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Abstract. We present a new algorithm for segmenting a scene consist-
ing of multiple moving dynamic textures. We model the spatial statis-
tics of a dynamic texture with a set of second order Ising descriptors
whose temporal evolution of is governed by an AutoRegressive eXoge-
nous (ARX) model. Given this model, we cast the dynamic texture seg-
mentation problem in a variational framework in which we minimize the
spatial-temporal variance of the stochastic part of the model. This en-
ergy functional is shown to depend explicitly on both the appearance
and dynamics of the scene. Our framework naturally handles intensity
and texture based image segmentation as well as dynamics based video
segmentation as particular cases. Several experiments show the appli-
cability of our method to segmenting scenes using only dynamics, only
appearance, and both dynamics and appearance.

1 Introduction

A fundamental problem in computer vision is to separate an image into multi-
ple regions of coherent intensity, color or texture. In the case of intensity-based
segmentation, several approaches have been proposed over the past few decades.
One of the most common methods is based on finding a piecewise smooth approx-
imation of the image by minimizing the Mumford-Shah energy functional [1]. In
the case of a piecewise constant approximation, an image u(x, y) is segmented
into two regions by finding a curve C of small length |C|, a mean intensity c1

inside C, and a mean intensity c2 outside C that minimize the energy functional

E(C, c1, c2) =µ|C|+ λ1

∫

in(C)

(u(x, y)− c1)2 dxdy + λ2

∫

out(C)

(u(x, y)− c2)2 dxdy. (1)

In order to solve this optimization problem, notice that if C were known, then the
optimal solution for c1 and c2 would be the mean intensities inside and outside
C, respectively. Thus, the main challenge in minimizing E is the computation
of the optimal C, which requires solving a partial differential equation. This
has motivated the development of several methods for efficiently representing C.
Explicit methods [2] represent C with a finite number of control points which are
evolved to match the boundaries in the scene. Implicit methods [3–5] represent
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C as the zero level set of an implicit function ϕ, i.e. C = {(x, y) : ϕ(x, y) = 0},
and evolve this function to match the boundaries in the scene.

The main advantages of level set methods over explicit methods are that
(1) they do not depend on a specific parametrization of the contour, hence
there is no need for re-griding the control points during evolution, and (2) they
allow the contour to undergo topological changes such as merging and splitting
during evolution. This has motivated various extensions of level set methods from
intensity-based image segmentation [4] to texture-based image segmentation [6],
motion-based video segmentation [7] and segmentation of dynamic textures [8].

Dynamic textures are video sequences of nonrigid scenes whose temporal evo-
lution exhibits certain stationarity, e.g., video sequences of water, fire, smoke,
steam, foliage, etc. The works of [9, 10] deal with scenes in which a static camera
observes a single dynamic texture. They show that by modeling the temporal
evolution of the image intensities as the output of a time invariant autoregres-
sive moving average (ARMA) model, it is possible to jointly recover a model
for the appearance and dynamics of the scene using classical system identifica-
tion techniques [11]. Once these models have been learnt, one can use them to
generate novel synthetic sequences [12], manipulate real ones [13], and recognize
one from another [14, 9]. The works of [15, 16] extend these methods to scenes
containing a dynamic texture observed by a moving camera. [15] introduces the
concept of stochastic rigidity which searches for the camera motion that leads
to the dynamical model of minimum order. Solving this problem is, however,
very computationally intense. [16] models the scene with a time-varying ARMA
model from which one can compute the optical flow of the scene using the so-
called dynamic texture constancy constraint.

