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Abstract. We present an algebraic solution to both direct and feature-
based registration of diffusion tensor images under various local defor-
mation models. In the direct case, we show how to linearly recover a local
deformation from the partial derivatives of the tensor using the so-called
Diffusion Tensor Constancy Constraint, a generalization of the bright-
ness constancy constraint to diffusion tensor data. In the feature-based
case, we show that the tensor reorientation map can be found in closed
form by exploiting the spectral properties of the rotation group. Given
this map, solving for an affine deformation becomes a linear problem. We
test our approach on synthetic, brain and heart diffusion tensor images.

1 Introduction

Diffusion Tensor Imaging (DTI) is a relatively new 3-D imaging technique that
measures the diffusion of water molecules in human and animal tissues. As the
directional dependence of water diffusion rates is closely related to the structural
anisotropy of the medium, DTI can be potentially used to infer the organization
and orientation of tissue components. This has generated much enthusiasm and
high expectations, because DTI is presently the only available approach to non-
invasively study the three-dimensional architecture of white matter tracts, and
quantify physical and geometrical properties of neuronal fibers in vivo.

Unfortunately, current image processing and computer vision algorithms are
unable to take full advantage of what DTI offers. The main reason is that, unlike
conventional images, DTI not only measures the intensity at each voxel, but also
the orientation. Orientation at each voxel is represented mathematically with a
symmetric positive semi-definite (SPSD) tensor field D : R

3 → SPSD(3) ⊂ R
3×3

that measures the diffusion in a direction v ∈ R
3 as vT Dv. Since the image

data live on a 6-dimensional space with nontrivial geometry, problems such as
filtering, smoothing, edge detection, matching, segmentation, registration, etc.,
need to be reconsidered in light of the new mathematical structure of the data.

Up until now, most of the research on DTI has focused on fiber tracking and
segmentation. Fiber tracking refers to the problem of extracting 3-D curves on
the image that follow the main orientation of the tensor field at each voxel. By
assuming that the largest principal axis of the diffusion tensor (DT) aligns with
the predominant fiber orientation, one can obtain a 3-D vector field representing
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the fiber orientation at each voxel. Fiber tracking is then equivalent to find-
ing integral curves of this vector field. Existing fiber tracking methods include
streamline techniques [1], tensor deflection [2], PDE-based curve evolution [3, 4],
and dynamic programming [5]. Segmentation refers to the problem of group-
ing the fibers into tracts. For example, in images of the spinal cord, bundles of
fibers have different functions, and one would like to cluster all fibers having the
same or similar functions. Existing segmentation methods either assume that
fiber tracts have already been extracted and segment these curves according to
a certain cost function, or else segment the tensor data directly using various
metrics on SPSD(3) [6, 7], such as the Euclidean distance between two fibers,
or the ratio of the length of corresponding portions of the fibers to the overall
length of the pairs [8]. In [9], fibers are reduced to a feature vector extracted
from the statistical moments of the fibers, and segmentation is done by applying
normalized cuts [10] to these feature vectors. [11] first reduces tensor data to a
scalar anisotropic measure, and then applies a level set segmentation method.

Although registration of conventional 2-D and 3-D scalar images is a rela-
tively well understood problem, registration of DT images is a problem that has
received much less attention. The main difference between registration of scalar
images and registration of tensor images is that in addition to estimating a local
deformation model, e.g., translational, rigid or affine, one must also reorient each
tensor so that it remains consistent with the surrounding anatomical structure
in the image. In [12], several tensor reorientation approaches are proposed. The
most commonly used method is the Finite Strain scheme [7, 13, 14], which, given
an affine transformation A, reorients the tensor using the rotational component
of A. Existing methods for registration of DT images are based on minimizing
a cost function [15], such as sum-of-squared differences [13, 14], correlation [13],
Euclidean distance [7] or diffusion profile [7], under an affine deformation model
combined with the finite strain reorientation method. However, such methods
are usually computationally intensive, and require good initialization.

