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Abstract. We study the multi-frame structure from motion problem
when the camera translates on a plane with small baselines and arbitrary
rotations. This case shows up in many practical applications, for exam-
ple, in ground robot navigation. We consider the framework for small
baselines presented in [8], in which a factorization method is used to
compute the structure and motion parameters accurately, efficiently and
with guaranteed convergence. When the camera translates on a plane,
the algorithm in [8] cannot be applied because the estimation matrix
drops rank, causing the equations to be no longer linear. In this paper,
we show how to linearly solve those equations, while preserving the accu-
racy, speed and convergence properties of the non-planar algorithm. We
evaluate the proposed algorithms on synthetic and real image sequences,
and compare our results with those of the optimal algorithm. The pro-
posed algorithms are very fast and accurate, have less than 0.3% outliers
and work well for small–to–medium baselines and non-planar as well as
planar motions.

1 Introduction

The structure from motion problem has been studied extensively over the past
decades and many algorithms have been proposed for general camera motion
(see [12] for batch methods, [5, 10] for recursive methods, [11, 13, 14] for factor-
ization methods and [2] for projective methods).

However, most of these algorithms are not designed to give accurate an-
swers when the baselines are small, which is the most complex case because the
signal-to-noise ratio is small. Since the small baseline case shows up in most vi-
sion applications in control and robotics, we believe it is fundamental to design
algorithms that work well in this case.

In [8], an algorithm explicitly designed for small baselines was presented,
showing the possibility of computing structure and motion parameters accu-
rately, efficiently and with guaranteed convergence. The translation is taken as
zero initially, and then the algorithm repeatedly updates the rotation, transla-
tion, and depth estimates until they converge (convergence depends explicitly
on the small baseline assumption). The translation and depth estimates are



obtained linearly from an approximate rank–3 factorization of a matrix which
depends on the image displacements and the current rotation estimates.

The above algorithm works only for non-planar motion, i.e., when the camera
positions do not all lie in a plane or line. When the camera motion is planar or
linear (as happens for example in ground robot navigation), the matrix used
in [8] to compute the translations and depths has an approximate rank of 2 or
1, rather than 3, and thus the algorithm of [8] is not applicable.

In [7, 9] (see also [3]), an algorithm is proposed which is designed to give
accurate results for small baselines and linear motion. Though it also works for
planar or fully non-planar motions, it gives less accurate results for these cases.

In this paper, we study the planar motion case in more detail. We show that,
even though the equations relating depth and translation are no longer linear (as
they were in the non-planar or linear motion cases), it is possible to cancel the
non-linearities to obtain linear solutions. The proposed algorithms are very fast
and accurate, have less than 0.3% outliers and work well for small–to–medium
baselines and non-planar as well as planar motions.

2 Non-planar motion algorithm

We consider an image sequence containing NP points in NF frames. We use
xi

p = (xi
p, yi

p, 1)T , p = 1 · · ·NP , i = 0 · · ·NF −1, to denote the image coordinates
of the pth point in the ith image and choose the zeroth image as the reference
frame. By convention xp = (xp, yp, 1)T = (x0

p, y
0
p, 1)T . The motion of the ith

camera frame with respect to the zeroth is described by a rotation matrix Ri ∈
SO(3) and a translation vector T i = (T i

x, T i
y, T

i
z)

T ∈ R3. Let Zp be the depth of
the pth point in 3D with respect to the zeroth camera frame. The image points
in the ith frame are related to those of the zeroth by:

λxi
p = Ri(xp − T i/Zp), λ =

[
Ri(xp − T i/Zp)

]
z
. (1)

Let τ be the ratio between the largest translation and the smallest depth,
i.e., τ = Tmax/Zmin. We say that the baselines are small if τ << 1. Under
this assumption, one can initialize all the translations to be zero and then solve
linearly for the rotations from (1). It is shown in [6] that the errors ‖Ωi‖ between
these rotation estimates Ri

est and the true rotations Ri
true are approximately

proportional to τ , where Ωi ∈ R3 is such that Ri
trueR

iT
est = exp([Ωi]×) ∈ SO(3).

