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Abstract. We consider the problem of nonrigid shape and motion recovery from
point correspondences in multiple perspective views. It is well known that the
constraints among multiple views of a rigid shape are multilinear on the image
points and can be reduced to bilinear (epipolar) and trilinear constraints among
two and three views, respectively. In this paper, we generalize this classic re-
sult by showing that the constraints among multiple views of a nonrigid shape
consisting of K shape bases can be reduced to multilinear constraints among
K + �(K + 1)/2�, · · · , 2K + 1 views. We then present a closed form solution
to the reconstruction of a nonrigid shape consisting of two shape bases. We show
that point correspondences in five views are related by a nonrigid quintifocal ten-
sor, from which one can linearly compute nonrigid shape and motion. We also
demonstrate the existence of intrinsic ambiguities in the reconstruction of camera
translation, shape coefficients and shape bases. Examples show the effectiveness
of our method on nonrigid scenes with significant perspective effects.

1 Introduction

The past few decades have witnessed significant advances on the reconstruction of static
scenes observed by a moving camera under the assumption that the scene is Lambertian,
rigid and static. The Lambertian assumption is crucial to the problems of tracking,
optical flow and correspondences, because the intensity of a point is independent of the
view point. Given optical flow or point correspondences, the assumption of a rigidly
moving camera observing a static world enables us to both recover the camera motion
as well as reconstruct the rigid shape of the scene.

Recently, there have been attempts to relax each one of these assumptions. For exam-
ple, the generalized constant brightness constraint allows one to compute optical flow
for non Lambertian scenes. Likewise, the multibody fundamental matrix [11] allows
one to reconstruct dynamic scenes consisting of multiple rigid motions. As for the third
assumption, there have been two main approaches to dealing with nonrigid scenes. In
direct approaches [5, 12], a static camera observes a nonrigid scene whose temporal
evolution exhibits certain stationarity, e.g., water, foliage, steam, etc. These scenes are
called dynamic textures, and have been successfully modeled as the output of a time
invariant linear dynamical system. In feature-based methods [2, 3, 4, 9, 10, 13], a rigidly
moving affine camera observes a nonrigid shape that deforms as a linear combination of
rigid shapes with time varying coefficients. This assumption allows one to recover non-
rigid shape and motion using extensions of the classical rigid factorization algorithm
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[8]. For instance, [4] uses multiple matrix factorizations to enforce orthonormality con-
straints on camera rotations. [2] uses a non-linear optimization method called flexible
factorization. [10] uses a trilinear optimization algorithm that alternates the computa-
tion of shape bases, shape coefficients, and camera rotations. Unfortunately, all these
methods fail to reconstruct the correct shape and motion, because rotation constraints
are not sufficient to guarantee a unique solution. [13] not only provides a complete
characterization of the space of ambiguous solutions, but also proposes a closed form
solution by enforcing additional shape constraints on the shape bases.

A key assumption of these approaches is that the projection model is affine. Al-
though one can use nonlinear optimization to extend affine methods to the perspective
case, e.g., [1], it is well known that iterative schemes applied to multilinear problems
are very sensitive to initialization. The objective of this paper is to understand the al-
gebraic constraints among multiple views of a nonrigid shape and to develop algebraic
methods for nonrigid shape reconstruction that can be used for initializing optimization-
based schemes. To the best of our knowledge, there is no prior work addressing these
issues.

In this paper, we look at the problem of nonrigid shape and motion recovery from
multiple perspective views. We first study the geometry of the problem, particularly the
nature of the constraints among shape, motion and point correspondences. We show
that the constraints among multiple views of a nonrigid scene can be derived from a
rank constraint on the so-called nonrigid multiple view matrix. In the case of K shape
bases, we prove that these algebraic constraints can be reduced to multilinear constraints
among K + �(K + 1)/2�, · · · , 2K + 1 views of the image points,1 thus ruling out the
existence of epipolar or trilinear geometry for nonrigid scenes. We then show how to
exploit these multilinear constraints for reconstructing a nonrigid shape consisting of
K = 2 rigid shapes. We demonstrate the existence of a nonrigid quintifocal tensor,
which can be linearly estimated from the given point correspondences. We exploit alge-
braic properties of this tensor to compute nonrigid fundamental matrices among pairs of
views. This leads to a linear algorithm for computing camera rotation and point depths.
We also discuss the existence of intrinsic ambiguities in the reconstruction of camera
translations, shape bases and shape coefficients. We then present examples showing the
effectiveness of our method on nonrigid scenes with significant perspective effects.