The objective of this paper is to develop simple linear registration algorithms
that can be used for initializing computationally intensive methods. The main
contribution is to show that for the standard Euclidean metric in SPSD(3), the
DTI registration problem can be solved in closed form, both directly from dif-
fusion tensor data as well as from feature-point correspondences. Our direct ap-
proach is based on the so-called Diffusion Tensor Constancy Constraint (DTCC),
a generalization of the well-known brightness constancy constraint (BCC) to DT
data. We show that for various local deformation models, such as translational,
rigid, and affine, together with the finite strain reorientation scheme, the DTCC
leads to a linear relationship between the parameters of the deformation, the DT
data and its first order partial derivatives. Our feature-based approach assumes
that we are given a set of point correspondences in two images. We show that
the tensor reorientation map can be computed directly from the singular value
decompositions (SVD) of two corresponding tensors. Once this map has been
computed, solving for a rigid or affine deformation becomes a linear problem.
We test our approach on synthetic, brain and heart DT images.
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2 Direct Registration of Diffusion Tensor Images

In this section, we present an algebraic method for registering two diffusion
tensor images D1 ∈ SPSD(3) and D2 ∈ SPSD(3) under various local deformation
models. We also extend our method to a multi-resolution framework using a
coarse-to-fine refinement strategy.

We assume that the coordinates of the voxels in the two images, x1, x2 ∈ R
3,

are locally related by an affine deformation model

x2 = Ax1 + t, (1)

where A ∈ R
3×3 and t ∈ R

3. This local deformation model not only transforms
the voxel coordinates, but also reorients the tensor data. We model the tensor
reorientation with the Finite Strain (FS) method [7, 13, 14], which uses the Polar
Decomposition Theorem [16] to express the affine matrix A as the product of a
rotation matrix R ∈ SO(3) and a strain matrix S ∈ SPSD(3), i.e. A = RS. The
tensor is then reoriented using the rotational component of A as

D2 = RD1R
�. (2)

By combining the local deformation model with the tensor reorientation model,
we obtain the following Diffusion Tensor Constancy Constraint (DTCC)

D2(Ax + t) = RD1(x)R�. (3)

In order to locally register D1 and D2 in the presence of noise, at each voxel
y we seek the parameters (A, t) that minimize the Frobenius norm of the error
between the two tensors

J =
∑

x∈Ω(y)

trace
(
D2(Ax + t) − RD1(x)R�)2

, (4)

where Ω(y) ⊂ R
3×3 is a neighborhood of voxel y at which the affine model is

valid. While there are many possible metrics in SPSD(3) [6, 7], we have chosen
the Frobenius norm, because it enables us to solve the registration problem in
closed form for various 3-D deformation models, such as translational, rigid and
affine, as we will show in the next subsections.

2.1 3-D Translational Model

In this subsection, we assume that the deformation is translational, i.e. A = R =
S = I. Under this deformation model, the DTCC (3) reduces to

D2(x + t) = D1(x). (5)

After expanding the left hand side in Taylor series, we obtain

D2(x + t) ≈ D2(x) + Dxd1 + Dyd2 + Dzd3, (6)
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where x = (x, y, z)�, t = (d1, d2, d3)�, and (Dx, Dy, Dz) are the partial deriv-
atives of the diffusion tensor at x. Substituting (6) in (5) yields the following
differential DTCC

Dxd1 + Dyd2 + Dzd3 + Dt = 03×3. (7)

Notice that (7) is a natural generalization of the well-known brightness constancy
constraint (BCC) Ixu + Iyv + It = 0 from scalar 2-D images I(x, y, t) to DT
images D(x, y, z, t). However, an important difference is that while the BCC
provides one equation in two unknowns, the DTCC provides 6 equations in 3
unknowns, because Dx, Dy, Dz are 3 × 3 symmetric matrices.

