic data set. The left image shows the first frame
of several patches from an artificial snow-fall sequence. The right
image shows the first frame of several patches from a sequence
with snowflakes that undergo a circular motion. Notice that it is
very hard to distinguish the two sequences from a single snapshot.

Experiments on real data. The real experiments are per-
formed on the dynamic texture data sets shown in Figure 3,
which consist of several sequences from 6 different classes:
bushes, flags, fountains, stairs, trees, and waves. We ex-
tract subsequences of 35 × 35 pixels by 20 frames from
each one of the original sequences. We then discard any
subsequence that does not show any motion. This gives us
3289 valid subsequences for the bush sequences; 2214 for
the flag sequences; 214 for the fountain sequences; 1911 for
the stair sequences; 581 for the tree sequences; and 5785
for the wave sequences. For each subsequence, we identify
a LDS (A,C, x0, µ) of order n = 7. We use M = 100
dynamic classifiers sign(trace(P) + (1 − λ)−1µ̃>µ) with
randomly chosen parameters (Ã, C̃, µ̃, λ) and with a state
dimension of ñ = 7. For each weak classifier, the threshold
φ is found automatically. Table 1 shows the percentage of
correct classification for each pair of classes and Figure 4
shows examples of the evolution of the test error. Notice
that for most class pairs the error is within 22%, although in
some cases the algorithm gives large errors of up to 39.5%.

Sequence bushes flags fountains stairs trees waves
bushes – 14.5 11.5 4.0 20.0 22.0
flags 14.5 – 5.0 6.0 17.5 11.5
fountains 11.5 5.0 – 0.5 3.5 8.0
stairs 4.0 6.0 0.5 – 31.5 20.5
trees 20.0 17.5 3.5 31.5 – 39.5
waves 22.0 11.5 8.0 20.5 39.5 –

Table 1. Results on the real data set. Percentage of correct clas-
sification given by DynamicBoost with dynamic features for each
pair of classes.

5. Conclusions
We have presented a novel extension of boosting for the

recognition of visual dynamical processes. Our key contri-
bution is the design of weak classifiers (features) that are
formulated as linear dynamical systems. The main advan-
tages of such features are that they can be applied to in-
finitely long sequences and that they can be efficiently com-
puted by solving a set of Sylvester equations. We demon-
strated our approach on classification of dynamic textures.

Acknowledgements
This work has been funded by Johns Hopkins startup

funds, a VIBOT fellowship, and grants NSF EHS-0509101,
ONR N00014-05-10836, and NSF CAREER IIS-0447739.

References
[1] K. D. Cock and B. D. Moor. Subspace angles and distances between

ARMA models. System and Control Letters, 46(4):265–270, 2002.

0 100 200 300 4000

0.1

0.2

0.3

0.4

0.5

number of weak classifiers

tra
in

in
g/

te
st

 e
rro

rs

training error
training error (exp)
test error

0 100 200 300 4000

0.1

0.2

0.3

0.4

0.5

number of weak classifiers

tra
in

in
g/

te
st

 e
rro

rs

training error
training error (exp)
test error

0 100 200 300 4000

0.1

0.2

0.3

0.4

0.5

number of weak classifiers

tra
in

in
g/

te
st

 e
rro

rs

training error
training error (exp)
test error

Figure 2. Performance results on the synthetic data set. Left image: test error when texture features are used. Middle image: test error
when static features are used. Right image: test error when dynamic features are employed. Every plot shows the empirical loss training
error (dark gray solid curve), the exponential loss training error (light gray and dashed curve), and the empirical loss test error (black solid
curve). Notice how the dynamic features achieve the lowest test error.

Figure 3. Real data set. From left to right and top to bottom we
show a snapshot of patches extracted from: bushes, flags, foun-
tains, stairs, trees, and waves. Each subsequence is 35× 35 pixels
and 20 frames long.

[2] G. Doretto, A. Chiuso, Y. Wu, and S. Soatto. Dynamic textures.
International Journal of Computer Vision, 51(2):91–109, 2003.

[3] R. Duda, P. Hart, and D. Stork. Pattern Classification. Wiley, New
York, 2nd edition, 2000.

0 20 40 60 80 1000

0.2

0.4

0.6

0.8

1

number of weak classifiers

tra
in

in
g/

te
st

 e
rro

rs

training error
training error (exp)
test error

0 20 40 60 80 1000

0.2

0.4

0.6

0.8

1

number of weak classifiers

tra
in

in
g/

te
st

 e
rro

rs

training error
training error (exp)
test error

Figure 4. Performance results on the real data set. Left image: er-
rors for bushes vs flags. Right image: errors for flags vs fountains.

[4] F. Fleuret and D. Geman. Coarse-to-fine face detection. International
Journal of Computer Vision, 41(1-2):85–107, 2001.

[5] J. H. Friedman, T. Hastie, and R. Tibshirani. Special invited paper.
additive logistic regression: A statistical view of boosting. The An-
nals of Statistics, 28(2):337–374, 2000.

[6] R. Martin. A metric for ARMA processes. IEEE Transactions on
Signal Processing, 48(4):1164–1170, 2000.

[7] K. Okuma, A.Taleghani, N. Freitas, J. Little, and D. Lowe. Boosted
particle filter: multitarget detection and tracking. In European Con-
ference on Computer Vision, 2004.

[8] P. V. Overschee and B. D. Moor. Subspace algorithms for the stochas-
tic identification problem. Automatica, 29(3):649–660, 1993.

[9] R. E. Schapire and Y. Singer. Improved boosting algorithms us-
ing confidence-rated predictions. In Computational learning theory,
pages 80–91, 1998.

[10] R. Shumway and D. Stoffer. An approach to time series smooth-
ing and forecasting using the EM algorithm. Journal of Time Series
Analysis, 3(4):253–264, 1982.

[11] P. Smith, N. da Vitoria, and M. Shah. TemporalBoost for event recog-
nition. In IEEE International Conference on Computer Vision, pages
733–740, 2005.

[12] O. Tuzel, F. Porikli, and P. Meer. Human detection via classification
on riemannian manifolds. In IEEE Conference on Computer Vision
and Pattern Recognition, 2007.

[13] P. Viola and M. Jones. Robust real-time face detection. International
Journal of Computer Vision, 57(2):137–154, 2004.

[14] S. Vishwanathan, A. Smola, and R. Vidal. Binet-Cauchy kernels
on dynamical systems and its application to the analysis of dynamic
scenes. Int. Journal of Computer Vision, 73(1):95–119, 2007.

[15] P. Yin, I. Essa, and J. Rehg. The segmental boosting algorithm for
time-series feature selection. In Learning Workshop, 2007.