Existing works dealing with multiple dynamic textures include [17, 8, 16, 18].
[17] models the scene as the output of a mixture of ARMA models and learns
the parameters of this mixture model and the segmentation of the scene using
Expectation Maximization (EM). Unfortunately, EM-like approaches are very
sensitive to good initialization. [16] shows that when the sequence is modeled as
the output of a mixture of ARMA models, the trajectories of the image inten-
sities live on a mixture of subspaces. The scene is then segmented by clustering
these trajectories using GPCA [19]. Unfortunately, GPCA does not incorporate
spatial regularization, thus the resulting contour is typically non smooth. [18]
incorporates spatial regularization by using spatial-temporal ARX models com-
bined with GPCA. The closest approach to ours is [8], which proposes to segment
the scene by minimizing an energy functional using level sets. The energy func-
tional depends on the subspace angles between the observability subspace of
a locally computed ARMA model and that of a reference model. This purely
algebraic choice of the energy functional is motivated by the fact that the pa-
rameters of an ARMA model live on a non-Euclidean space. Therefore, defining
and minimizing a statistically sensible energy functional is nontrivial.

In this paper, we conjecture that dynamical models for dynamic texture seg-
mentation need not be as complex as those for synthesis. Therefore, we propose
to use simple autoregressive exogenous (ARX) models to describe the temporal
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evolution of a set of static texture descriptors. This new dynamic texture model
leads to a natural spatial-temporal generalization of the classical Mumford-Shah
energy functional for dynamic texture segmentation that has several advantages:

1. First, the parameters of an ARX model live on a Euclidean space, allowing
one to define a statistically sensible energy functional that depends on both
the appearance and dynamics of the scene.

2. Second, the identification of the parameters of an ARX model can be done
in closed form by solving a simple linear system.

3. Third, as we will show experimentally, a good segmentation of the scene can
be obtained using ARX models of very low order. In fact, our experiments
will show the superiority of our method with respect to existing algebraic
and variational approaches which use more complex models of higher orders.

4. Finally, we demonstrate that our method can be easily extended for seg-
menting dynamic textures with a moving contour.

2 Review of Intensity-Based Image Segmentation

Let u : Ω → R be a given image with domain Ω ⊂ R2. Let C ⊂ Ω be a closed
contour dividing the image into two regions of coherent intensities. As proposed
by [20] one can represent C with an implicit function ϕ : Ω → R such that

ϕ(x, y)





> 0 if (x, y) ∈ out(C)
= 0 if (x, y) ∈ C

< 0 if (x, y) ∈ in(C)
. (2)

Since this representation of C is not unique, one typically chooses ϕ(x, y) to be
the signed distance from (x, y) to C, i.e. |∇ϕ| = 1 almost everywhere.

The goal of Mumford-Shah segmentation is to divide Ω into regions of co-
herent intensities by minimizing the energy functional (1). The work of Chan
and Vese [4] proposes a level set implementation of (1) in which a piecewise
constant approximation c1H(ϕ(x, y)) + c2(1−H(ϕ(x, y))) of u(x, y) is found by
minimizing

E(ϕ, c1, c2) = µ

∫

Ω

|∇H(ϕ(x, y))|+ λ1

∫

Ω

(u(x, y)− c1)2(1−H(ϕ(x, y)))

+ λ2

∫

Ω

(u(x, y)− c2)2H(ϕ(x, y)),
(3)

where H(ϕ) is the heaviside function which is 1 if ϕ ≥ 0 and 0 if ϕ < 0.
The minimization of E with respect to ϕ, c1 and c2 is usually done using an

alternating minimization procedure. Assuming that c1 and c2 are known, one
computes ϕ as the stationary solution of the partial differential equation (PDE)

∂ϕ

∂t
= δ(ϕ)

(
µ∇ ·

( ∇ϕ

|∇ϕ|
)

+ λ1(u(x, y)− c1)2 − λ2(u(x, y)− c2)2
)

, (4)
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where δ(ϕ) = dH(ϕ)
dϕ . Assuming now that ϕ is known, the variables c1 and c2

are simply given by the mean intensities inside and outside of C, respectively.
Iterating the updates for ϕ, c1 and c2 until convergence yields the final implicit
function ϕ whose zero level set is the desired contour segmenting the image.
This method is guaranteed to converge to a local minimum, because the cost
functional is always positive and also non-increasing if the implementation of
the algorithm is done carefully.