2 Nonrigid Multiple View Geometry

Consider a nonrigid shape consisting of K shape bases, i.e. each 3-D point Xf at frame
f is a linear combination of K rigid shapes {Bk ∈ R

3}K
k=1

Xf =
K∑

k=1

(cfkBk), (1)

where {cfk} are the shape coefficients. Assume now that this nonrigid shape is observed
by a moving perspective camera whose pose in the f th frame is given by (Rf , Tf)

1 Classical multilinear constraints in structure from motion show up as the special case K = 1.
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∈ SE(3). Therefore, the projection xf ∈ P
2 of Xf is related to its depth λf , the

camera motion (Rf , Tf), the shape bases {Bk} and the shape coefficients {cfk} by the
equation

λfxf = Rf

K∑

k=1

(cfkBk) + Tf . (2)

In this section, we show that one can algebraically eliminate depth and shape bases
from the above equations, and derive algebraic constraints relating image points {xf},
camera motion {Rf , Tf} and shape coefficients {cfk} only. Furthermore, we show that
the constraints among multiple views of a nonrigid shape can be reduced to multilinear
constraints among K + �(K + 1)/2�, · · · , 2K + 1 views.

2.1 One Shape Basis

For the sake of simplicity, we first review the well-known results in the case of one rigid
shape. We refer the reader to [7] for further details. Note that if K = 1 we do not need to
consider shape coefficients, hence we can assume without loss of generality that cf1 =
1 and X = B1. Also, we assume without loss of generality that (R1, T1) = (I, 0).
Combining these observations with (2) we obtain λ1x1 = B1 and λfxf = λ1Rfx1 +
Tf for f = 2, 3, . . . , F . We can eliminate λf from this equation by multiplying by
x̂f on both sides, where x̂ ∈ so(3) is the skew-symmetric matrix generating the cross
product by x. This multiplication yields λ1x̂fRfx1 + x̂fTf = 0. Since this equation
holds for all f = 2, 3, . . . , F , we can write the motion equations for all frames in terms
of a single linear equation

M1

[
λ1
1

]
=

⎡

⎢⎣
x̂2R2x1 x̂2T2

...
...

x̂F RF x1 x̂F TF

⎤

⎥⎦
[
λ1
1

]
= 0. (3)

The matrix M1 ∈ R
3(F−1)×2 is called the multiple view matrix [7].

From (3), note that the vector
[

λ1
1

]
lives in the right null space of M1, hence

rank(M1) ≤ 1. (4)

The implication of this result is that the determinant of any 2 × 2 sub-matrix of M1
is equal to zero. By simply counting the ways we can choose two rows from M1, it
becomes immediately obvious that we can only select rows in such a way as to depend
on either two or three views: Two view constraints are obtained by considering two rows
from the same block of three frames, e.g., rows 1 and 2, while three view constraints are
obtained by considering two rows from two different blocks of three frames, e.g., rows
1 and 4. Two view constraints can be reduced to the well-known epipolar constraint as
shown in [7], while three view constraints are the well-known trilinear constraints [6].
This shows that the constraints among multiple views of a rigid scene are multilinear
and algebraically dependent on the constraints among two and three views.
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2.2 Multiple Shape Bases

Consider now a nonrigid shape consisting of K shape bases. Note that there is an ambi-
guity in the definition of the shape bases and coefficients, because for any invertible L ∈
R

K×K one can choose a new set of shape bases [B1 B2 · · · BK ] → [B1 B2 · · ·BK ]L

and coefficients

[ cf1

...
cfK

]
→ L−1

[ cf1

...
cfK

]
that yield the same point in 3D space Xf .

[13] proposes to resolve this ambiguity by enforcing the following basis constrains

ckk = 1, k = 1, . . . , K cjk = 0, j �= k = 1, . . . , K. (5)

Combining the basis constraints with the motion equations in (2) for f = 1 . . .K leads
to λkxk = RkBk + Tk for k = 1, . . . , K , hence we can solve for the shape bases as
Bk = R�

k (λkxk − Tk). After choosing the reference frame so that (R1, T1) = (I, 0),
we can express the motion equations for frames f = K + 1, . . . , F as

λfxf = λ1cf1Rfx1 + Rf

K∑

k=2

cfkR�
k (λkxk − Tk) + Tf . (6)

We now proceed as before using the cross product with xf to eliminate the depths
{λf} for f = K + 1, . . . , F . The final result is a matrix equation of the following form

MKλK
.=

⎡

⎢⎣
x̂K+1QK+1x1 x̂K+1S

2
K+1x2 · · · x̂K+1S

K
K+1xK x̂k+1Vk+1

...
...