(Here, [u]× ∈ so(3) represents the skew-symmetric matrix generating the cross
product, i.e., for all u, v ∈ R3 we have u× v = [u]×v).

The initial rotation estimates Ri
est are used to warp the image points xi

p from
the ith to the reference frame. From the warped image points, we define a vector
of displacements di

p with respect to the reference frame as:

di
p =

[
1 0 0
0 1 0

](
RiT

estx
i
p

(RiT
estxi

p)z
− xp

)
,



from which we form a displacement matrix D ∈ R2NP×(NF−1). It is shown in [8]
that the displacement matrix satisfies:

D ≈ Φ(Z−1) T + Ψ Ω, (2)

where

Φ(Z−1) =
[−{Z−1} 0 {xZ−1}

0 −{Z−1} {yZ−1}
]
∈ R2NP×3

T = [T 1 · · · T NF−1] ∈ R3×(NF−1)

Ψ =
[ −{xy} {1 + x2} −{y}
−{1 + y2} {xy} {x}

]
∈ R2NP×3

Ω = [Ω1 · · · ΩNF−1] ∈ R3×(NF−1).

In the above equations, {xZ−1} (for example) denotes a vector whose pth com-
ponent is xpZ

−1
p . Notice that Ψ can be interpreted as the matrix of rotational

flows and Ω as the matrix of (unknown) residual rotational velocities.
Equation (2) depends on Ω which is of order τ and thus approximately

proportional to the size of the translations. Therefore, if we solved for T from (2)
after neglecting the unknown Ω, we would obtain translation estimates with an
error of order τ , i.e., of the order of the translations themselves. In order to
obtain translation estimates with a small error of order τ2, we define a matrix
H ∈ R(2NP−3)×2NP annihilating the rotational flows, i.e., such that HΨ = 0.
Multiplying (2) by H gives:

HD ≈ HΦ(
{
Z−1

}
) T. (3)

We conclude that HD (which can be computed from the given image points
and the initial rotations) has a rank that is approximately equal to the rank of
T , which is either 1, 2 or 3, depending on whether the motion is linear, planar or
non-planar, respectively. In the non-planar motion case, one can use the singular
value decomposition to factorize HD into its structure S ∈ R(2NP−3)×3 and
motion M ∈ R(NF−1)×3 components as:

HD = SMT = SUU−1MT ≈ HΦ(
{
Z−1

}
) T, (4)

where U ∈ R3×3 is an arbitrary nonsingular matrix. Given this factorization,
one can solve linearly for {Z−1} and U from the equation HΦ(

{
Z−1

}
) = SU

and obtain the translation vectors from T = U−1MT .
Given these new estimates for the translations and depths, the algorithm

in [8] improves the initial estimates for the rotation linearly from (1). Then,
the algorithm repeatedly updates the rotation, translation, and depth estimates
until they converge. Under the small baseline assumption, one can show that the
incremental change in the unknowns between the kth and (k + 1)th iteration is
approximately proportional to τk, and hence the algorithm has good convergence
properties. (See [8] for details).

We summarize the algorithm for non-planar motion as follows1:
1 The algorithm in [8] differs from this description by including an iteration that

corrects the small–baseline approximation in (2).



Algorithm 1 (Non-planar Motion Algorithm) Given a set of NP corre-
sponding image points {xi

p}, p = 1, ..., NP , i = 0, ..., NF − 1, with respect to NF

camera frames, compute the motion (R, T ) and the depth {Z} as follows:

1. Initialize T = 0.
2. Solve for R linearly from (1), given T and {Z}. {Z} is unnecessary if T = 0.
3. Given R compute D. Then compute S and M from the SVD of HD.

(a) Solve for {Z} and U linearly from HΦ(
{
Z−1

}
) = SU , given S.

(b) Solve for T = U−1MT , given U and M .
4. Goto 2. until (R, T, {Z}) converge.