Thanks to the DTCC, we may rewrite our cost function (4) as:

J =
∑

Ω

trace
(
Dxd1 + Dyd2 + Dzd3 + Dt

)2
. (8)

After differentiating J with respect to d1, we obtain

∂J

∂d1
= 2

∑

Ω

trace
(
Dx(Dxd1 + Dyd2 + Dzd3 + Dt)

)
,

and similarly for d2 and d3. By setting these derivatives to zero, we can linearly
solve for the displacement u = (d1, d2, d3)� from

Gu = −b, (9)

where

G=
∑

Ω

⎡

⎣
trace(DxDx) trace(DxDy) trace(DxDz)
trace(DyDx) trace(DyDy) trace(DyDz)
trace(DzDx) trace(DzDy) trace(DzDz)

⎤

⎦ and b=
∑

Ω

⎡

⎣
trace(DtDx)
trace(DtDy)
trace(DtDz)

⎤

⎦ .

The similarity with the case of 2-D scalar images, where u is computed from
a linear system of the form (9) with G =

∑
Ω

[
I2

x IxIy

IxIy I2
y

]
and b =

∑
Ω

[
ItIx

ItIy

]
,

is immediate. However, in the scalar case rank(G) = 1 when Ω consists of a
single pixel, while in the tensor-valued case G ∈ R

3×3 is full rank for a generic
tensor field D, even if Ω consists of a single voxel. Hence, with generic data one
can solve for t at each voxel independently. Obviously, in the presence of noise
estimating t from a single voxel is not robust, thus in practice one assumes that
t is constant on a neighborhood Ω of size much larger than one.

2.2 3-D Rigid Model

Assume now that the deformation model is a rigid-body transformation, i.e.
A = R ∈ SO(3) and S = I, and let x = (x, y, z)� and t = (d1, d2, d3)�. In
this case, we use the well-known first order approximation [17] of the rotational
component of the deformation R = I + [w]×, where [w]× ∈ so(3) is the skew-
symmetric matrix generating the cross product by w = (w1, w2, w3)�. After
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replacing this first order approximation into the expressions for the diffusion
tensors D1 and D2, we obtain

D2(Rx+t)≈D2(x + [w]×x + t)

≈D2(x)+Dx(e�
1 [w]×x+d1)+Dy(e�

2 [w]×x+d2)+Dz(e�
3 [w]×x+d3)

=D2(x)+Dx(zw2−yw3+d1)+Dy(xw3−zw1+d2)+Dz(yw1−xw2+d3)

RD1(x)R� ≈ (I + [w]×)D1(x)(I + [w]�×) ≈ D1(x) + [w]×D1(x) + D1(x)[w]�×,

where e1 = (1, 0, 0)�, e2 = (0, 1, 0)� and e3 = (0, 0, 1)�. Therefore, the cost
function (4) can be rewritten as

J =
∑

Ω

trace(U1w1 + U2w2 + U3w3 + U4d1 + U5d2 + U6d3 + Dt)2, (10)

where

U1 = −M1 + yDz − zDy , U2 = −M2 + zDx − xDz, U3 = −M3 + xDy − yDx,

U4 = Dx, U5 = Dy, U6 = Dz ,

Dt = D2(x) − D1(x), Mj = ([ej ]×D1 + D1[ej ]�×), j = 1, . . . , 3.

After taking derivatives of J with respect to u = (w1, w2, w3, d1, d2, d3)� and
setting them to zero, we obtain the following system of linear equations on u

Gu = −b, (11)

where Gij =
∑

Ω trace(UiUj) for i, j = 1, . . . , 6 and bi =
∑

Ω trace(UiDt) for
i=1, . . . , 6.

Notice that, with generic data, each voxel gives 6 linearly independent equa-
tions in 6 unknowns in u. This implies that rank(G) = 6, even if G is computed
from a single voxel. Therefore, the minimum number of voxels needed to solve
the registration problem is one, as in the translational case.