...
...

x̂F QF x1 x̂F S2
F x2 · · · x̂F SK

F xK x̂F VF

⎤

⎥⎦

⎡

⎢⎢⎢⎣

λ1
...

λK

1

⎤

⎥⎥⎥⎦=0, (7)

where

Qf = cf1Rf , Sk
f = cfkRfR�

k , Vf = Tf −
K∑

k=2

cfkRfR�
k Tk.

The nonrigid multiple view matrix MK ∈ R
3(F−K)×(K+1) has the vector of depths

λK in the first K frames in its right null space, hence it satisfies the rank constraint

rank(MK) ≤ K. (8)

Therefore, we can eliminate the vector of depths in the first K frames, λK , by enforcing
that the determinant of each (K + 1) × (K + 1) sub-matrix of MK be zero. Since
each block of three rows of MK provides only two linearly independent equations,
in choosing K + 1 rows we need at least �K+1

2 � blocks. Therefore, the determinant
involving the minimum number of views contains K + �K+1

2 � views. Note that this
is much smaller than the minimum number of affine views, which is (3K2 + 3K)/2
[13]. On the other hand, if we choose one row per block, then the determinants involve
K + (K + 1) = 2K + 1 views. We have shown the following.
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Theorem 1 (Algebraic dependency of multiple view constraints for K shape
bases). Consider a moving camera observing a nonrigid shape consisting of K shape
bases. The equations relating camera motion, shape bases, shape coefficients and im-
age points can be reduced to a set of algebraic constraints that do not depend on the
shape bases and involve only K + �K+1

2 �, . . . , 2K + 1 views at a time.

Corollary 1. The constraints among multiple views of a rigid shape (K = 1) can be
reduced to constraints among two and three views.

The next step is to understand whether the multiple view constraints are multilinear on
the image points, as in the rigid case. To this end, note first that image points in one of
the first K frames appear in only one column of MK at a time, hence multiple view con-
straints are necessarily linear in each one of the first K views. However, the constraints
on a point in the remaining F − K frames can be either linear or quadratic, depending
on whether we choose one or two rows per block, respectively. This can be seen by
considering how one might choose rows from MK when forming the determinant of a
(K +1)× (K +1) submatrix. One can choose either one or two rows corresponding to
each frame. If a single row is chosen from a frame then the constraints must be linear
in points from that frame since that point only appears in a single row of the submatrix.
However, when two rows are chosen from a single frame, it may still be possible that
the resulting constraint remains linear and does not become quadratic on the point from
that frame. The following theorem shows that this is indeed the case.

Theorem 2 (Multilinear constraints for K shape bases). The algebraic constraints
among multiple views of a nonrigid shape consisting of K shape bases can be reduced
to a set of multilinear constraints on K+�K+1

2 �, . . . , 2K+1 views of the image points.
The coefficients of these multilinear constraints depend on the camera motion and the
shape coefficients, but not on the shape bases.

In what follows, we prove the theorem in the particular cases K = 2 and K = 3, to
then extend the proof to arbitrary K .

Multilinear constraints for two shape bases. We already know that in this case the
algebraic constraints among multiple views can be reduced to those among four and
five views. Moreover, we have already shown that the constraints among five views are
multilinear in the point correspondences, because all minors of M2 involve one row per
view. We are left with proving that the constraints among four views are also multilinear.

Without loss of generality, consider views 1 through 4, and choose two rows of M2
from the 3rd view and one from the 4th view. As choosing these three rows is equivalent
to choosing three lines �31, �32 and �4 such that ��31x3 = ��32x3 = ��4 x4 = 0, the
algebraic constraint among these four views can be written as

∆2(x1, x2, x3, x4) =det

⎛

⎝

⎡

⎣
��31Q3x1 ��31S3x2 ��31V3

��32Q3x1 ��32S3x2 ��32V3

��4 Q4x1 ��4 S4x2 ��4 V4

⎤

⎦

⎞

⎠ . (9)

Before proceeding further, we need the following technical lemma, whose proof
follows by direct calculation.
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Lemma 1. Let x = (x1, x2, 1)�, �1 = (1, 0, −x1)� and �2 = (0, 1, −x2)�. Then for
all a, b ∈ R

3 we have that

det
( [

��1 a ��1 b

��2 a ��2 b

])
= b�x̂a. (10)

After expanding ∆2 along the bottom row of the matrix in (9) and applying Lemma 1
three times, we see that ∆2 is in fact equal to

∆2 =��4 Q4x1(V �
3 x̂3S3x2)−��4 S4x2(V �

3 x̂3Q3x1)+��4 V4((S3x2)�x̂3Q3x1), (11)

which is multilinear in (x1, x2, x3, �4), hence in (x1, x2, x3, x4), as claimed.