3 Planar motion algorithms

In the non-planar motion case, translation and depth parameters are estimated
linearly from the equation:

HΦ({Z−1})V = SU (5)

where the columns of V ∈ R3×3 are a basis for the translation vectors and one
can choose V = I3 without loss of generality.

Assume now that all translation vectors lie in a plane, so that rank(T ) = 2.
The data matrix HD now factors into rank–2 matrices S ∈ R(2NP−3)×2 and
M ∈ R(NF−1)×2. In (5), we now have U ∈ R2×2 and V ∈ R3×2. The matrix V is
defined by its orthogonality to the normal π ∈ S2 to the true plane of motion,
and thus has two degrees of freedom. Since there is no global parameterization
for S2, hence for V , in order to solve (5) we will need to choose a set of local
parameterizations for V . Further, notice that since (5) is bilinear in {Z−1} and
V , we cannot proceed as in step 3(a) of the non-planar motion algorithm.

In the following subsections, we show how to cancel the nonlinearity in (5)
due to V and hence obtain a linear solution for {Z} and T .

3.1 Multiple b algorithm

Let π be the normal to the plane of motion. We consider vectors bi ∈ R3, i =
1, ..., m that are not perpendicular to π, i.e., vectors that do not lie in the true
plane of motion, and parameterize V depending on the directions specified by
these bi’s (see Fig. 1). We start with the simplest case of a single b.

b = [0, 0, 1]T . Assume that the normal π to the true plane of motion does not
lie in the X–Y plane. Then (5) can be written as:

H

[−{Z−1
} {0} {

xZ−1
}

{0} − {Z−1
} {

yZ−1
}] 1 0

0 1
v1 v2

 = SU, (6)

where v1 ∈ R and v2 ∈ R are unknowns chosen to make the columns of V perpen-
dicular to π. Define the following matrices in R(2NP−3)×NP : Hx = H(:, 1 :NP ),
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Fig. 1. Multiple b algorithm for planar motions.

Hy = H(:, NP + 1 : 2NP ) and Hz = Hxdiag({x}) + Hydiag({y}). Then (6) can
be rewritten as:

(−Hx + v1Hz)
{
Z−1

}
= SU1,

(−Hy + v2Hz)
{
Z−1

}
= SU2,

(7)

where U = [U1, U2] ∈ R2×2. Define a (NP − 3)×(2NP − 3) matrix Nz to annihi-
late the columns of Hz . Nz can be computed quickly using Householder matrices.
We obtain: [

NzHx NzS 0
NzHy 0 NzS

]{Z−1}
U1

U2

 ≡ G

{Z−1}
U1

U2

 = 0. (8)

Multiplying by Nz introduces an additional solution [{Z}; U1; U2] = [{1}; 0; 0]
to the system of equations in (6). In order to show that this is a solution, we
just need to prove that NzHx{1} = NzHy{1} = 0. Since HΨ = 0, we have
Hx{1 + x2} + Hy{xy} = 0. Therefore −NzHx{1} = Nz(Hx{x2} + Hy{xy}) =
NzHz{x} = 0. Similarly, one can show that −NzHy{1} = NzHz{y} = 0.

In the presence of noise, the solution [{1}; 0; 0] ∈ RNP +4 will still correspond
to the zero singular value of G, while the solution we are looking for will be a
linear combination of the two smallest singular vectors of G. That is, the first
and second singular vectors of G equal [{1}; 0; 0] and [ζ; U1; U2], respectively,
where ζ ∈ RNP represents the first NP entries of the second singular vector.
Therefore, U1 and U2 can be obtained directly from the second singular vector
of G, while the inverse depths equal ζ up to an unknown additive mixture of the
constant term {1}, i.e., {Z−1} = λ{1}+ ζ for some λ ∈ R.

Replacing the above expression for {Z−1} in (7) we obtain:

−Hx{1} λ + Hzζ v1 + Hz{1} λv1 = Hxζ + SU1

−Hy{1} λ + Hzζ v2 + Hz{1} λv2 = Hyζ + SU2.