3 Dynamic Texture Segmentation

In this section, we propose a variational approach for segmenting multiple dy-
namic textures in an image sequence. Our algorithm is conceptually very similar
to the method described in the previous section. The main difference is that
instead of incorporating only image intensities in the cost functional, we also
consider dynamics and texture information. Therefore, rather than finding re-
gions of coherent intensity, we find regions of coherent dynamics and texture.

For the sake of simplicity, in Section 3.1 we assume that the boundary of
the dynamic texture is static and propose a segmentation approach based solely
on dynamics and intensities. We model the temporal evolution of the image in-
tensities as the output of a mixture of ARX models whose parameters describe
both the mean intensity and dynamics of each region. Under this model, we pro-
pose a generalization of Mumford-Shah segmentation to the temporal domain.
Although the model does not incorporate spatial texture, the experiments will
show that it is already appropriate for segmenting certain classes of dynamic
textures. In Section 3.2 we extend this model to incorporate both texture and
dynamics. The spatial texture at each frame is modeled with a set of second
order Ising descriptors whose temporal evolution is governed by an ARX model.
The segmentation algorithm minimizes an energy functional by alternating be-
tween the identification of the ARX models, which can be done linearly, and the
computation of the contour using a level set implementation. In Section 3.3 we
extend our segmentation approach to dynamic textures with a moving contour.

3.1 Segmentation Using Dynamics and Mean Intensity

Modeling the Dynamics: Suppose we have F frames of an image sequence
u(x, y, f), where u(x, y, f) denotes the intensity of pixel (x, y) in the fth frame.
We assume that the image intensities are the output of a mixture of ARX models
of order p. That is, for each pixel (x, y), there is an ARX model j such that

u(x, y, f) = aj
0 +

p∑

i=1

aj
iu(x, y, f − i) + w(x, y, f), (5)

where aj = [aj
0 · · · aj

p] ∈ R1×(p+1) are the ARX parameters for region Ωj ⊂ R2

and w(x, y, f) i.i.d∼ N(0, σ2) is the associated noise. Notice that this ARX model
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incorporates the spatial-temporal mean intensities in the parameter a0. The
standard ARX model does not include this term, and requires subtraction of the
temporal mean intensity at each pixel in order for it to be applicable. There-
fore, using a standard ARX model would only be useful in detecting differences
in dynamics, but would not be able to deal with dynamic textures with differ-
ent mean intensities. Recall that the method used in [8] uses standard ARMA
models, which also require the subtraction of the temporal mean intensities.

Variational Method of Segmentation: In order to segment the video se-
quence according to the different ARX models, we propose a spatial-temporal
extension of the level set approach described in Section 2. We replace the last
two terms in (3) by the spatial-temporal mean squared prediction error to model
(5):

E =µ

∫

Ω

|∇H(ϕ(x, y))|dxdy

+ λ1

∫

Ω

F∑

f=p+1

[(u(x, y, f)− c1(x, y, f))2](1−H(ϕ(x, y)))dxdy

+ λ2

∫

Ω

F∑

f=p+1

[(u(x, y, f)− c2(x, y, f))2]H(ϕ(x, y))dxdy,

(6)

where

cj(x, y, f) = aj
0 +

p∑

i=1

aj
iu(x, y, f − i) j = 1, 2. (7)

This definition for the cost functional makes intuitive sense, because if w is
zero mean Gaussian noise and λ1 = λ2 = λ, then E can be written as

E = µ

∫

Ω

|∇H(ϕ(x, y))|dxdy + λ

∫

Ω

F∑

f=p+1

w(x, y, f)2dxdy. (8)

Therefore, the last term is simply the spatial-temporal variance of the noise
w(x, y, f). This observation makes our cost function both algebraically and sta-
tistically meaningful, unlike the cost functional in [8], which depends only on
the algebraic properties of the ARMA models.