Multilinear constraints for three shape bases. In this case, the multiple view matrix
M3 has four columns, hence one can form constraints on 5, 6 or 7 views. The case of 7
views is obviously multilinear, as one chooses a single row from each frame (4,5,6,7).

In the case of 6 views one must choose two rows from one frame and two more rows
from two other frames. Without loss of generality consider choosing two rows from the
4th frame, a row from the 5th frame and a row from the 6th frame. This is equivalent
to choosing lines �41, �42, �5 and �6 such that ��41x4 = ��42x4 = ��5 x5 = ��6 x6 = 0.
Such a choice leads to the following determinant

∆3(x1, x2, x3, x4, x4, x6) = det

⎛

⎜⎜⎝

⎡

⎢⎢⎣

��41Q4x1 ��41S
2
4x2 ��41S

3
4x3 ��41V4

��42Q4x1 ��42S
2
4x2 ��42S

3
4x3 ��42V4

��5 Q5x1 ��5 S2
5x2 ��5 S3

5x3 ��5 V5

��6 Q6x1 ��6 S2
6x2 ��6 S3

6x3 ��6 V6

⎤

⎥⎥⎦

⎞

⎟⎟⎠ . (12)

We know that ∆3 is linear in each of x1, x2, x3, x5 and x6. The question is whether ∆3
is also linear in x4. Let x4 = (x4, y4, 1)�, �41 = (1, 0, −x4)� and �42 = (0, 1, −y4)�.
If we expand ∆3 along the last row of the matrix in (12), we obtain

∆3 = (��6 Q6x1)∆21(x2, x3, x4, x5) − (��6 S2
6x2)∆22(x1, x3, x4, x5)+

(��6 S3
6x2)∆23(x1, x2, x4, x5) − (��6 V6)∆24(x1, x2, x3, x4, x5),

(13)

where each ∆2i is of the same form as the determinant seen in equation (9), thus mul-
tilinear in its entries. Therefore, ∆3 is also multilinear in (x1, x2, x3, x4, x5, x6).

In the case of 5 views, without loss of generality choose two rows from the 4th
frame and two rows from the 5th frame, and let xi = (xi, yi, 1)�, �i1 = (1, 0, −xi)�

and �i2 = (0, 1, −yi)�. Such a choice gives the following determinant

∆̃3(x1, x2, x3, x4, x5) = det

⎛

⎜⎜⎝

⎡

⎢⎢⎣

��41Q4x1 ��41S2
4x2 ��41S3

4x3 ��41V4

��42Q4x1 ��42S
2
4x2 ��42S

3
4x3 ��42V4

��51Q5x1 ��51S2
5x2 ��51S3

5x3 ��51V5

��52Q5x1 ��52S
2
5x2 ��52S

3
5x3 ��52V5

⎤

⎥⎥⎦

⎞

⎟⎟⎠ . (14)

After expanding ∆̃3 along the first column of the matrix, we obtain

∆̃3 = ��41c∆25(x2, x3, �42, x5) − ��42c∆25(x2, x3, �41, x5)

+��51d∆26(x2, x3, x4, �52) − ��52d∆26(x2, x3, x4, �51)
(15)
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where c = Q4x1, d = Q5x1, and ∆25(·, ·, ·, ·) and ∆26(·, ·, ·, ·) are determinants of 3
by 3 matrices that depend linearly on each of the quantities in the parentheses by direct
application of Lemma 1. Since Lemma 1 also implies that (��f1y)(�f2)−(�f2y)(�f1) =
ŷxf , the expression for ∆̃3 reduces to

∆̃3 = ∆25(x2, x3, �
�
41c�42 − ��42c�41, x5) + ∆26(x2, x3, x4, �

�
51d�52 − ��52d�51)

= ∆3(x2, x3, ĉx4, x5) + ∆̃3(x2, x3, x4, d̂x5),

which is in fact linear in x4 and x5 as claimed.

Multilinear constraints for multiple shape bases. In the case of K shape bases, the
constraints among multiple views are simply minors of the multiple view matrix MK .
Each minor is formed by choosing K + 1 rows from MK . Without loss of generality,
assume we choose two rows from each one of the first m blocks, and one row from each
one of the next K + 1 − 2m blocks. We obtain the following determinant

∆K=det

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

��K+1,1QK+1x1 ... ��K+1,1S
K
K+1xK ��K+1,1VK+1

��K+1,2QK+1x1 ... ��K+1,2S
K
K+1xK ��K+1,2VK+1

... ...
...