The bilinear terms λv1 and λv2 can be canceled by multiplying these equations
by Ñz ∈ R(2NP−4)×(2NP−3) such that ÑzHz{1} = 0. We obtain:

[−ÑzHx{1} ÑzHzζ 0
−ÑzHy{1} 0 ÑzHzζ

] λ
v1

v2

 =
[
Ñz(Hxζ + SU1)
Ñz(Hyζ + SU2)

]
,



from which one can solve linearly for λ, v1 and v2. Note that {Z−1} is now
known since ζ and λ are. One can improve these initial estimates for {Z−1} and
U by solving (7) given v1 and v2. The plane normal is given by π = (−v1;−v2; 1)
and the translations are T = V U−1MT , where M is the motion factor of HD.

Arbitrary single b. Assume that b ∈ R3 is a given vector with a nonzero
component along the true plane normal, i.e., bT π 6= 0. Let a1, a2 and b form
an orthonormal basis of R3. Then a basis for the translation plane is given by
V = [a1 + v1b a2 + v2b] for some unknown v1 ∈ R and v2 ∈ R. Equation (5)
can be written as:

(Ha1 + v1Hb)
{
Z−1

}
= SU1,

(Ha2 + v2Hb)
{
Z−1

}
= SU2,

(9)

where Ha1 = −a1xHx − a1yHy + a1zHz, Ha2 = −a2xHx − a2yHy + a2zHz and
Hb = −bxHx − byHy + bzHz.

As before, we define Nb ∈ R(NP−3)×(2NP−3) to annihilate the columns of Hb

and obtain the system of equations:

[−NbHa1 NbS 0
−NbHa2 0 NbS

]{Z−1}
U1

U2

 ≡ G

{Z−1}
U1

U2

 = 0.

The two smallest singular vectors of G are now [ζ1; 0; 0] and [ζ2; U1; U2], with
ζ1 = bx{x}+ by{y}+ bz{1}. The inverse depths are {Z−1} = λζ1 + ζ2, where λ
is obtained by solving:

[
ÑbHa1ζ1 ÑbHbζ2 0
ÑbHa2ζ1 0 ÑbHbζ2

] λ
v1

v2

 =
[

Ñb(SU1 −Ha1ζ2)
Ñb(SU2 −Ha2ζ2)

]
,

with Ñb ∈ R(2NP−4)×(2NP−3) defined to annihilate Hbζ1.
Finally, given v1 and v2 one can re-solve for {Z−1} and U from (9) to improve

the estimates. The plane normal is given by π = (a1 + v1b)× (a2 + v2b) and the
translations are obtained as T = V U−1MT .

Multiple b algorithm. We conclude from the previous section that using a
single b to parameterize V has the disadvantage of introducing an additional
solution to the system of equations in (9). Although this is not a problem from
an algebraic point of view since we have shown how to resolve the ambiguity, in
the presence of noise it can lead to solutions which are not robust.

For a single b, the additional solution has the form [bx{x}+by{y}+bz{1}; 0; 0].
Therefore, it can be eliminated by choosing more than one b. Let ai

1, ai
2, bi,

i = 1, . . . , m be a set of orthonormal bases for R3 and assume none of the bi’s
lies in the translation plane. One can solve for {Z−1}, U i

1 and U i
2 uniquely from



the set of equations:
−Nb1Ha1

1
Nb1S 0 · · · 0 0

−Nb1Ha1
2

0 Nb1S 0 0
...

...
. . .

...
−NbmHam

1
0 0 NbmS 0

−NbmHam
2

0 0 · · · 0 NbmS





{Z−1}
U1

1

U1
2
...