2.3 3-D Affine Model

Consider now the DTCC for the full affine deformation model

D2(Ax + t) = RD1(x)R�, (12)

where A = RS with R ∈ SO(3) and S ∈ SPSD(3). If we approximate R and S
up to first order as R ≈ I + [w]× and S ≈ I + ŝ, where ŝ is a symmetric matrix,
we obtain the following first order approximation for A ≈ I + [w]× + ŝ. This
gives

D2(Ax + t)≈D2(x)+Dx(e�
1 [w]×x+e�

1 ŝx + d1)

+Dy(e�
2 [w]×x+e�

2 ŝx + d2)+Dz(e�
3 [w]×x + e�

3 ŝx + d3).
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Note that the only differences between this expression and the corresponding
one for the rigid model are the terms involving ŝ, which can be expressed as

s11xDx+s12(yDx+xDy)+s13(xDz+zDx)+s22yDy+s23(zDy+yDz)+s33zDz.

Therefore, we may rewrite the cost function (4) as

J =
∑

Ω

trace(U1w1 + U2w2 + U3w3 + U4d1 + U5d2 + U6d3 + Dt+

U7s11 + U8s12 + U9s13 + U10s22 + U11s23 + U12s33)2, (13)

where U1, . . . , U6 are defined as in the rigid case and

U7 = xDx, U8 = yDx + xDy, U9 = xDz + zDx,

U10 = yDy, U11 = zDy + yDz, U12 = zDz.

After differentiating the cost function J with respect to the unknown model
parameters u = (w1, w2, w3, d1, d2, d3, s11, s12, s13, s22, s23, s33)� and setting the
result to zero, we obtain the following linear system on u

Gu = −b, (14)

with Gij =
∑

Ω trace(UiUj) for i, j = 1, . . . , 12 and bi =
∑

Ω trace(UiDt) for
i=1, . . . , 12.

Notice that, with generic data, each voxel provides 6 linearly independent
equations in 12 unknowns in u. This implies that rank(G) = 6 when G is com-
puted from a single voxel. Therefore, the minimum number of voxels needed to
solve the registration problem is two.

2.4 Multiscale Iterative Refinement

The algebraic registration method presented in the previous subsections assumes
implicitly that the spatial-temporal discretization of the DT image is adequate
for representing the deformation of the DT volume. When this is not the case,
an approach that combines motion estimates across multiple scales is needed.
The existing literature on estimation of optical flow from 2-D images provides
various multiscale methods for motion estimation [18]. In our implementation,
we adapt such methods to the case of DT data.

Our multiscale algorithm proceeds as follows:

1. Downsample D1 and D2 by a factor of 2n and compute transformation un

between the downsampled images by solving the linear system Gnun = −bn.
2. Warp current D1 to D1(x) ← RnD1(RnSnx + 2ntn)R�

n , where (Rn, Sn, tn)
are the deformation parameters corresponding to un.

3. If n ≥ 1, set n ← n − 1 and go to 1.
4. Set u =

∑n
i=0(w1, w2, w3, 2id1, 2id2, 2id3, s11, s12, s13, s22, s23, s33)�i , where

ui = (w1, w2, w3, d1, d2, d3, s11, s12, s13, s22, s23, s33)�i .

Notice that in transforming the motion parameters from one scale to another
only the translational part of the affine deformation is affected. This is because
when scaling the voxel coordinates by a factor λ we obtain λx2 = Aλx1 + λt,
thus t is scaled, but A is not.
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3 Feature-Based Registration of Diffusion Tensor Images

Consider now the registration of diffusion tensor images from a set of point
correspondences in two images x1 ↔ x2. If we are given 4 or more point corre-
spondences, then recovering a global deformation model (A, t) from the equation
x2 = Ax1 + t is simply a linear problem. However, this linear solution does not
make use of any tensor information, because the constraints due to tensor reori-
entation are not incorporated. Since a point correspondence x1 ↔ x2 naturally
induces a tensor correspondence D1 ↔ D2, we propose a feature-based registra-
tion method that exploits both point and tensor correspondences. In fact, we
show that in spite of the need for a tensor reorientation model, the registration
problem can still be solved linearly.