��K+m,1QK+mx1 ... ��K+m,1S
K
K+mxK ��K+m,1VK+m

��K+m,2QK+mx1 ... ��K+m,2S
K
K+mxK ��K+m,2VK+m

��K+m+1QK+m+1x1 ... ��K+m+1S
K
K+m+1xK ��K+m+1VK+m+1

... ...
...

...
��2K−m+1Q2K−m+1x1...�

�
2K−m+1S

K
2K−m+1xK ��2K−m+1V2K−m+1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(16)

It is clear that ∆K is linear in each xi with i ≤ K , because each image point appears
only in one column of the matrix in (16). Similarly, it is clear that ∆K is linear in each
xi with i > K + m, because each image point appears in only one row of the matrix
in (16). The fact that ∆K is also linear in each xi with K + 1 ≤ i ≤ K + m follows
by repeated application of the following lemma since the upper portion of the matrix in
(16) is of the exact form called for by the lemma.

Lemma 2. Let aij ∈ R
3, xi = (xi, yi, 1)�, �i1 = (1, 0, −xi)� and �i2 =

(0, 1, −yi)�. Then, for k even, ∆k = det(Mk) is linear in each xi, where

Mk =

⎡

⎢⎢⎢⎢⎢⎢⎣

��11a11 · · · ��11a1k

��12a11 · · · ��12a1k

... · · ·
...

��k
2 1a k

2 1 · · · ��k
2 ka k

2 k

��k
2 2a k

2 1 · · · ��k
2 2a k

2 k

⎤

⎥⎥⎥⎥⎥⎥⎦
∈ R

k×k. (17)

Proof. The proof proceeds by strong induction. The example of three shape bases and
five views proves the case of k = 2. Now assume that this holds for up to k = n − 2 .
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We will proceed to show that it holds for k = n. Consider Mn and consider the result
of expanding det(Mn) along the first column of Mn. Without loss of generality we
may consider just minors associated with the last two entries of this column. If the result
holds for these minors then it must hold for all other minors since Mn is composed of
similar 2 by k blocks. These minors have the form

��
n2an1∆n−1(�n1, �(n−1)1, �(n−1)2, ..., �11, �12)−��

n1an1∆n−1(�n2, �(n−1)1, �(n−1)2, ..., �11, �12)

=∆n−1(xn�an1, �(n−1)1, �(n−1)2 , . . . , �11, �12),

where the last equality follows from Lemma 1. By direct calculation it can be seen that

∆n−1(xn�an1, �(n−1)1, �(n−1)2, ..., �11, �12)=
n�

j=2

a�
n1�xnanj∆n−2(�(n−1)1, �(n−1)2, ..., �11, �12).

By the induction hypothesis ∆n−2 is multilinear, hence det(Mn) is multilinear as
claimed.

3 Reconstruction of Two Shape Bases

Given that the constraints among multiple views of a nonrigid shape are multilinear,
the next question is how to exploit such constraints in order to recover camera motion
and nonrigid shape. In this section, we show how to do so in the case of a nonrigid
shape consisting of two shape bases seen in five views. First, we demonstrate that the
quintilinear constraints can be expressed in terms of a single tensor, which can be lin-
early estimated from the given point correspondences. Next, we study properties of this
tensor that, surprisingly, demonstrate the existence of geometric entities analogous to
epipolar lines and fundamental matrices for nonrigid motions. We exploit such proper-
ties in order to linearly solve for camera motion. Finally, we demonstrate the existence
of ambiguities in the reconstruction of camera translation, shape coefficients and shape
bases. These ambiguities are intrinsic to the nonrigid shape and motion problem, in the
sense that they show up in the case of affine cameras as well. Surprisingly, they have
not received wide attention in the literature, being only briefly discussed in [1].

3.1 The Nonrigid Quintifocal Tensor

From the previous section, we know that in the case of 5 views, the multilinear con-
straints are determinants of 3×3 sub-matrices of the multiple view matrix M2 ∈ R

9×3.
Furthermore, in the case of quintilinear constraints, each sub-matrix is formed by choos-
ing three rows from each one of the three blocks of M2. Therefore, we can write a single
quintilinear constraint for a point-point-line-line-line correspondence as

T (x1, x2, �3, �4, �5) = det

⎛

⎝

⎡

⎣
��3 Q3x1 ��3 S3x2 ��3 V3

��4 Q4x1 ��4 S4x2 ��4 V4

��5 Q5x1 ��5 S5x2 ��5 V5

⎤

⎦

⎞

⎠ = 0. (18)
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By expanding this determinant as a polynomial in x1, x2, �3, �4, �5, we may write the
quintilinear constraint as

3∑

ijkmn=1

Tijkmnx1ix2j�3k�4m�5n = 0, (19)

where Tijkmn are the coefficients of the polynomial. We define the nonrigid quintifocal
tensor T ∈ R

3×3×3×3×3 as the collection of all these coefficients.
Note that each point correspondence provides 23 = 8 linear equations in the 242

unknowns in T , because we can choose two lines �f for each xf for f = 3, 4, 5.
Therefore, in order to determine T linearly, we need at least 31 point correspondences.