Um
1

Um
2


= 0. (10)

Given {Z−1} and U i, one can solve for vi
j , i = 1, . . .m and j = 1, 2 from:

Hbi{Z−1}vi
j = SU i

j −Hai
j
{Z−1}. (11)

Given vi
j one can improve the estimates for {Z−1} and U i

j by re-solving (11).
Finally, let πi = (ai

1 +vi
1b

i)× (ai
2 +vi

2b
i) and Π = [π1 · · ·πm] ∈ R3×m. The plane

normal is obtained as the leading left singular vector of Π and the translations
are obtained as:

T =
1
m

(
m∑

i=1

V iU i−1

)
MT . (12)

Choosing the b’s. Since the bi’s cannot be perpendicular to the true plane
normal, some estimate of π is needed in order to choose the bi’s. If π = b, we
have v1 = v2 = 0. Therefore, we can obtain an initial estimate of π as follows:

1. Obtain three estimates of (π, v1, v2) from the single b algorithm with b equal
to the X , Y and Z axes.

2. Choose the π that minimizes v2
1 + v2

2 .

Given an initial estimate for π, one has to choose bi’s so that they are not
perpendicular to π and not close to each other. We choose all the b’s to be
randomly distributed on a cone with angle α from π. Experimentally, the best
performance is obtained with α ≈ 37o and three different b’s. Using more b’s
has the disadvantage of over-parameterizing U , while one can show theoretically
that using two b’s does not exploit all the image data at some image points.

Algorithm 2 (Multiple b algorithm for planar motions) Given a set of
corresponding image points {xi

p}, p = 1, ..., NP , i = 0, ..., NF − 1, compute the
motion (R, T ) and the depth {Z} as follows:

1. Initialization
(a) Solve for R linearly from (1), given T = 0.
(b) Given R compute D. Then compute S and M from the SVD of HD.
(c) Compute ({Z}, T, π) from “best” single b algorithm along X, Y or Z.
(d) Use π to generate multiple b’s in a cone with angle α along π.

2. Solve for R linearly from (1), given T and {Z}.
3. Given R compute D. Then compute S and M from the SVD of HD.

(a) Solve for {Z} and U1 · · ·Um from (10), given the current b’s.
(b) Solve for π from SVD of Π = [π1 · · ·πm] and for T from (12).
(c) Use π to generate multiple b’s in a cone with angle α along π.

4. Goto 2. until (R, T, {Z}) converge.



3.2 The intersection algorithm

Let the columns of V = [V1 , V2] ∈ R3×2 be a basis for the translation plane and
let Ns ∈ R(2NP−5)×(2NP−3) be a matrix annihilating S. From (5), we obtain:

(−HxVjx −HyVjy + HzVjz){Z−1} = SUj

Ns(−HxVjx −HyVjy + HzVjz){Z−1} = 0[
NsHx{Z−1} NsHy{Z−1} −NsHz{Z−1} ]Vj = 0,

for j = 1 and 2. We conclude that the matrix

I =
[
NsHx{Z−1} NsHy{Z−1} −NsHz{Z−1} ] ∈ R(2NP−5)×3

has rank 1. Since πT V = 0 we further have[
NsHx{Z−1} NsHy{Z−1} −NsHz{Z−1} ] = BπT (13)

for some B ∈ R2NP−5 that belongs to the intersection of the subspaces generated
by the columns of NsHx, NsHy and NsHz .

After eliminating B from (13) we obtain:

[
NsHx −NsHy 0
NsHx 0 NsHz

]{Z−1}/πx

{Z−1}/πy

{Z−1}/πz

 = 0. (14)

Rather than solving (14) directly, we first eliminate Ns from the equations.
One can show that this reduces the bias in solving (14), since, in the presence of
noise, the matrix S is white. We define Yw = {Z−1}/πw, for w = x, y, z. Then,
since NT

s Ns is a projection matrix, equation (14) is equivalent to:

[
Hx −Hy 0 S 0
Hx 0 Hz 0 S

]
Yx

Yy

Yz

U1

U2

 = 0. (15)

If we disregard the fact that Yx, Yy, Yz are dependent, we can solve equa-
tion (15) linearly. When πx 6= 0, πy 6= 0 and πz 6= 0, unique solutions for
Yx, Yy, Yz are obtained, from which

{
Z−1

}
can be uniquely recovered as the lead-

ing left singular vector of [Yx, Yy, Yz] ∈ RNP×3 using SVD. When at least one of
the πw equals zero, there are two possible solutions for the linear system (15). For
example, if πx = πy = 0, the two solutions are [Yx; Yy; Yz] = [{Z−1}; {Z−1}; 0]
or [{Z−1};−{Z−1}; 0]. One can still recover {Z−1} from these solutions.