3.1 Rigid Registration from Point and Tensor Correspondences

Under a rigid transformation (R, t) ∈ SE(3), where R ∈ SO(3) is the rotation
and t ∈ R

3 is the translation, the two images are related by the equations

x2 = Rx1 + t and D2 = RD1R
�. (15)

From the first equation in (15), note that if R were known, we could immediately
solve for t as x2 −Rx1. Thus, solving the registration problem for a single voxel
boils down to estimating the rotation matrix from the second equation in (15).

To this end, consider the SVD of the diffusion tensors D1 = U1Σ1U
�
1 and

D2 = U2Σ2U
�
2 . In the absence of noise, the equation D2 = RD1R

� implies that
D1 and D2 share the same singular values, i.e. Σ1 = Σ2. In addition, we have

U2Σ2U
�
2 = RU1Σ1U

�
1 R� =⇒ Σ2 = U�

2 RU1Σ1U
�
1 R�U2.

Therefore, if the three singular values of D1 are different, we can immediately
solve for the rotation as R = U2U

�
1 or R = −U2U

�
1 , depending on whether

det(U2U
�
1 ) = 1 or not.

In the presence of noise, the matrices Σ1 and Σ2 will not necessarily coincide,
thus we seek a rotation R that minimizes the error in (4), which in the case of
a single correspondence is given by trace(D2 − RD1R

�)2. Minimizing this error
is equivalent to solving the following optimization problem

max
R

trace(D2RD1R
�) = max

R
trace(U2Σ2U

�
2 RU1Σ1U

�
1 R�). (16)

We now prove that the solution to this optimization problem is R = U2U
�
1 or

R = −U2U
�
1 as well. The proof will follow from the following theorem [19].

Theorem 1. Let A, B ∈ R
n×n. If both AB and BA are positive semidefinite,

then there exists a permutation τ of the integers 1, 2, . . . , n, such that

trace(AB) =
n∑

i=1

σi(A)στ(i)(B) ≤
n∑

i=1

σi(A)σi(B),

where {σi(C)}n
i=1 are the singular values of C arranged in non-decreasing order.
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By applying Theorem 1 to equation (16) with A = D2 and B = RD1R
�, we

obtain

trace(D2RD1R
�) =

n∑

i=1

σi(D1)στ(i)(D2) =
n∑

i=1

σi(Σ1)στ(i)(Σ2) ≤ trace(Σ1Σ2).

If we now substitute R = ±U2U
�
1 on the left hand side we get

trace(D2RD1R
�)=trace(U2Σ2U

�
2 U2U

�
1 U1Σ1U

�
1 U1U

�
2 )

=trace(U2Σ2Σ1U
�
2 ) = trace(Σ2Σ1).

Hence the rotation matrix R = U2U
�
1 or R = −U2U

�
1 achieves the maximum,

as claimed. Notice that in order for the maximum to be unique, it is necessary
that both D1 and D2 have different singular values, so that U1 and U2, hence
R, are uniquely defined.

In the case of N correspondences, we seek to find the optimal rotation that
minimizes

∑N
i=1 trace(D2i−RD1iR

�)2. We are not aware of an exact solution to
this problem. We compute an approximate solution by averaging the rotations
Ri = U2iU

�
1i computed from the individual correspondences. We use the method

in [20] for computing the average rotation.

3.2 Affine Registration from Point and Tensor Correspondences

We now extend the registration method from a rigid to an affine deformation

x2 = Ax1 + t and D2 = RD1R
�.

First, we proceed as in the rigid case in order to obtain the rotation matrix
R from the DTs. Since A can be expressed uniquely as A = RS, where R ∈
SO(3) and S ∈ SPSD(3), there are 6 independent parameters in S and 3 in t.
Since each point correspondence (x1, x2) provides 3 equations, we will need 3
correspondences in order to solve for S and t. More specifically, let (x11, x21),
(x12, x22) and (x13, x23) be such correspondences. We can solve for S and t
linearly from

x21 = RSx11 + t, x22 = RSx12 + t, and x23 = RSx13 + t.

