
Identification of Deterministic Hybrid ARX Systems via
the Identification of Algebraic Varieties?

Yi Ma1 and Reńe Vidal2
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Abstract. We present a closed-form (linear-algebraic) solution to the identification
of hybrid deterministic ARX systems and characterize conditions on the input and
switching sequences that guarantee the uniqueness of the solution. We show that the
simultaneous identification of the number of ARX systems, the (possibly different)
model orders, the ARX model parameters, and the switching sequence is equiva-
lent to the identification and decomposition of a projective algebraic variety whose
degree and dimension depend on the number of ARX systems and the model or-
ders, respectively. Given an upper bound for the number of systems, our algorithm
identifies the variety and the maximum orders by fitting a polynomial to the data,
and the number of systems, the model parameters, and the switching sequence by
differentiating this polynomial. Our method is provably correct in the deterministic
case, provides a good sub-optimal solution in the stochastic case, and can handle
large low-dimensional data sets (up to tens of thousands points) in a batch fashion.

Keywords: System identification, hybrid systems, Auto Regressive eXogenous (ARX)
systems, algebraic variety.

1 Introduction

Hybrid systems are mathematical models that are used to describe continuous processes
that occasionally exhibit discontinuous behaviors due to sudden changes of dynamics. In
recent years, there has been significant interest and progress in the study of the analysis,
stability, and control of hybrid systems. Knowing the system parameters, many success-
ful theories have been developed to characterize the behaviors of hybrid systems under
different switching mechanisms. However, in practice, the parameters and the switching
mechanism of a hybrid system are often not known and we are faced with the task of
identifying the system from its input and output measurements.

In this paper, we propose an algebraic approach to the identification of a class of
discrete-time hybrid systems known as Hybrid Auto Regressive eXogenous (HARX) sys-
tems, i.e., systems whose evolution is described as

yt =
na(λt)∑

j=1

aj(λt)yt−j +
nc(λt)∑

j=1

cj(λt)ut−j ( + wt), (1)

whereut ∈ R is theinput andyt ∈ R is theoutputof the system. Thediscrete stateλt,
also called themodeof the system, can evolve due to a variety of switching mechanisms.
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The authors would like to thank professor Robert Fossum for his valuable comments on this
paper and Prof. Alexandar Juloski for providing us with the datasets for the experiments.
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In this paper, we consider the least restrictive case:3 {λt} is a deterministic but unknown
sequence that can take a finite number of possible values:λ : Z → {1, 2, . . . , n}. The
last termwt is zero for a deterministic hybrid ARX system and is a white-noise random
process for a stochastic system. The purpose of this paper is to characterize the (sufficient)
conditions and develop efficient algorithms for solving the following problem:

Problem 1 (Identification of Hybrid Auto Regressive eXogenous Systems).

Given the input/output data{ut, yt}T
t=0 generated by an HARX system (1), identify the

number of constituent systemsn, the orders of each ARX system{na(i), nc(i)}n
i=1, the

system parameters{aj(i)}na(i)
j=1 and{cj(i)}nc(i)

j=1 , and the discrete states{λt}.

We know from classic identification theory of linear systems that the configuration
space of the input/output data generated by a linear system is a subspace whose dimen-
sion equals the order of the system. The problem of identifying the system is equivalent
to identifying this subspace from a finite number of samples on the subspace. For multi-
ple linear systems, the configuration space is a union of subspaces (possibly of different
dimensions), which can be naturally described as a (projective) algebraic varietyZ in an
ambient spacePK . To some extent, there is a one-to-one correspondence between a hybrid
linear system and the variety of its configuration space. Hence the system identification
problem can be cast as a special case of the problem of identifying a low-degree (pro-
jective) algebraic variety from a finite number of samples. Once the varietyZ is known
or retrieved from the input/output data, the constituent systems then correspond to the
irreducible sub-varietiesZi of the varietyZ:

Z = Z1 ∪ Z2 ∪ · · · ∪ Zn ⊆ PK .

They can be obtained from thedecompositionof the ideala(Z) of (homogeneous) poly-
nomials associated with the varietyZ into prime ideals:

a = p1 ∩ p2 ∩ · · · ∩ pn ⊆ C[z1, z2, . . . , zK ].

Our previous work [22] has shown that when the orders of the constituents ARX sys-
tems are equal and known,a is a principal ideal whose decomposition is equivalent to the
factorization of its generator. However, when the orders of the constituent ARX systems
aredifferent, depending on the switching sequence, the configuration space of the HARX
system may not simply be a union of the configuration spaces of the constituent ARX
systems, and the ideala is in generalnot a principal ideal. In this paper, we show that
the HARX system can still be correctly identified from a special polynomialp whose last
nonzero term has the lowest degree-lexicographic order in the ideala. This polynomial is
unique, factorable, and independent of the switching sequence. The non-repeated factors
of this polynomial correspond to the constituent ARX systems, hence the number of sys-
tems is given by the number of non-repeated factors.

Relations to Previous Work.Work on identification (and filtering) of hybrid systems first
appeared in the seventies; a review of the state of the art as of 1982 can be found in [15].
After a decade-long hiatus, the problem has recently been enjoying considerable interest
(see [4, 20, 21] and references therein). Related work has also appeared in the machine

3 So that our results may apply to other switching mechanisms, such as the Jump-Markov Linear
Systems (JMLS) and the PieceWise ARX (PWARX) system, if information about the switching
becomes available or needs to be inferred.
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learning community (see [7, 14] and references therein). When the model parameters and
the switching mechanism (not the discrete states) areknown, the identification problem re-
duces to the design of observers for the hybrid state [1, 3, 8, 16], together with the study of
observability conditions under which hybrid observers operate correctly (see [20, 21] and
references therein). When the model parameters and the switching mechanism are both
unknown, the identification problem becomes much more challenging. Existing work has
concentrated on the class of piecewise affine and piecewise ARX systems, i.e., models
in which the regressor space is partitioned into polyhedra with affine or ARX submodels
for each polyhedron. For instance, [9] assumes that the number of systems is known, and
proposes an identification algorithm that combines clustering, regression and classifica-
tion techniques; [6] solves for the model parameters and the partition of the state space
using mixed-integer linear and quadratic programming; [5] uses a greedy approach for
partitioning a set of infeasible inequalities into a minimum number of feasible subsys-
tems, and then iterates between assigning data points to models and computing the model
parameters, known as the Expectation Maximization (EM) method. [17] has proposed an
alternative solutoin to the identification of both hybrid ARX and state-space models.