We improve the above estimate for {Z−1} by first recovering B from the
SVD of I, using the previously recovered

{
Z−1

}
, and then solving linearly for

{Z−1} and π from (13), given B. Given {Z−1} and π one can improve the
initial estimate of U by solving (5), with V ∈ R3×2 obtained from the equation
πT V = 0. Finally, the translations are given by T = V U−1MT as usual.



Algorithm 3 (Intersection algorithm for planar motions) Given a set of
corresponding image points {xi

p}, p = 1, ..., NP , i = 0, ..., NF − 1, compute the
motion (R, T ) and the depth {Z} as follows:

1. Initialize T = 0
2. Solve for R linearly from (1), given T and {Z}. {Z} is unnecessary if T = 0.
3. Given R compute D. Then compute S and M from the SVD of HD.

(a) Solve for Yx, Yy, Yz and U from (15).
(b) Solve for {Z} as the leading left singular vector of [Yx Yy Yz] using SVD.
(c) Solve for B from I and then solve for π and {Z} from (13).
(d) Solve for U and V from (5), and let T = V U−1MT .

4. Goto 2. until (R, T, {Z}) converge.

3.3 Hybrid algorithm

Both the multiple b and the intersection algorithms solve for depth, translation
and plane normal in two main stages:

(a) First depth is obtained from either (10) or (15).
(b) Then the plane normal π is obtained from the SVD of Π or from (13).

In the first stage, the multiple b algorithm solves for a unique {Z} and multi-
ple copies of U , while the intersection algorithm solves for multiple copies of {Z}
and a unique U . In the presence of noise, this causes the multiple b algorithm
to give a very accurate estimate for {Z} and a less accurate estimate for U , and
vice-versa for the intersection algorithm.

In the second stage, the multiple b algorithm solves for the plane normal
and translations based on the estimates of U and {Z}, while the intersection
algorithm solves for the plane normal from the estimates of {Z} only.

This suggests to combine the best part of both algorithms in a hybrid manner
as follows: first solve for {Z} using the multiple b algorithm and then solve for
π and T using the intersection algorithm.

3.4 General properties of the planar algorithms

Convergence. Since the only modification of the non-planar algorithm is to
replace step 3(a) by a method that remains linear, all the planar algorithms
that we propose inherit the convergence guarantees of the non-planar algorithm.

Detection of planar motion. We detect when the motion is roughly planar,
and thus when to apply our new algorithms, from the singular values s1, s2 and
s3 of HD: if s3/s2 ≥ ε, where ε is a pre–fixed threshold, we use the non-planar
motion algorithm; if s1/s2 < ε we use the algorithm for linear motion in [7].

Non-planar motion. Note that our planar algorithm works even on fully non–
planar motions: in the non-planar case, restricting to two of the singular vectors
of HD does not corrupt the reconstruction but simply omits the additional
information from the third singular vector [9].



4 Experimental Results

In this section, we evaluate the proposed algorithms on synthetic and real images.
We compare our results with those of the following two algorithms:

1. Linear motion algorithm: the algorithm of [7] first estimates the rotations
linearly assuming that the translations are zero. It computes the SVD of a
matrix that depends on the image displacements and the rotation estimates.
For each of the first three singular values of this matrix that is above a
pre-fixed noise threshold, it recovers a translation direction from the corre-
sponding singular vector, using a linear algorithm similar to that of [3] for
optical flow. It refines the estimates of the translation directions by mini-
mizing appropriate error functions. It linearly computes the depths from the
recovered translation directions and the leading singular vectors, and it fi-
nally computes the translation magnitudes. This algorithm has been shown
in [9] to give better results than the Sturm/Triggs algorithm [11] for ar-
bitrary small motions. In our experiments, we always apply this algorithm
under the assumption of planar motion, i.e., with the fixed threshold set so
that just the two largest singular values are used.