Notation. For ease of notation, we will drop the summation and subscripts in multi-
linear expressions such as

∑
Tijkmnx1ix2j l3kl4ml5n and write them as x1x2�3�4�5T .

We will also write the matrix whose (ij)th entry is
∑

kmn Tijkmnl3kl4ml5n as �3�4�5T
(or whichever indices are being considered), and the vector whose ith entry is given by∑

jkmn Tijkmnx2j l3kl4ml5n as x2�3�4�5T (similarly for other indices).

3.2 Recovering Camera Motion Via Nonrigid Epipolar Geometry

In this subsection, we present some algebraic and geometric properties of the quintifo-
cal tensor T . We show that even though epipolar geometry is not defined for nonrigid
shapes, there still exist algebraic entities that play the analogous role of geometric en-
tities such as epipolar lines and essential matrices, which are only defined for a single
rigid shape. These properties lead to a linear algorithm for recovering nonrigid epipolar
lines, nonrigid essential matrices, and camera rotations from the quintifocal tensor.

At the core of the proposed method, we find a set of rank constraints on slices of T ,
as stated in the following lemma.

Lemma 3 (Rank constraints on slices of the quintifocal tensor). Let T be a nonrigid
quintifocal tensor. Then, rank(x1x2�iT ) ≤ 2 for i = 3, 4, 5, and rank(�3�4�5T ) ≤ 2.

Proof. It follows by direct calculation that x1x2�3�4�5T = ��4 M�5, where

M = Q4x1(V �
5 (��3 S3x2) − x�

2 S�
5 (��3 V3)) − S4x2(V �

5 (��3 Q3x1) − x�
1 Q�

5 (��3 V3))
+V4(x�

2 S�
5 (��3 Q3x1) − x�

1 Q�
5 (��3 S3x2)).

Taking �5 as (V �
5 (��3 S3x2)−x�

2 S�
5 (��3 V3))×(V �

5 (��3 Q3x1)−x�
1 Q�

5 (��3 V3)) gives
the right null space of M = x1x2�3T . One may compute the left and right null spaces
of x1x2�4T , x1x2�5T and �3�4�5T in an analogous fashion.

It follows from Lemma 3 that x1x2�3T is of the form

x1x2�3T = a(x1)b(x2)� + c(x2)d(x1)� + ef (x1, x2)�, (20)

where f (x1, x2) must be a linear combination of b(x2) and d(x1) so that x1x2�3T
be rank 2. This implies that the null space of x1x2�3T is of the form b(x2) × d(x1).
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As the choice of x1 and x2 is arbitrary, we may fix x2 and compute the null space of
x1x2�3T for two different values of x1, say x11 and x12. Taking the cross product of
the two null space vectors gives the following linear combinations of V5 and S5x2:

(b(x2)×d(x11))× (b(x2)×d(x12)) ∼ b(x2) ∼ (��3 S3x2)V5 − (��3 V3)S5x2. (21)

By repeating the above procedure for another choice of �3, we obtain a second linear
combination of V5 and S5x2. The cross product of these two linear combinations is
V̂5S5x2, which is the nonrigid epipolar line of x2 in the 5th view according to the
nonrigid fundamental matrix V̂5S5 relating the 2nd and 5th views. This leads to the
following algorithm for recovering the camera rotations and the V vectors:

1. Choose x1, x2 and �3 and compute the right null space a1 of x1x2�3T . Repeat
for another choice of x1 to obtain a2. Set b1 = a1 × a2. The vector b1 is now
proportional to V �

5 (��3 S3x2) − x�
2 S�

5 (��3 V3).
2. Repeat step 1 for a new choice of �3 to get b2. Set c = b1 × b2 ∼ V̂5S5x2.
3. Repeat steps 1 and 2 for multiple choices of x2 and linearly solve for the fundamen-

tal matrix V̂5S5 from c × V̂5S5x2 = 0. Subsequently solve for V5 and S5 using a
modified version of the 8-point algorithm that enforces λf > 0 for f = 1, 2, . . . , 5.2

4. Recover Q5 using steps 1-3, but allowing x2 to vary instead of x1.
5. Recover S4, Q4 and V4 from the left null space of x1x2�3T in an analogous way.
6. Recover Q3, S3 and V3 from the left null space of x1x2�5T in an analogous way.