Compared to previous work on this topic, this paper makes a few new advancements:
1. It no longer requires the orders of the ARX systems to be known and equal as in
[22], or the number of ARX systems to be known as in [19]. 2. It provides a closed-
form linear-algebraic algorithm that, given an upper bound for the number of systems and
and the system orders, uniquely identifies the number of systems, the system orders, the
ARX model parameters, and the switching sequence. Although the algorithm is developed
primarily for the noise-free deterministic case, the algorithm is numerically stable and
provides a sub-optimal solution for the stochastic case with moderate noises (see Remarks
1 and 4 in the sequel). The solution can be used to initialize other iterative method (such
as EM).

2 Identification of a Single ARX System

For the sake of completeness and comparison, let us first review some classic results for
the identification of a single discrete-time ARX system

yt = a1yt−1 + · · ·+ anayt−na + c1ut−1 + · · ·+ cncut−nc . (2)

The transfer function̂H(z) .= ŷ(z)/û(z) of the system (2) is given by:

Ĥ(z) = zmax(na−nc,0)H̃(z) =
zmax(na−nc,0)(znc−1c1 + znc−2c2 + · · ·+ cnc)

zmax(nc−na,0)(zna − zna−1a1 − zna−2a2 − · · · − ana)
. (3)

In principle, given infinite input and output sequences, we can identify the parameters of
the ARX model by directly computinĝH(z) asŷ(z)/û(z).4 This requires the ARX model
to be identifiable, i.e., H̃(z) must have no pole-zero cancellation5, andû(z) to have no
zero in common with a pole of̂H(z) and vice versa.

Alternatively, we may identify the system via the identification of asubspaceassoci-
ated with the input/output data. Let us defineK

.= na+nc+1 and the vector ofregressors
to be:

xt
.=

[
yt, yt−1, . . . , yt−na , ut−1, ut−2, . . . , ut−nc

]T ∈ RK . (4)

4 Notice that this scheme is not practical since it requires one to obtain the typically infinitely-long
output sequence{yt}.

5 That is, the polynomialszmax(nc−na,0)(zna−zna−1a1−zna−2a2−· · ·−ana) andznc−1c1+
znc−2c2 + · · ·+ cnc are co-prime.
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Thus, for all timet, the so-definedxt is orthogonal to the vector that consists of the
parameters of the ARX system:

b
.=

[
1,−a1,−a2, . . . ,−ana

,−c1,−c2, . . . ,−cnc

]T ∈ RK . (5)

That is,∀t xt andb satisfy the equationbT xt = 0. In other words,b is the normal vector
to the hyperplane spanned by (the rows of) the followingdata matrix:

L(na, nc)
.= [xmax(na,nc), . . . , xt−1,xt,xt+1, . . .]T ∈ R∞×K . (6)

When the model ordersna, nc are known, we can readily solve for the model pa-
rametersb from the null space ofL(na, nc). In practice, however, the model orders may
be unknown, and only upper boundsn̄a and n̄c may be available, hence the vector of
regressorsxt is

xt
.=

[
yt, yt−1, yt−2, . . . , yt−n̄a

, ut−1, ut−2, . . . , ut−n̄c

]T ∈ RK , (7)

whereK = n̄a + n̄c + 1. Obviously, the following vector

b
.
=
�
1,−a1,−a2, . . . ,−ana ,01×(n̄a−na),−c1,−c2, . . . ,−cnc ,01×(n̄c−nc)

�T
(8)

satisfies the equationxT
t b = 0 for all t. Notice that here the vectorb is the one in (5) with

additionaln̄a−na andn̄c−nc zeros filled in after the terms−ana and−cnc , respectively.
Let us define the data matrixL(n̄a.n̄c) in the same way as in equation (6). Because of

the redundant embedding (7), the vectorb is no longer the only one in the null space of
L. It is easy to verify that all the following vectors are also in the null space ofL:

b1 =
�
01×1, 1,−a1, . . . ,−ana ,01×(n̄a−na−1),01×1,−c1, . . . ,−cnc ,01×(n̄c−nc−1)

�T
,

b2 =
�
01×2, 1,−a1, . . . ,−ana ,01×(n̄a−na−2),01×2,−c1, . . . ,−cnc ,01×(n̄c−nc−2)

�T
,

...
... (9)

Therefore, the data{xt} span a low-dimensional linear subspaceS in the ambient space
RK .6 Each of the vectors defined above uniquely determines the original system (2),
including its order and coefficients. However, a vector in the null space ofL is in general
a linear combination of all such vectors and it is not necessarily one of the above. Thus,
in order to identify the original system from the data matrixL, we need to seek a vector
in its null space that has certain desired structure.