In order to minimize E in (6), we generalize the classical Mumford-Shah seg-
mentation method described in Section 2. Assuming that a1 and a2 are known,
we solve for the implicit function ϕ as the stationary solution of the PDE:

∂ϕ

∂t
= δ(ϕ)

(
µ∇ · ( ∇ϕ

|∇ϕ|
)

+ λ1

F∑

f=p+1

(u(x, y, f)− c1(x, y, f))2

− λ2

F∑

f=p+1

(u(x, y, f)− c2(x, y, f))2
)
.

(9)
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Given ϕ, we need to update the ARX parameters a1 and a2 from the intensities of
the pixels within Ω1 and Ω2, where Ω1 and Ω2 are the regions inside and outside
the contour C, respectively. The problem of identifying the parameters of a
single-input single-output (SISO) ARX model is a standard system identification
problem [21]. Since in our problem each region has multiple pixels, we simply
need to extend the standard identification methods to multiple outputs, which
we do by minimizing E with respect to a1 and a2. Setting the partial derivatives
of E with respect to a1 and a2 to zero leads to the following system of linear
equations:

ajU j
f = bj

f j = 1, 2 and f = p + 1, · · · , F. (10)

The matrix Uf and the vector bf are given by

U j
f =




1 · · · 1
u(xj

1, y
j
1, f − 1) · · · u(xj

kj
, yj

kj
, f − 1)

...
...

u(xj
1, y

j
1, f − p) · · · u(xj

kj
, yj

kj
, f − p)




(p+1)×kj

j = 1, 2 (11)

bj
f =

[
u(xj

1, y
j
1, f) · · · u(xj

kj
, yj

kj
, f)

]
1×kj

j = 1, 2, (12)

where {(xj
1, y

j
1), · · · , (xj

kj
, yj

kj
)} is the set of pixels in Ωj for j = 1, 2. The least

squares solution to the above system of linear equations is given by:

aj = (
F∑

f=p+1

bj
f (U j

f )>)(
F∑

f=p+1

U j
f (U j

f )>)−1 j = 1, 2. (13)

Iterating the updates (9) and (13) until convergence of the implicit function ϕ
and the ARX parameters a1 and a2, leads to the final contour, which is given
by the zero level set of ϕ.

3.2 Segmentation Using Both Dynamics and Texture

In this section, we incorporate static texture information into the segmentation
process. The first step is to extract the texture information into a feature vector.
We then treat this feature vector in the same fashion as we treated the pixel
intensities in the previous method. In this way, we are able to incorporate the
mean texture information of the regions instead of the mean pixel intensities.

Representing Static Textures: We choose the Ising second order model [22]
to represent the static texture at pixel (x, y) and frame f with a five dimensional
feature vector u(x, y, f) ∈ R5. In this method, one chooses a neighborhood W
of size w × w around each pixel, and considers the set of all cliques of type
i = 1, . . . , 4, Ci, where the four types of cliques are shown in Figure 1.
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Fig. 1. The 4 clique types of the Ising second order model.

For each clique c = (r, s) ∈ Ci, i = 1, . . . , 4, one defines the function

∆c(x, y, f) =
{−1 if |u(r, f)− u(s, f)| < ε

+1 otherwise , (14)

where ε > 0 is a user specified parameter. The ith entry of the texture descriptor
is defined as

ui(x, y, f) =





∑
c∈Ci

∆c(x, y, f) if i 6= 5

1
w2

∑
(x,y)∈W

u(x, y, f) if i = 5
. (15)

Note that the last entry of u is simply the mean intensity in a neighborhood of
size w around each pixel.

Modeling the Temporal Evolution of the Texture Descriptors: To model
different dynamic textures, we take a similar approach to the one described in
Section 3.1. But instead of working with the intensities alone, we work with
the feature vectors. We assume that the texture descriptors are the output of
a mixture of ARX models of order p. That is, for each pixel (x, y), there is an
ARX model j such that

u(x, y, f) = aj
0 +

p∑

i=1

Aj
iu(x, y, f − i) + w(x, y, f), (16)

where aj
0 ∈ R5 is now the mean texture vector and Aj

1, · · · , Aj
p ∈ R5×5 are the

ARX parameter matrices of region Ωj . Notice that including the parameter a0

allows us to incorporate the mean textures of a region in our algorithm, the same
way including a0 in (5) allowed us to incorporate mean intensities.