3.3 Recovering Shape Coefficients and Depths Via Factorization

Once we have the rotations and the V vectors we can return to our original system of
equations (6) and solve for the shape coefficients and depths. To this end, let xfp be the
image of point p = 1, . . . , P in frame f = 1, . . . , 5 and let λfp be its depth. Also, let
γf be the unknown scale up to which Vf is recovered. From (7) we have that

[
x̂fpRfx1p x̂fpRfR�

2 x2p x̂fpVf

]
⎡

⎣
cf1λ1p

cf2λ2p

γf

⎤

⎦ = 0, f = 3, 4, 5. (22)

We can solve these linear system for all f = 3, 4, 5 and p = 1, . . . , P and build
3 × P matrices W1 and W2 whose (f, p) entries are given by

W1(f, p) =
cf1λ1p

γf
and W2(f, p) =

cf2λ2p

γf
, (23)

2 Given�V5S5, the 8-point algorithm for rigid scenes gives 4 solutions for (S5, V5). The correct
solution must satisfy λ2, λ5 > 0, which can be easily checked, because there are closed form
formulae for λ2 and λ5 given (S5, V5) and (x2, x5). In the nonrigid case, however, (x2, x5)
are not images of the same point in 3D space, hence one cannot obtain closed form formulae
for the depths. In fact, from the equation λfxf = λ1c1fRfx1 +λ2c2f RfRT

2 x2 +Vf , we see
that one can only solve for c1fλ1, c2fλ2, λ3, λ4 and λ5. In order to check if λ1, λ2 > 0, we
make the additional assumption that cif > 0, and look for the pair (S5, V5) that results in the
maximum number of positive depths. The assumption that cif > 0 corresponds to rearranging
the frames so that the 1st and 2nd frame form a convex basis for the 3rd, 4th and 5th frames.
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respectively. Notice that both W1 and W2 are rank-1 matrices, hence we can obtain
the depths {λ1p} and {λ2p}, each one up to a different scale factor, from the SVD of
W1 and W2, respectively. Similarly, we can obtain the vector (cf1, cf2)� up to a scale
factor γf , also from the SVD of W1 and W2.

3.4 Refining Shape Coefficients and Depths Via an Iterative Approach

The previous section detailed an algorithm for recovering the depths and shape coef-
ficients using only factorization. However, factorization algorithms can and often do
perform poorly in the presence of noise. To that end, we suggest the following iterative
method (initialized by the previous factorization approach). First notice that if one knew
the λfp’s or the cfi’s in (22), then it should be possible to recover the others. In fact, by
knowing the depths we can build a matrix G ∈ R

3P×3 whose rows have the form

Gp =
[
λ1px̂fpRfx1p λ2px̂fpRfR�

2 x2p x̂fpVf

]
∈ R

3×3.

Similarly if we knew the coefficients, we could build a matrix H ∈ R
3F×3 with rows

Hf =
[
cf1x̂fpRfx1p cf2x̂fpRfR�

2 x2p x̂fpVf

]
∈ R

3×3.

The null space of G or H gives the shape coefficients or the depths, respectively, in
the first two frames. Thus one can iterate between these two steps until convergence.
While this iterative method will give a correct estimate of the depths, we would like
to point out that it does not give accurate coefficients due to the existence of intrinsic
ambiguities which we discuss in the following section.

3.5 Ambiguities in Nonrigid Reconstruction

In this section, we discuss various ambiguities in nonrigid motion and shape recovery
from multiple perspective views and relate them to those discussed in previous works
such as [1]. It is important to understand that these ambiguities are not specific to our
algorithm, but rather intrinsic to the problem of nonrigid shape and motion recovery
under the assumption that a nonrigid shape is a linear combination of shape basis.