Notice that the last̄nc−nc entries ofb in (8) are zero, hence the last non-zero entry of
b has the lowest order – in terms of the ordering of the entries ofxt – among all vectors
that are in the null space ofL. Therefore, we can obtain the firstn̄a + nc + 1 entries ofb
from the null space of the submatrix ofL defined by its first̄na + nc + 1 columns. Since
nc is unknown, we can incrementally take the firstj = 1, 2, . . . columns of the matrixL
from the left to the right:

L1 .= L( : , 1 : 1), L2 .= L( : , 1 : 2), . . . , Lj .= L( : , 1 : j), (10)

until the rank of the submatrixLj stops increasing for the first time for somej = m.7

Under the additional assumption thatû(z) has no zeros atz = 0, the null space of
Lm indeed gives the firstm entries of the desired vectorb, because the polynomials
zd+max(nc−na,0)(zna−zna−1a1−zna−2a2−· · ·−ana) andznc−1c1+znc−2c2+· · ·+cnc

are co-prime.8

6 Only when the initial conditions{yt0−1, . . . , yt0−n̄a} are arbitrary do the data span a hyperplane
in RK with b as the only normal vector.

7 If nc was known, then we would havem = n̄a + nc + 1.
8 Similar arguments and conclusions hold if in the definition ofxt, we put the inputs
ut−1, . . . , ut−n̄c in front of the outputsyt−1, . . . , yt−n̄a instead.
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Remark 1(Identifyingb and m in the Stochastic Case).In the stochastic case (i.e.,wt 6=
0), the ultimate goal is to minimize the (squared) modeling error

P
t w2

t =
P

t(b
Txt)

2, which
corresponds to the maximum-likelihood estimate whenwt is white-noise. Then the optimal solution
b∗ can be found in a least-square sense as the singular vector that corresponds to the smallest
singular value ofLm. However, in the noisy case, we cannot directly estimatem from the rank
of Lj since it might be full rank for allj. Based on model selection techniques [12],m can be
estimated from a noisyLj as

m = argmin
j=1,...,K

n σ2
j (Lj)Pj−1

k=1 σ2
k(Lj)

+ κ · j
o

, (11)

whereσk(Lj) is thekth singular value ofLj andκ ∈ R is a parameter weighting the two terms. The
above criterion minimizes a cost function that consists of a data fitting term and a model complexity
term. The data fitting term measures how well the data is approximated by the model – in this case
how close the matrixLj is to dropping rank. The model complexity term penalizes choosing models
of high complexity – in this case choosing a large rank.

There is, however, a much more direct way of dealing with the case of unknown
orders. The following lemma shows that the system ordersna andnc together with the
system parametersb can all be simultaneously and uniquely computed from the data.

Lemma 1 (Identifying the Orders of an ARX System). Suppose we are given data
generated by an identifiable ARX model whose inputû(z) shares no poles or zeros with
the zeros or poles, respectively, of the model transfer functionĤ(z). If n̄a + n̄c + 1 ≤
na + nc + 1, then

rank
(
L(n̄a, n̄c)

)
=

{
n̄a + n̄c if and only if n̄a = na andn̄c = nc,

n̄a + n̄c + 1 otherwise.
(12)

Therefore the systems orders can be computed as:

(na, nc) = arg min
(n̄a,n̄c)∈Z2

{n̄a + n̄c : rank(L(n̄a, n̄c)) = n̄a + n̄c}. (13)

The parameter vectorb is the unique vector in the null space ofL(na, nc).

We omit the proof here due to the limit of space. In principle, the lemma allows us to
identify the precise ordersna, nc and the vectorb of the ARX system from the (infinite)
sequences of input{ut} and output{yt}. In practice, we are usually given a finite in-
put/output sequence. In such cases, we need to assume that the sequence of regressors is
sufficiently exciting, i.e., theT × (na + nc + 1) submatrix

L
.= [xmax(na,nc), . . . , xmax(na,nc)+T−1]T

has the same rankna + nc as the “full” L matrix defined in (6).9 This condition for
identifiability from finite data can also be expressed in terms of the input sequence. As
shown in [2], the regressors are sufficiently exciting if the input sequence{ut} is, i.e., if
the following vectors

ut
.= [ut, ut−1, . . . , ut−na−nc+1]T ∈ Rna+nc , na + nc − 1 ≤ t ≤ T,

span an(na + nc)-dimensional subspace.

9 In the case of a redundant embedding, the sequence of regressors is said to be sufficiently excit-
ing if rank(L) = n̄a + nc + 1.
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3 Identification of Hybrid ARX Systems

From our discussion in the previous section, we know that the regressors generated by an
identifiable ARX system with sufficiently exciting input live in a linear subspace inRK

whereK = n̄a + n̄c + 1 andn̄a, n̄c are upper bounds on the orders of the system. The
problem of identifying the ARX system becomes one of seeking a vector in the orthogonal
complement to this subspace that has certain desired structure. We show in this section
how to generalize these concepts to the more challenging problem of identifying a hybrid
ARX system (Problem 1).

Consider an input/output sequence{ut, yt} generated by a hybrid ARX system switch-
ing among a set ofn ARX systems with parameters{bi}n

i=1 and possibly different or-
ders{na(i), nc(i)}n

i=1. We assume that the HARX system isidentifiable, i.e., for all
i = 1, . . . , n, the rational functionH̃i(z) associated with theith ARX model has no
zero-pole cancellation and the configuration subspaces of all the ARX models do not
contain one another.10 In general, we also assume that we do not know the exact orders of
the systems but know only certain upper bounds of them, i.e.,

n̄a ≥ na
.= max{na(1), . . . , na(n)}, n̄c ≥ nc

.= max{nc(1), . . . , nc(n)}.
Very often we do not know the exact number of systems involved either but know only an
upper bound of it, i.e.,̄n ≥ n.11 In this section, we study how to identify such a hybrid
ARX system despite these uncertainties.