Variational Method of Segmentation: The segmentation approach is a
modified version of the one described in Section 3.1. The difference is that we
now work with the texture descriptors instead of the intensities. Therefore, the



8 Atiyeh Ghoreyshi and René Vidal

cost functional is modified as

E =µ

∫

Ω

|∇H(ϕ(x, y))|dxdy

+ λ1

∫

Ω

F∑

f=p+1

‖u(x, y, f)− c1(x, y, f)‖2(1−H(ϕ(x, y)))dxdy

+ λ2

∫

Ω

F∑

f=p+1

‖u(x, y, f)− c2(x, y, f)‖2H(ϕ(x, y))dxdy,

(17)

where

cj(x, y, f) = aj
0 +

p∑

i=1

Aj
iu(x, y, f − i) j = 1, 2 (18)

with aj
0 and Aj

i the ARX parameters associated with the pixels in region Ωj .
Given the ARX model parameters, the update formula for the embedding

function ϕ is given by

∂ϕ

∂t
= δ(ϕ)

(
µ∇ · ( ∇ϕ

|∇ϕ|
)

+ λ1

F∑

f=p+1

‖u(x, y, f)− c1(x, y, f)‖2

− λ2

F∑

f=p+1

‖u(x, y, f)− c2(x, y, f)‖2
)
.

(19)

Given ϕ, the update formula for the ARX parameters is given by

[
aj

0 Aj
1 · · · Aj

p

]
= (

F∑

f=p+1

Bj
f (U j

f )>)(
F∑

f=p+1

U j
f (U j

f )>)−1 j = 1, 2, (20)

which is an extended version of equation (13). The matrices U j
f and Bj

f are built
from the pixel feature vectors as follows

U j
f =




1 · · · 1
u(xj

1, y
j
1, f − 1) · · · u(xj

kj
, yj

kj
, f − 1)

...
...

u(xj
1, y

j
1, f − p) · · · u(xj

kj
, yj

kj
, f − p)




(5p+1)×kj

(21)

Bj
f =

[
u(xj

1, y
j
1, f) · · · u(xj

kj
, yj

kj
, f)

]
(5p+1)×kj

, (22)

where the pixels {(xj
1, y

j
1), · · · , (xj

kj
, yj

kj
)} belong to region Ωj . We then update

ϕ and the ARX parameters in an iterative manner until convergence.
In our implementation, we assume that the ARX parameter matrices are

diagonal. This implies that the five entries of the feature vector u(x, y, f) are
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the outputs of five decoupled scalar ARX models. Therefore, we can estimate the
ARX parameters independently for each entry of u. This assumption significantly
reduces the computational complexity of the method.

3.3 Segmentation of Dynamic Textures with Moving Boundaries

So far, we have only talked about dynamic textures with fixed boundaries. We
now consider the case in which the boundaries of the regions also vary with
time. In order to track the moving boundaries, we apply the method described
in Section 3.2 to a moving window of frames in time, which is of size F > p.
More specifically, the algorithm works as follows:

1. Given a user specified embedding ϕ0 representing an initial contour, apply
the segmentation method described in Section 3.2 to frames 1, . . . , F . This
results in a new embedding, ϕ1.

2. Use ϕ1 as an initial embedding, and apply the segmentation method of Sec-
tion 3.2 to frames 2, . . . , F + 1. This results in a new embedding ϕ2.

3. Repeat the previous step for all the remaining frames of the sequence.

Therefore, at every frame f , we have an embedding ϕf , which in turn gives us
a contour Cf . In this way, we are able to follow the moving boundaries of the
regions, provided that the sampling frequency of the video is high enough, so
that the boundaries do not move significantly in the F adjacent frames.