Scale ambiguity. It was very briefly discussed in [1] that there exists a scale ambiguity
between the bases. However, the implications of this scale ambiguity or the primary
cause of its existence were not discussed in any detail. We now refer the reader back
to (23) and point out that when recovering the λ1’s and λ2’s, each quantity is being
estimated independently from the other. Therefore, we can only recover the coefficients
and the depths up to an unknown scale factor for each of the five frames. In the case of
K shape bases, one may eliminate K + 1 of these scales (assuming a maximal number
of frames are used) by imposing the constraint that the coefficients sum to one. To a
degree this is a physically meaningful constraint which simply enforces that the shapes
in the scene be barycentric combinations of the shape bases. As a simple example one
can consider the case of rigid motion. Rigid motion can be thought of as a scene with
a single shape bases and in this case the shape coefficients must be one. Unfortunately,
we can only eliminate the scales of the frames after the Kth frame in this manner so
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we are left with K extra scale factors. The problem is that it is impossible to determine
the relative scale of one basis to another. Due to this inherent ambiguity, it is actually
impossible to recover the correct shape coefficients and thus the shape bases. Therefore,
our experimental results have focused upon the recovery of rotations, V vectors and
the depths of the first two frames. For ground truth comparison, however, the true V
vectors cannot be determined without knowing both the coefficients and the rotation
and translation of the second frame. Therefore, in our real world examples, we focus
solely on camera rotations.

Translational ambiguity. Note also that there is an ambiguity in the simultaneous
reconstruction of the translations Tf and bases Bk, because B

′

kp = Bkp + B, for

p = 1, . . . , P , and T
′

f = Tf − RfB
∑K

k=1 ckf are also valid solutions for all B ∈ R
3.

4 Experimental Results

To evaluate our algorithm effectiveness, we tested it on random synthetic experiments,
a structured synthetic experiment similar to the two bases case in [13], and on a real
world video sequence. As per the preceding analysis of ambiguities, we focus on the
recovered rotations for the structured synthetic data and the real world experiments.

Random synthetic data. We randomly generated bases, coefficients, rotations and
translations for an image of size 1000 by 1000. We run the iterative algorithm with 135
iterations. The error in rotation is calculated as cos−1((trace(RR̂�) − 1)/2), and the
error in depth as the angle between true and estimated vector of all depths. Fig. 1 shows
the mean errors averaged over 400 trials, except for a small percentage of outliers.3
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Fig. 1. Mean error in depths, rotations, and V vectors after outlier removal

There are two primary sources of error: the noisy estimation of the tensor and the
scale check of the eight point algorithm. If one uses the correct tensor, even with noisy
data, the recovered estimates of rotation and the V vectors are virtually error free. The

3 Due to the ambiguities in reconstruction, the algorithm gives large errors in a small percentage
of trials. A trial was considered to be an outlier when the depth or rotation error was greater
that 20 degrees or when the error in the V vectors was greater than 25 degrees.
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Table 1. Rotation errors for a structured synthetic scene

R3 perspective error R4 perspective error R5 perspective error
Xiao’s approach 6.41◦ 4.43◦ 4.62◦

Our approach 0.00◦ 0.00◦ 0.00◦

primary cause of outliers would seem to be the scale check of the eight point algo-
rithm. This scale check can in some cases fail to choose the correct solution. When this
happens we generally see errors becoming quite close to 90 degrees.

Structured synthetic data. In this experiment we positioned 31 points in the following
manner: 7 points were positioned on the corners of a unit cube at the origin, the remain-
ing 24 points were divided into three groups of 8 points and then placed evenly along
each of the coordinate axes. The 7 points were held fixed while the points along the axes
translated in a positive direction along the axes and were perturbed by a small random
amount in the respective off-axes directions. The camera was initially positioned to be
at (20,20,20) facing the origin. The camera was then allowed to pan around the origin,
and translate towards and away from the origin as the structure of the scene deformed.
The data was projected in a perspective manner. We compared our algorithm to the one
proposed in [13]. The mean errors over 400 trials are displayed in Table 1.

Real world experiments. The sequence shown in Fig. 2 was used to test our algorithm.
32 points were chosen by hand to generate the tensor estimates and another 8 static
scene points were chosen in each frame to generate an 8-point algorithm estimate of the
rotations, which was then used as our ground truth. The 1st and 5th images were taken as
the reference, rather than the 1st and 2nd, hence rotations errors were measured for the
2nd, 3rd and 4th frame, relative to the 1st. The respective errors were 0.16◦, 5.94◦ and
2.55◦, which is expected, as frames 3 and 4 were the noisiest frames in the sequence.

(a) Frame 1 (b) Frame 2 (c) Frame 3 (d) Frame 4 (e) Frame 5

Fig. 2. Real world test sequence

5 Summary and Conclusions

We have presented a geometric approach to nonrigid shape and motion recovery from
multiple perspective views. We demonstrated that the constraints among multiple views
of a nonrigid scene are multilinear, and proposed an algorithm for the reconstruction of
two shape bases in five perspective views. We also examined the existence of intrinsic
ambiguities in the reconstruction of nonrigid scenes.
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