4 Experimental Results

We evaluate the performance of the proposed registration algorithm on a real
DT image of the human brain [21]. The image size is 148 × 190 × 160 voxels
and the voxel size is 1mm × 1mm × 1mm. The implementation is done in a
hierarchy where we start downsampling at scale of 22. At this scale, a window
Ω of size 5 × 5 × 5 is used for the local computation of the deformation. For the
subsequent scale of 21, the window size is 11 × 11 × 11, followed by 21 × 21 × 21
at the original resolution. Fig. 1 shows the estimated transformation at each
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(a) Deformation at scale 22

(b) Deformation at scale 21

(c) Final deformation

Fig. 1. Zoomed-in results for a DT
brain image

(a) Deformation at scale 22

(b) Deformation at scale 21

(c) Final deformation

Fig. 2. Zoomed-in results of a DT
heart image
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scale for a translational deformation of t = (0, 8, 8) voxels. It can be seen that
the DTCC-based method correctly estimates the direction of the deformation for
most of the image, though it usually underestimates the magnitude. The method
performs significantly poorer in regions where there is a sharp variation of the
tensor field along a 1-D curve or a 2-D surface, e.g., in boundary regions, or
regions where the tensor data has low variability. This is because the G matrix,
from which the deformation field is estimated, is rank deficient in these regions.
This is simply a generalization of the well-known aperture problem in standard
2-D images, which refers to the impossibility of estimating optical flow in regions
with low texture using a local method.

Similar experiments are done on a DT image of a human heart obtained
from [22]. Fig. 2 shows the estimated deformation field for a translational defor-
mation of t = (0, 5, 5). Notice that the performance of the algorithm on the heart
dataset is worse than in the brain dataset. This is expected as the proportion of
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the volume of the heart data that contains high variability and is away from the
boundaries is significantly smaller.

Finally, we evaluate the proposed feature-based affine registration algorithm
on synthetic data for varying levels of noise on the image data. We generate a
20×20×20 volume containing the tensor Rranddiag{[10; 5; 2]+trand}R�

rand, where
Rrand is a rotation matrix with an arbitrary rotation at each voxel and trand ∈ R

3

is a translation vector whose entries are distributed uniformly in [0, 1]. Given an
affine transformation (A, t) with A = RS, we construct the second volume by
applying the transformation x2 = Ax1 + t + n to the voxel coordinates, where
n ∼ N(0, σ2

nI), and the transformation D2 = RU1(Σ1 +Sn)U�
1 R� to the tensor

data, where D1 = U1Σ1U
�
1 is the SVD of D1 and Sn = σsRsmallΣ1R

�
small.

σs is the amount of noise, and Rsmall is a rotation matrix generated via the
exponential map by Rsmall = exp (σs|w1|v), where v ∈ R

3 is a unit random
vector and [w1]× = log U1.

We apply our algorithm to the so-generated data for varying the levels of
noise σn and σs. For each noise level, we calculated the percentage of error as
|p− p̂|/|p̂|× 100, where p is A, S or t and p̂ is the corresponding true parameter.
The rotation error is calculate as cos−1((trace(RR̂�) − 1)/2). Fig. 3 shows the
mean errors over 30 trials. As expected, the errors increase as a function of
noise. Also, note that when σs = 0, the rotation error is zero for all σn, as
expected.

5 Summary and Conclusions

We have presented a closed form solution to the registration of diffusion ten-
sor images. The first contribution of this paper is to show that by using the
diffusion tensor constancy constraint (DTCC), it is possible to have a linear
relationship between the deformation parameters, the tensor data and its first
order derivatives. Comparing our results on brain and heart DT images to those
in [23], it is apparent that the multiscale algebraic approach presented in this
paper is able to better estimate the deformation parameters. However, there is
still much work to be done in order to improve the accuracy of the estimated
transformation.

The second contribution of this paper is to show that if point correspondences
are known, then it is again easy to find the deformation parameters A, R, t by
solving a set of linear equations. The computational complexity of both linear
methods is significantly smaller compared to gradient descent methods.
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