4 Experimental Results

In this section, we present experiments performed on various types of sequences
using the different methods introduced in the previous sections. We first compare
the methods described in this paper to each other, to emphasize the essence of
every step involved in the development of our dynamic texture segmentation
method. We then compare the results of our most general method to those from
the original implementation of the existing methods used in [8] and [16]. We
take the sequences from [8] and [16] in order to make fair comparisons among
the methods. Finally, we present results on a real sequence taken from a raccoon
caught on a river. For all sequences, the pixel intensities are normalized between
0 and 1, and the orders of the ARX models are manually set to p = 2.

4.1 Comparison of the Methods Introduced in this Paper

In this section, we compare the performance of the following methods:

1. Method 1 : The method introduced in Section 3.1 with a0 set to zero. This
method only detects differences in the dynamics of the regions, and requires
the temporal mean intensity at each pixel to be subtracted from the sequence.

2. Method 2 : The method introduced in Section 3.1. This method detects dif-
ferences in the dynamics or mean spatial-temporal intensities of the regions.
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3. Method 3 : The method introduced in Section 3.2 with parameters w = 3
pixels and ε = 0.02. This method successfully segments dynamic textures.

Figure 2 shows the performance of the methods on the ocean dynamics se-
quence. This is a video sequence of the ocean in which the regions in the circle
and the square move twice as fast as the background. Thus, the two dynamic
textures are identical in appearance, but differ in dynamics. Notice that all the
methods successfully segment the sequence. This is expected, since all the meth-
ods incorporate dynamics.

Figure 3 shows the performance of the methods on the ocean intensity
sequence, in which the region in the square has a higher mean intensity than the
background. Thus, the dynamic textures are identical in dynamics, but differ
in mean intensity. We see that the first method fails to correctly segment the
regions. This is expected, since Method 1 can only detect variations in dynamics.
On the other hand, methods 2 and 3 are successful, since they incorporate ap-
pearance as well as dynamics. Notice that Method 3 gives smoother results than
Method 2, because the last element of the feature vector u uses a smoothened
version of the image intensities in a spatial neighborhood of size 3× 3.

(a) Initial contour (b) Method 1 (c) Method 2 (d) Method 3

Fig. 2. Results of Methods 1-3 on the ocean dynamics sequence.

(a) Initial contour (b) Method 1 (c) Method 2 (d) Method 3

Fig. 3. Results of Methods 1-3 on the ocean intensity sequence.

(a) Initial contour (b) Method 1 (c) Method 2 (d) Method 3

Fig. 4. Results of Methods 1-3 on the ocean appearance sequence.
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Figure 4 shows the performance of the methods on the ocean appearance
sequence. This is a video sequence of the ocean in which the regions in the square
and the circle have been rotated by 90 degrees. Thus, the dynamic textures differ
only in the texture orientation, but share the same dynamics and general ap-
pearance (grayscale values). We see that only the last method is able to correctly
segment this sequence. The other methods fail because both the dynamics and
mean intensities of the two regions are the same.

4.2 Fixed Boundary Dynamic Texture Segmentation Results and
Comparison

In this section, we show the results of our most general method (Method 3)
on various sequences containing dynamic textures with fixed boundaries, and
compare them to those of state-of-the-art methods. Figures 5 to 7 show a com-
parison of our method and the method used in [8], using the same sequences
and initializations as in [8]. Figure 5 shows results on the ocean dynamics se-
quence. Figure 6 shows the results on the ocean appearance sequence. Figure 7
shows the results on the ocean smoke sequence which contains both smoke and
sea water. Notice that our method gives a more accurate segmentation than the
method in [8], even though we use a significantly smaller number of frames and
a simpler dynamical model of significantly lower order for each region. In [8], the
order of the ARMA model for each region is p = 10 and the number of frames is
F = 120 on all the sequences, whereas we use ARX models of order p = 2, and
F = 20 in our method.