3.1 The Hybrid Decoupling Polynomial

One of the difficulties in identifying hybrid ARX systems is that we do not know the
switching sequenceλt, hence we cannot directly apply the subspace identification tech-
nique described in the previous section to each of then ARX systems. As we will soon
see, in fact both the number of subspaces and their dimensions depend not only on the
number of systems and their orders but also on the switching sequence. This motivates
us to look for relationships between the data{xt ∈ RK} and the system parameters
{bi ∈ RK} that do not depend on the switching sequence. To this end, recall that for
everyt there exists a stateλt = i ∈ {1, 2, . . . , n} such thatbT

i xt = 0. Therefore, the
following polynomial equation [22] must be satisfied by the system parameters and the
input/output data for any switching sequence and mechanism (JMLS or PWARX):

pn(xt)
.=

n∏

i=1

(
bT

i xt

)
= 0. (14)

We call this polynomial equation thehybrid decoupling polynomial(HDP). In the absence
of knowledge about the switching mechanism, the HDP encodes all the information about
the system parameters that we can obtain from the input/output data.

The HDP eliminates the discrete state by taking the product of the equations defining
each one of the ARX systems. While taking the product is not the only way of alge-
braically eliminating the discrete state, this leads to an algebraic equation with a very nice

10 One way to ensure this is to assume that for alli 6= j = 1, . . . , n, H̃i(z) andH̃j(z) do not have
all their zeros and poles in common. That is, there is no ARX system that can simulate another
ARX system with a smaller order. However, this is not necessary because two ARX systems
can have different configuration spaces even if one system’s zeros and poles are a subset of the
other’s.

11 This is the case when a particular switching sequence visits only a subset of all the discrete states.
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algebraic structure. The HDP is simply a homogeneous multivariate polynomial of degree
n in K variables

pn(z) .=
n∏

i=1

(
bT

i z
)

= 0, (15)

which can be written linearly in terms of its coefficients as

pn(z) .=
∑

hn1,...,nK
zn1
1 · · · znK

K = hT
nνn(z) = 0. (16)

In eqn. (16),hI = hn1,...,nK
∈ R is the coefficient of the monomialzI = zn1

1 zn2
2 · · · znK

K ,
where0 ≤ nj ≤ n for j = 1, . . . ,K, andn1 + n2 + · · ·+ nK = n; νn : RK → RMn(K)

is theVeronese mapof degreen which is defined as [10]:

νn : [z1, . . . , zK ]T 7→ [. . . , zI , . . .]T , (17)

with I chosen in the degree-lexicographic order (assuming the orderz1 < z2 < · · · <
zK); andMn(K) .=

(
n+K−1

K−1

)
= ( n+K−1

n ) is the total number of independent mono-
mials. As shown in [10], the vector of coefficientshn ∈ RMn(K) is simply a vector rep-
resentation of the symmetric tensor product of the individual system parameters{bi}n

i=1,
i.e.,

Sym(b1 ⊗ b2 ⊗ · · · ⊗ bn) .=
∑

σ∈Sn

bσ(1) ⊗ bσ(2) ⊗ · · · ⊗ bσ(n) ∈ RMn(K), (18)

whereSn is the permutation group ofn elements. We will show in the sequel how this
vector can be recovered from the data and how the parameters of each individual ARX
system can be further retrieved from it.

3.2 Identifying the Number and Orders of ARX Systems

Let us assume for now that we know the number of systemsn. We will show later how
to relax this assumption. Since the HDP (14) – (16) is satisfied by all the data points
{xt}T

t=1, we can use it to derive the following linear system on the vectorhn:

Ln(n̄a, n̄c) hn
.=




νn(xmax{n̄a,n̄c})
T

νn(xmax{n̄a,n̄c}+1)T

...
νn(xmax{n̄a,n̄c}+T−1)T


 hn = 0T×1, (19)

whereLn(n̄a, n̄c) ∈ RT×Mn(K) is the matrix of the input/output data embedded via the
Veronese map.

Notice that to construct the matrixLn, one needs to choosēna and n̄c. If the con-
stituent ARX systems have different orders, the choice can never be the most compact
for every ARX system. Nevertheless, there will always be less redundancy in the embed-
ding if n̄a, n̄c are the maximum ordersna, nc for all the ARX systems. To identify the
maximum orders, we need some extra conditions on the switching and input sequences.

Definition 1 (Sufficiently Exciting Switching and Input Sequences).A switching and
input sequence{λt, ut} is calledsufficiently excitingfor a hybrid ARX system, if the data
points{xt} generated by{λt, ut} are sufficient to determine the union of the subspaces
associated with the constituent ARX systems as an algebraic variety.
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Remark 2.Whenn̄a < na or n̄c < nc, the above condition requiresLn(n̄a, n̄c) to be full rank,
because at least one of the subspaces must have full dimensionn̄a + n̄c + 1. Whenn̄a ≥ na and
n̄c ≥ nc, the above condition implies that the null space ofLn(n̄a, n̄c) is contained in the span of
the vectors{h}, whereh is the symmetric tensor product of any choice ofn vectors of the form (8)
or (9), each one associated with one of then ARX models.

Remark 3.The above condition is not as strong as it seems to be, as the set of input and switching
sequences that are not sufficiently exciting are a zero-measure set. Notice, however, that the defini-
tion does not explicitly characterize the set of sufficiently exciting input and switching sequences.
Intuitively the switching sequence should visit each one of then modes frequently enough and the
input sequence should be sufficiently exciting, as defined in the previous section. A more precise
characterization of sufficiently exciting input and switching sequences remains elusive at this point.

Thanks to the above definition of sufficiently exiting input and switching sequences,
the following theorem gives a formula for the maximum orders. The theorem is a natural
generalization of Lemma 1 for a single ARX system to the case of hybrid ARX systems.