2. Optimal re-projection error: motion parameters (R, T ) and 3D structure X
are obtained by minimizing the function:

F (R, T, X) =
NP∑
p=1

NF−1∑
i=0

∥∥∥∥xi
p −

Ri(Xp − T i)
(Ri(Xp − T i))z

∥∥∥∥2

starting from the ground truth. The depth of each point is Zp = (Xp)z .

In our comparison, we use the following error measures for the different pa-
rameters, averaged over the number of trials (and frames if appropriate):

Rotation error = acos
(
(trace(RtrueR

T
est)− 1)/2

)
Translation error = acos(T T

trueTest)/(‖Ttrue‖‖Test‖)
Depth error = acos(ZT

trueZest)/(‖Ztrue‖‖Zest‖)
Normal error = acos(πT

trueπest)/(‖πtrue‖‖πest‖).

4.1 Experiments on Synthetic Images

In our simulations, we varied the motion, plane normal, structure and image
noise randomly at each trial. We generated the structure by randomly picking
each coordinate of the 3D point according to a uniform distribution taken from
a truncated pyramid specified by the depth variation and the field of view, as
shown in Fig. 2. Simulation parameters are shown in Table 12.

2 In the table u.f.l. stands for units of focal length.



Table 1. Simulation parameters.

Parameter Unit Value

Number of trials 1000

Number of points 20

Number of frames 8

Field of view degrees 90

Depth variation u.f.l. 100 - 400

Image size pixels 500 × 500

τ = Tmax/Zmin 0.1-0.6

Camera Center

Variation
Depth

Points

XY

Field of View

Z

Fig. 2. Truncated pyramid used to generate the structure.

Error vs. noise. Figures 3 and 4 compare the performance of the different
algorithms for different levels of noise3. For small τ , we observe that the new
algorithms significantly outperform the linear motion algorithm. The best algo-
rithm for rotation is the multiple b algorithm, and the best one for translation,
depth and normal is the hybrid algorithm. The new algorithms give very accurate
estimates for rotation, translation and normal to the plane of motion (almost
indistinguishable from the optimal). Depth estimates are suboptimal due to the
bas–relief ambiguity4. As τ increases, so does the error in the noise free case,
which decreases the accuracy of our algorithms with respect to the optimal. This
is expected, since the approximation Tz,max/Zmin ≈ 0 is no longer valid. Notice
that the slope of the error decreases with τ .

Table 2 includes the number of outliers for each algorithm. We define a trial
to be an outlier if the error for that trial in any of the motion or structure param-
eters exceeds the mean error by 8 times the standard deviation. The intersection
algorithm has between 1% and 3% outliers, while the multiple b algorithm has
less than 0.4%. As explained in Section 3.3, this is because the initial estimation
of depth from (15) is not as robust as that of the multiple b algorithm from (10).
The hybrid algorithm has less than 0.3% outliers.

Overall, the hybrid algorithm is the one with the best performance: it is more
accurate and has fewer outliers.

3 Mean errors do not include outliers.
4 [8] describes methods for repairing a similar problem in depth recovery observed for

the non–planar motion algorithm, which could also be applied here.
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Fig. 3. Error vs. noise for τ = Tmax/Zmin ∈ (0.1, 0.2).
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Fig. 4. Error vs. noise for τ = Tmax/Zmin ∈ (0.2, 0.3).



Table 2. Number of outliers for each algorithm as a function of noise.

Algorithm τ Number of outliers

Noise level in pixels
0.0 0.5 1.0 1.5 2.0

Linear Motion 0.1–0.2 0 1 2 2 9
Intersection 0.1–0.2 0 11 18 20 28
Multiple b 0.1–0.2 0 0 0 1 4
Hybrid 0.1–0.2 0 0 0 1 3

Linear Motion 0.2–0.3 0 1 0 1 4
Intersection 0.2–0.3 7 6 5 19 18
Multiple b 0.2–0.3 0 0 0 0 1
Hybrid 0.2–0.3 0 0 0 1 1