4.3 Moving Boundary Dynamic Texture Segmentation Results and
Comparison

An important improvement of our method over the method in [8] is that we can
handle regions with moving boundaries. This is mainly because our method can
successfully segment dynamic textures using a significantly smaller number of
frames and a much lower order for the ARX models. We present the performance
of our method for moving boundaries using the same sequence and initialization
as in [8]. We choose the order of the regions to be p = 2 and the temporal
window size to be F = 5 for this sequence. Figure 8 shows the results on the
ocean fire sequence containing both fire and sea water. One can see that our
method can track the moving boundary of the fire, whereas in [8] the boundary
is not successfully detected even in one frame.

We also compare our results against those from [16]. Figure 9 shows the
ocean grass sequence in which the region inside the square is taken from grass
moving with the wind, and the background is sea water. The order of the regions
is again p = 2, and the temporal window size is F = 5 in our method. Notice
that our algorithm is generally successful, but makes some mistakes at the top
left corner of the sequence. The first reason for this is that the water does not
have a uniform texture or dynamics all over the image plane; in fact, the top left
corner is darker and moves more slowly compared to the other parts of the water.
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(a) Initial contour (b) Intermediate step (c) Final contour (d) Result from [8]

Fig. 5. (a)-(c) The result of our dynamic texture segmentation method on the
ocean dynamics sequence. (d) The result from [8] for the same sequence.

(a) Initial contour (b) Intermediate step (c) Final contour (d) Result from [8]

Fig. 6. (a)-(c) The result of our dynamic texture segmentation method on the
ocean appearance sequence. (d) The result from [8] for the same sequence.

(a) Initial contour (b) Intermediate step (c) Final contour (d) Result from [8]

Fig. 7. (a)-(c) The result of our dynamic texture segmentation method on the
ocean smoke sequence. (d) The result from [8] for the same sequence.

The second reason is that the grass region does not have significant dynamics to
it. Therefore, that specific part of the water region is similar to the grass in both
appearance and dynamics. Notice also that the method in [16] gives a bigger
rectangle than the true boundary of the grass region, whereas our result is closer
to the true boundary. However, the method in [16] does not make the mistake
at the upper left corner of the sequence. This is because it only incorporates
dynamics, and does not take appearance into account.

4.4 Experimental Results on a Real Sequence

In this section, we present the results of our moving boundary dynamic texture
segmentation algorithm applied to a video taken from a raccoon caught on a
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(a) Method 3, frame 5 (b) Method 3, frame 15 (c) Method 3, frame 30

(d) Method 3, frames 40 (e) Method 3, frame 70 (f) Method in [8]

Fig. 8. (a)-(e) Results of our moving boundary segmentation method on various frames
of the ocean fire sequence. (f) The result from [8] for the same sequence.

(a) Method 3 (b) Method in [16]

(c) Method 3 (d) Method in [16]

Fig. 9. (a),(c) Results of our moving boundary segmentation method on two frames of
the ocean grass sequence. (b),(d) Results from [16] for the same sequence.

river. The sequence contains 100 frames in total. The size of the temporal window
is chosen as F = 5 and the order of the ARX models is chosen to be p = 2.

Figure 10 shows the performance of the algorithm on tracking the boundary
of the raccoon throughout the sequence. Notice that the algorithm performs
fairly well on this challenging sequence.



14 Atiyeh Ghoreyshi and René Vidal

Fig. 10. Results of our moving boundary segmentation method on various frames of
the raccoon sequence.

5 Conclusions and Future Work

We have introduced a new method for segmenting dynamic textures that com-
bines Ising texture descriptors, ARX dynamical models and level set methods. In
spite of its simplicity, our experiments showed that our method performs better
than existing algebraic and variational approaches to dynamic texture segmen-
tation, not only in terms of speed and accuracy, but also in its ability to track
regions with moving boundaries in a sequence.

However, we have only used manually set orders for the dynamical models as-
sociated with each region. Moreover, different regions in a sequence are modeled
with the same order. Future work includes combining our method with model
selection techniques for automatic order selection.
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