Theorem 1 (Identifying the Maximum Orders). Let {ut, yt} be the input/output data
generated by an identifiable HARX system. LetLn(i, j) ∈ RT×Mn(i+j+1) be the embed-
ded data matrix defined in (19), but computed with system ordersi and j. If T is large
enough and the input and switching sequences are sufficiently exciting, then the maximum
orders of the constituent ARX systems are given by:

(na, nc) = arg min
(i,j):Mn(i+j+1)<T

{
(i+j) : rank

(
Ln(i, j)

)
< Mn(i+j+1)

}
. (20)

Proof. First notice that the maximum ordersna andnc maybe achieved separately by different
ARX systems. Nevertheless, for any ARX system, if eitheri < na or j < nc is true, at least one
of the subspaces must be of dimensioni + j + 1. Therefore if the input and switching sequences
are sufficiently exciting so that this subspace is visited enough, then there is a large enoughT such
that the entries ofLn(i, j) are independent monomials of degreen on these regressors. The matrix
Ln(i, j) drops rank only for a zero measure set of such regressors. Therefore in general, for a
sufficiently largeT , there is no polynomial of degreen that vanishes on the set of all regressors and
we must have rank(Ln(i, j)) = Mn(i+j+1). If i = na andj = nc, then there is exactly one
vector, i.e.,hn, in the null space ofLn(i, j). Therefore, the maximum ordersna, nc are the ones
for whichna + nc is minimum andLn(na, nc) drops rank, as claimed.

Given the data matrixLn(na, nc) embedded with the correct maximum orders, we
would like to retrieve the coefficient vectorhn from its null space. There are two potential
difficulties. First, since the maximum ordersna, nc may not be tight for every constituent
ARX system, the null space ofLn(na, nc) may be more than one-dimensional, as we
have known from a single ARX system. Second, even if we know the discrete state for
each time, the structure of the data associated with each state is not exactly the same as
that of the ARX system itself: Suppose we switch to theith system at timet0, then we
havebT

i xt0 = 0. However, the vectorsb given in equation (9) are no longer orthogonal
to xt0 even if the embedding is redundant for theith system. In a sense, the regressor
at a switching time usually lives in a subspace whose dimension is higher than that of
the subspace associated with the ARX model generating the regressor. Therefore, the
configuration space of the data{xt} of an HARX system willnotexactly be the union of
all the subspaces associated with the constituent ARX systems. Let us denote the former
as an algebraic varietyZ ′ and the latter asZ. Then in general, we haveZ ′ ⊇ Z.

In order to retrievehn uniquely from the data matrixLn, we need to utilize its addi-
tional structure.
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Lemma 2 (Structure of the Hybrid Decoupling Polynomial). The monomial associ-
ated with the last non-zero entry of the coefficient vectorhn of the hybrid decoupling
polynomialpn(z) = hT

nνn(z) has the lowest degree-lexicographic order in all the poly-
nomials ina(Z) ∩ Sn.12

Proof. Any polynomial of degreen in the ideala(Z) is a superposition of
Qn

i=1(b
T
σ(i)z) where

bσ(i) is a normal vector to the subspace associated with theith ARX system.13 Notice thathn is
the symmetric tensor ofb1, b2, . . . , bn defined in (8). For theith ARX system, the last non-zero
entry of the vectorbi always has the lowest degree-lexicographic order among all normal vectors
that are orthogonal to the regressorsz = xt associated to theith system, see equations (8) and (9).
Therefore, the last non-zero entry ofhn must have the lowest degree-lexicographic order.

Theorem 2 (Identifying the Hybrid Decoupling Polynomial). Let {ut, yt}T
t=0 be the

input/output data generated by an identifiable HARX system. LetLj
n ∈ RT×j be the first

j columns of the embedded data matrixLn(na, nc), and let

m
.= min

{
j : rank

(
Lj

n

)
= j − 1

}
. (21)

If T is sufficiently large and the input and switching sequences are sufficiently exciting,
then the coefficient vectorhn of the hybrid decoupling polynomial is given by

hn =
[(

hm
n

)T
, 01×(Mn(K)−m)

]T ∈ RMn(K), (22)

wherehm
n ∈ Rm is the unique vector that satisfies

Lm
n hm

n = 0 and hm
n (1) = 1. (23)

Proof. Let Z to be the union of the subspaces associated with then constituent ARX systems.
Since the input and switching sequence is sufficiently exciting in the sense of Definition 1, any
polynomial of degree less than and equal ton that vanishes on all the data points must be in the set
a(Z) ∩ Sn.14

From our discussion before the theorem, the configuration spaceZ′ of the data{xt} associated
with the hybrid ARX system is in general a superset ofZ. The ideala′(Z′) of polynomials that
vanish on the configuration spaceZ′ is then a sub-ideal of the ideala(Z) associated with the
union of the subspaces. Furthermore, regardless of the switching sequence, the hybrid decoupling
polynomialpn(z) is always ina′ ∩Sn ⊆ a∩Sn. According to Lemma 2, the last non-zero term of
pn(z) has the lowest degree-lexicographic order among all polynomials of degreen in a, so does it

in a′. Since every solutionLnh̃ = 0 gives a polynomial̃pn(z) = h̃
T

nνn(z) ∈ a ∩ Sn of degreen
that vanishes on all data points, the last non-zero entry ofhn given by (22) obviously has the lowest
degree-lexicographic order. Therefore, we havepn(z) = hT

nνn(z).

In fact to compute the coefficientshn of the hybrid decoupling polynomial, we can do
better than checking the rank of the submatrixLj

n for everyj = 1, 2, . . .. The following
corollary provides one alternative scheme.