Linear Motion 0.3–0.4 0 1 0 0 3
Intersection 0.3–0.4 7 4 9 17 19
Multiple b 0.3–0.4 0 0 1 0 1
Hybrid 0.3–0.4 0 1 0 1 1

Error vs. τ . Figure 5 compares the performance of the proposed algorithms for
different values of τ , for a noise level of 1 pixel. We observe that the proposed
algorithms have very good performance in the range 0 .1 ≤ τ ≤ 0.6, with the
best performance for τ ≈ 0.3. When τ < 0.1, the signal–to–noise ratio is too
small, causing an increase of both the error and the number of outliers5. When
τ > 0.6 the small baseline assumption is violated, and hence the mean error
increases. Notice that we still get good results for τ = 0.6, which corresponds to
a relatively large translational motion.

Efficiency. Table 3 shows the average execution time on a Pentium III 800
MHz for a MATLAB implementation of each algorithm. The average is taken
over 1000 trials, 8 frames and 20 points. We can observe that the fastest of
the new algorithms is the hybrid algorithm, which is approximately 130 times
faster than the optimal algorithm minimizing the re-projection error. Since the
optimal algorithm is initialized from the ground truth, the ratio could be higher
in practice.

Table 3. Execution time of each algorithm for 0.1 ≤ τ ≤ 0.2.

Linear Motion Intersection Multiple b Hybrid Optimal

Time (sec) 0.11 0.21 0.44 0.20 25.75

5 A generalization of the discussion in [8, 9] implies that, when the signal–to-noise
ratio is small and the motion is partly forward, one can get s1 � s2 ∼ s3, i.e., the
translational motion can be effectively linear rather than planar. In this situation,
one may get better results by applying our algorithms under the assumption of linear
rather than planar motion, as [9] verified experimentally for an analogous case.
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Fig. 5. Error vs. τ = Tmax/Zmin for a noise level of 1 pixel.

4.2 Experiments on Real Images

We tested our algorithms on the castle [1] and puma [4] sequences. For the
castle sequence we used the first 7 frames only so that the motion is approx-
imately planar. The singular values of the matrix HD for the castle sequence
are s1 = 125.0480, s2 = 39.3361 and s3 = 0.0301 and the largest baseline is
τ = 0.0443. For the puma sequence we considered the first 16 frames, for which
the motion is approximately linear, and added some frames so that the motion is
approximately planar. The resulting singular values are s1 = 5.5359, s2 = 3.7313
and s3 = 0.0714, and the largest baseline is τ = 0.1090. The first frames of the
sequences are shown in Figure 6.

Figure 7 compares the performance of the proposed algorithms for the cas-
tle sequence. Again, we observe that the new algorithms outperform the linear
motion algorithm. Further, motion and structure parameters are estimated very
accurately (within 0.5 degrees). The algorithm with best performance is the hy-
brid algorithm, except for translation for which the best algorithm is the multiple
b algorithm. For the puma sequence, the multiple b algorithm is the best for ro-
tation and depth, and the intersection algorithm is the best for translation and
normal. This result is not surprising, since theoretically the best performance
of the intersection algorithm is for π ≈ [0; 0; 1]. Notice that all the algorithms
worked well on this sequence though it is slightly non-planar.



Fig. 6. First frames of the castle and puma sequences.
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Fig. 7. Mean error of each algorithm for the castle sequence.
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Fig. 8. Mean error of each algorithm for the puma sequence.



5 Conclusions

We presented a set of linear algorithms for motion and structure estimation
when the camera translates on a plane with small baselines and arbitrary rota-
tions. Our algorithms are based on an approximate rank-2 factorization of a ma-
trix which depends on the image displacements and current rotation estimates.
Translation and depth are obtained from the factorization after an appropriate
parameterization of the plane of translation.

We tested our algorithms on both synthetic and real sequences. Experimental
results show that the proposed algorithms are able to compute the structure and
motion parameters accurately and efficiently for baselines in the range 0 .1 ≤ τ ≤
0.6. The proposed algorithms have good convergence properties and the best
algorithm presents less than 0.3% outliers.
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