Corollary 1 (Zero Coefficients of the Decoupling Polynomial).Consider a set of vec-
torsbi ∈ RK , i = 1, . . . , n. Suppose that one of thebi has a maximal number of zeros on
its right, and without loss of generality, assume it isb1 = [b11, b12, . . . , b1n1 , 0, . . . , 0]T ,

12 The set of (homogeneous) polynomial of degreen.
13 This is easily verifiable from the fact that the derivatives of the polynomials ina(Z) are exactly

the normal vectors of the subspaces.
14 Sn is the set of polynomials of degree up ton.
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with b1n1 6= 0. The multivariate polynomialpn(z) .= (bT
1 z)(bT

2 z) · · · (bT
nz) has zero co-

efficients for all the monomials ofνn

(
[zn1+1, zn1+2, . . . , zK ]

)
; but the coefficients cannot

all be zeros for the monomials ofνn

(
[zn1 , zn1+1, . . . , zK ]

)
.

This corollary allows us to narrow down the range form (whereLj
n first drops rank)

becausem must fall between two consecutive values of the following:1, Mn(K) −
Mn(K−1), Mn(K)−Mn(K−2), . . . , Mn(K)− 1.

Remark 4(Sub-Optimality in the Stochastic Case).In the stochastic case (i.e.,wt 6= 0), we
can still solve forhm

n in (23) in a least-squares sense as the singular vector ofLm
n associated with

its smallest singular value, using a similar model selection criterion form as in Remark 1. However,
unlike the single system case, the so-foundhn no longer minimizes the sum of least-square errorsP

t w2
t =

P
t(b

T
λt
xt)

2. Instead, it minimizes (in a least-square sense) a “weighted version” of this
objective: X

t

αt(b
T
λt
xt)

2 .
=
X

t

Y

i6=λt

(bT
i xt)

2(bT
λt
xt)

2, (24)

where the weightαt is conveniently chosen to be
Q

i 6=λt
(bT

i xt)
2. Such a “softening” of the ob-

jective function allows a global algebraic solution. It offers a sub-optimal approximation for the
original stochastic objective when the variance ofwt is small. One can use the solution as the ini-
tialization for any other iterative optimization scheme (such as EM) to further minimize the original
stochastic objective.

Notice that in the above theorem, we have assumed that the switching sequence is such
that all the ARX systems are sufficiently visited. What if only a subset of then systems
are sufficiently visited? Furthermore, in practice, we sometimes do not even know the
correct number of systems involved and only know an upper bound for it. The question
is whether the above theorem still applies when the degreen we choose for the Veronese
embedding is strictly larger than the actually number of systems. This is answered by the
following corollary whose proof is straightforward.

Corollary 2 (Identifying the Number of ARX Systems). Let {ut, yt}T
t=0 be the in-

put/output data generated by an HARX system withn < n̄ discrete states. IfT is suf-
ficiently large and the input and switching sequences are sufficiently exciting, then the
vectorhn̄ found by Theorem 2 is the symmetric tensor producthn̄ = Sym

(
b1 ⊗ b2 · · · ⊗

bn ⊗ e1 ⊗ · · · ⊗ e1︸ ︷︷ ︸
n̄−n

)
, wheree1

.= [1, 0, . . . , 0]T ∈ RK , i.e.,hn̄ is the coefficients of the

polynomialpn̄(z) = hT
n̄νn̄(z) =

(
bT
1 z

)(
bT
2 z

) · · · (bT
nz

)
zn̄−n
1 .

Therefore, even if we may over-estimate the number of constituent systems or the switch-
ing sequence does not visit all the systems, the solution given by Theorem 2 will simply
treat the nonexistent (or not visited) systems as if they had zero order15 and the informa-
tion about the rest of the systems will be conveniently recovered.

3.3 Identifying the System Parameters and Discrete States

Theorem 2 allows us to determine the hybrid decoupling polynomialpn(z) = hT
nνn(z),

from input/output data{ut, yt}T
t=0. The rest of the problem is to recover the system pa-

rameters{bi}n
i=1 from hn. To this end, recall from [22] that givenhn one can recover the

15 That is, the coefficient vectorb = e1 corresponds to the “system”yt = 0 with na = nc = 0,
which is a trivial ARX system.
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model parameters by looking at the partial derivative ofpn(z) given in (15)

Dpn(z) .=
∂pn(z)

∂z
=

n∑

i=1

∏

` 6=i

(bT
` z)bi. (25)

If z belongs to hyperplaneHi = {z : bT
i z = 0}, then, since the1st entry ofbi is equal

to one, after replacingbT
i z = 0 into (25) we obtain

bi =
Dpn(z)

eT
1 Dpn(z)

∣∣∣∣
z∈Hi

∈ RK , (26)

wheree1 = [1, 0, . . . , 0]T ∈ RK . Therefore, we can estimate the system parameters
directly from the derivatives ofpn(z) at a collection ofn points{zi ∈ Hi}n

i=1 lying on
then hyperplanes.

However, since the value of the discrete stateλt is unknown, we do not know which
data points{xt}T

t=na
belong to which hyperplane. In order to find the set of points{zi ∈

Hi}n
i=1, let us consider a line with base pointz0 and directionv,L = {z0 +αv, α ∈ R}.

If z0 6= 0, z0 is not parallel tov, andbT
i v 6= 0, then the lineL must intersect the union

of all hyperplanes∪n
i=1Hi = {z : pn(z) = 0} at n distinct pointszi = z0 + αiv ∈

Hi ∩ L, i = 1, . . . , n, where{αi} are the roots of the univariate polynomial

qn(α) = pn(z0 + αv). (27)

We are left with choosing the parametersx0 andv for the lineL. The base pointx0 can
be chosen as any nonzero vector inRK . Givenz0, the directionv must be chosen not
parallel toz0 and such thatbT

i v 6= 0, for all i = 1, . . . , n. Since the latter constraint is
equivalent topn(v) 6= 0, andpn is known, we can immediately choosev even though we
do not know the system parameters{bi}n

i=1.
Be aware that if we have chosen for the Veronese embedding a numbern̄ that is strictly

larger thann, the polynomialpn̄(z) will be of the form
(
bT
1 z

)(
bT
2 z

) · · · (bT
nz

)
zn̄−n
1 .

Then the lineL will have onlyn + 1 intersections with then hyperplanesH1, . . . ,Hn

and the hyperplaneH0
.= {z : eT

1 z = z1 = 0}. The intersectionz0 = H0 ∩ L has a
multiplicity of n̄ − n; andDpn̄(z0) ∼ e1 if n̄ − n = 1 or Dpn̄(z0) = 0 if n̄ − n > 1.
We have essentially proven the following theorem.

Theorem 3 (Identifying the Constituent System Parameters).Given the input/output
data {ut, yt}T

t=0 generated by an HARX system withn discrete states, the system pa-
rameters{bi}n

i=1 can be computed from the the hybrid decoupling polynomialpn̄(z) =
hT

n̄νn̄(z) for anyn̄ ≥ n as follows:

1. Choosez0 6=0 andv such thatv 6=γz0 andpn̄(v) 6=0.
2. Solve for thēn roots{αi}n̄

i=1 of qn̄(α) = pn̄(z0 + αv) = 0.
3. For all the rootszi = z0 + αiv with z1 6= 0, compute the system parameters as

bi = Dpn̄(zi)

eT
1 Dpn̄(zi)

∈ RK , i = 1, 2, . . . , n.

Remark 5(Alternative Ways of Identifying{bi}n
i=1 from Noisy Data).In the presence of

noise, we can still estimate the normal vectors{bi}n
i=1 as in Theorem 3. However, the quality of

the estimates will depend on the choice of the parametersz0 andv. In this case, one can choose
multiple (z0,v) satisfying the above conditions, obtain the system parameters for each choice, and
let {bi}n

i=1 be the parameters that better reconstructhn. Alternatively, one can directly choose
{zi}n

i=1 from points in the data set that fit the decoupling polynomial in an optimal way. That
allows us to bypass the problem of solving the (real) roots of the real polynomialqn(α). We refer
the interested reader to [18] for further details.
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Once the system parameters{bi}n
i=1 are recovered, we can then reconstruct the dis-

crete state trajectory{λt} from input/output data{xt}T
t=0 as

λt = argmin
i=1,...,n

(
bT

i xt

)2
, (28)

because for each timet there exists a generally uniquei such thatbT
i xt = 0. There will

be ambiguity in the value ofλt only if xt happens to be at (or close to) the intersection of
more than one subspace associated to the constituent ARX systems. However, the set of
all such points is a zero measure set of the varietyZ ⊆ {z : pn(z) = 0}.

3.4 The Basic Algorithm and its Extensions

Based on the results that we have derived so far, we summarize the main steps for solving
the identification of an HARX system (Problem 1) as the following Algorithm 1. Notice
that the algorithm is different from the one proposed in [19] which only deals with the
special case with a known number of ARX systems with the same order(s).

Algorithm 1 (Identification of HARX Systems).

Given the input/output data{yt, ut} from a sufficiently excited hybrid ARX system, and the upper
bounds on the number̄n and orders(n̄a, n̄c) of its constituent ARX systems:

1. Maximum System Orders.Identify the maximum orders(na, nc) according to Theorem 1.
2. Veronese Embedding.Construct the data matrixLn̄(na, nc) via the Veronese map (17) based

on the given number̄n of systems and the maximum orders(na, nc) identified from the previ-
ous step.

3. Hybrid Decoupling Polynomial. Compute the coefficients of the polynomialpn̄(z)
.
=

hT
n̄νn̄(z) =

Qn
i=1

�
bT

i z
�
zn̄−n
1 = 0 from the data matrixLn̄ according to Theorem 2 and

Corollary 2. In the stochastic case, comply with Remarks 1 and 4.
4. Constituent System Parameters.Retrieve the parameters{bi}n

i=1 of each constituent ARX
system frompn̄(z) according to Theorem 3. In the noisy case, comply with Remark 5.

5. Key System Parameters.The correct number of systemn is the number ofbi 6= e1; The
correct ordersna(i), nc(i) are determined from suchbi according to their definition (8); The
discrete stateλt for each timet is given by equation (28).

Different Embedding Orders.The ordering of{yt} and{ut} in (7) is more efficient for
the algorithm whenna(i) are approximately the same for all the constituent systems and
nc(i) are much smaller thanna(i). However, ifna(i) are rather different for different
systems andnc(i) andna(i) are roughly the same, the following ordering in timet

xt
.=

[
yt, yt−1, ut−1, yt−2, ut−2, . . . , yt−na , ut−na

]T ∈ RK (29)

results in less non-zero leading coefficients inhn, thus making Algorithm 1 more effi-
cient. However, if all the systems have the samena = nc, both embeddings have the
same efficiency.

Inferring the Switching Mechanisms.Once the system parameters and the discrete state
have been identified, the problem of estimating the switching mechanisms, e.g., the par-
tition of the state space for PWARX or the parameters of the jump Markov process for
JMLS, becomes a simpler problem. We refer interested readers to [5, 9] for specific algo-
rithms.
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4 Simulations and Experiments

In this section we evaluate the performance of the proposed algorithm with respect to the
amount of noise in the data and the choice of the model orders. We also present experi-
ments on real data from a component placement process in a pick-and-place machine.

Error as a Function of Noise.Consider the PWAR model taken from [13]

yt =

{
2ut−1 + 10 + wt if ut−1 ∈ [−10, 0],
−1.5ut−1 + 10 + wt if ut−1 ∈ (0, 10],

(30)

with input ut
i.i.d.∼ U(−10, 10) and noisewt

i.i.d.∼ N (0, σ2
η). We run our algorithm with

n = 2, na = 0 andnc = 1 for 10 different values ofση and compute the mean and
the variance of the error in the estimated model parameters, as shown in Figure 1. The
algebraic algorithm without any iterative refinement estimates the parameters with an
error16 of less than3.7% for the levels of noise considered. These errors are comparable
to those of the Ferrari-Trecate and Bemporad’s algorithms reported in [13] which are
about2 ∼ 3%. The error is reduced significantly to about 1% (see Figure 1 left) by using
the algebraic algorithm with iterative refinement via Expectation and Maximization (EM).
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Fig. 1. Means (left) and variances (right) of the error in the estimation of the model parameters for
different levels of noise. Blue curves are for the purely algebraic Algorithm 1; Green curves are for
the EM algorithm initialized with the solutions from Algorithm 1.

Error as a Function of the Model Orders. Consider the PWAR system taken from [13]

yt =

{
2yt−1 + 0ut−1 + 10 + wt if yt−1 ∈ [−10, 0],
−1.5yt−1 + 0ut−1 + 10 + wt if yt−1 ∈ (0, 10],

(31)

with initial conditiony0 = −10, inputut
i.i.d.∼ U(−10, 10) and noisewt

i.i.d.∼ N (0, 0.01).
We applied our algorithm17 with known number of modelsn = 2, but unknown model

orders(na, nc). For all κ > 1.3 · 10−8, our algorithm correctly estimates the orders as

16 The error between the estimated parametersb̂ and the true parametersb is computed as

max
i=1,...,m.

min
j=1,...,n.

b̂i − bj


[0(K−1)×1 IK−1]bj

 .

17 Since the ARX model is an affine model with a constant input, we slightly modify our algorithm
by using homogeneous coordinates for the regressorxt, i.e., appending an entry of “1.”
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na = 1 andnc = 0. For such orders, the estimates of the ARX model parameters are
[1.9878, 0, 10.0161]T and[−1.4810, 0, 10.0052]T , which have an error of0.0020.

We also evaluated the performance of our algorithm as a function of the orders(na, nc)
for a known number of modelsn = 2. Rather than estimating the orders using formula
(20), we use a fixed value for(na, nc) and search for the polynomial in the null space
of Ln(na, nc) with the smallest degree-lexicographic order. We repeat the experiment for
multiple values ofna = 1, . . . , 4 andnc = 1, . . . , 10, to evaluate the effectiveness of
equation (11) at finding the “correct” null space ofLn(na, nc). Figure 2 shows the results
for κ = 10−5. Notice that for all the range of values ofna andnc, the algorithm gives an
error that is very close to the theoretical bound of 0.01 (the noise variance). These results
are significantly better than those reported in [13] for the Ferrari-Trecate and Bemporad’s
algorithms when applied with wrong model orders. The results are comparable to those
of Ferrari-Trecate and Bemporad’s algorithms when applied with the true model orders.
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Fig. 2. Mean sum of squares error for various orders of the ARX models.

Experimental Results on Test DatasetsWe applied our algorithm withn = na =
nc = 2 to four datasets ofT = 60, 000 measurements from a component placement
process in a pick-and-place machine [11]. For comparison with the results in [13], we
first report results on a down-sampled dataset of750 consisting of one out of every 80
samples. The750 points are separated in two overlapping groups of points. The first500
points are used for identification, and the last500 points are used for validation. Table 1
shows the average sum of squared residuals (SSR) – one step ahead prediction errors, and
the average sum of squared simulation errors (SSE) obtained by our method for all four
datasets, as well as the SSE of Ferrari-Trecate’s and Bemporad’s algorithm for the first
dataset as reported in [13]. It is worth mentioning that the SSE and SSR errors provided
by our method are not strictly comparable to those [13]. This is because Ferrari-Trecate’s
and Bemporad’s algorithms apply to PWARX models in which the modeλt is a piecewise
linear function of the past inputs and outputs, while our method applies to switched ARX
models in whichλt can evolve arbitrarily. Therefore, for PWARX modelsλt is known
automatically once the piece-wise linear map has been learned, while for switched ARX
models one must use the measured outputyt to determineλt as in (28).

We also tested our algorithm on the entire datasets. We split the 60,000 measurements
in two groups of 30,000 points each. The first 30,000 are used for identification and the
last 30,000 for simulation. Table 2 shows the average sum of squared residual error (SSR)
and the average sum of squared simulation error (SSE) obtained by our method for all
four datasets. Figure 3 shows the true and simulated outputs for dataset 1.
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Table 1.Training and simulation errors for down-sampled datasets.

Datasetn na nc Our method’s SSR Our method’s SSEFerrari-Trecate SSEBemporad SSE

1 2 2 2 0.0803 0.1195 1.98 2.15
2 2 2 2 0.4765 0.4678 N/A N/A
3 2 2 2 0.6692 0.7368 N/A N/A
4 2 2 2 3.1004 3.8430 N/A N/A

Overall, the algorithm demonstrates a very good performance in all four datasets. The
running time of a MATLAB implementation of our algorithm is0.15 second for the500
data points and0.841 second for30, 000 data points.

Table 2.Training and simulation errors for complete datasets.

Dataset n na nc SSR SSE
1 with all points 2 2 2 4.9696 · 10−6 5.3426 · 10−6

2 with all points 2 2 2 9.2464 · 10−6 7.9081 · 10−6

3 with all points 2 2 2 2.3010 · 10−5 2.5290 · 10−5

4 with all points 2 2 2 7.5906 · 10−6 9.6362 · 10−6
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Fig. 3. Training and simulation sequences for complete datasets – the simulated and the identified
sequences overlap almost exactly.

5 Conclusions

In this paper, we propose a linear-algebraic solution to the problem of identifying (de-
terministic) hybrid ARX systems. The algorithm can deal with the general case in which
the switches are arbitrary and the number and orders of the constituent ARX systems
are unknown. It can also tolerate moderate noises in the data. In the future, we would
like to investigate efficient ways for on-line implementation of the algorithm as well as
generalize our methods to state-space models.
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