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Abstract

In many problems in computer vision, data in multiple
classes lie in multiple low-dimensional subspaces of a high-
dimensional ambient space. However, most of the existing
classification methods do not explicitly take this structure
into account. In this paper, we consider the problem of clas-
sification in the multi-subspace setting using sparse repre-
sentation techniques. We exploit the fact that the dictio-
nary of all the training data has a block structure where
the training data in each class form few blocks of the dic-
tionary. We cast the classification as a structured sparse
recovery problem where our goal is to find a representation
of a test example that uses the minimum number of blocks
from the dictionary. We formulate this problem using two
different classes of non-convex optimization programs. We
propose convex relaxations for these two non-convex pro-
grams and study conditions under which the relaxations are
equivalent to the original problems. In addition, we show
that the proposed optimization programs can be modified
properly to also deal with corrupted data. To evaluate the
proposed algorithms, we consider the problem of automatic
face recognition. We show that casting the face recognition
problem as a structured sparse recovery problem can im-
prove the results of the state-of-the-art face recognition al-
gorithms, especially when we have relatively small number
of training data for each class. In particular, we show that
the new class of convex programs can improve the state-of-
the-art face recognition results by 10% with only 25% of the
training data. In addition, we show that the algorithms are
robust to occlusion, corruption, and disguise.

1. Introduction

Classification is one of the most fundamental problems
in machine learning and has numerous applications in dif-
ferent areas including computer vision. Given training data
from multiple classes, the task is to find the class to which
a test example belongs.

Recently, there has been an increasing interest in clas-
sification problems where the data across multiple classes
come from a collection of low-dimensional linear sub-
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Figure 1. In face recognition, the dictionary has a block structure where
the training images of each subject form a few blocks of the dictionary.

spaces. In fact, for many important problems in computer
vision such as face recognition [13], motion segmentation
[5], and activity recognition [14], the data lie in multiple
low-dimensional subspaces of a high dimensional ambient
space. However, most existing classification methods do
not explicitly take into account the multi-subspace structure
of the data.

An important class of methods that deals with data on
multiple subspaces relies on the notion of sparsity. Specif-
ically, the sparse representation-based classification (SRC)
method [13] looks for the sparsest representation of a test
example in a dictionary composed of all training data across
all classes. More formally, given a dictionary B and a test
example y, it solves the following non-convex program

P`0 : min ‖c‖0 s.t. y = Bc,

where ‖c‖0 denotes the number of nonzero elements of c.
Assuming that the underlying subspace for each class is
low-dimensional, the sparsest representation of a test exam-
ple ideally corresponds to the training data from the same
class. When it comes to the problem of robust classification,
the SRC method offers a great advantage over many classi-
fication methods since it can effectively deal with corrupted
data within the same sparse representation framework.

Challenges. While sparse representation-based methods
have been shown to be effective for classification, there still
remain questions about classification in the multi-subspace
setting using sparse representation which have not been suf-
ficiently explored or have not been answered yet.

C1– The SRC method looks for the sparsest representation
of a test example with the hope that such a representation
selects few training data from the correct class. However,
as shown in Figure 1, the dictionary of the training data has
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a structure in which data from each class form few blocks
of the dictionary. Is there a way to direct the SRC method
to take into account the dictionary structure, e.g., by finding
a representation of a test example that involves only a few
blocks of the dictionary corresponding to the training data
from a single class. If so, what would be the behavior of the
new algorithms in dealing with corrupted data?

C2– When it comes to the problem of classification on mul-
tiple subspaces, there is a fundamental gap between the the-
ory of sparse recovery and the practice of machine learning.

C2a– When the number of training data in each class is
large, we can better capture the underlying distribution of
data and the classification performance increases. Nonethe-
less, existing sparse recovery algorithms do not have theo-
retical guarantees when it comes to highly redundant dic-
tionaries and the conditions for their success almost never
hold. Can we fill the gap between the current sparse repre-
sentation theory and the classification practice?

C2b– When the number of training data in each class is
small, sparse recovery methods have good theoretical guar-
antees. However, classification algorithms do not perform
well. Can we have alternative methods based on sparse
representation that can lead to better classification results
when the number of training data in each class is small?

Paper contributions. The goal of this paper is to ad-
dress the aforementioned challenges. We show that instead
of looking for the sparsest representation of a test example
y in the dictionary of all the training data B, a better crite-
rion for classification is to look for a representation of the
test example that involves the minimum number of blocks
from the dictionary. We formulate this problem using the
following non-convex optimization programs

P`q/`0 : min
n∑

i=1

I(‖c[i]‖q > 0) s.t. y = Bc, (1)

and

P ′`q/`0
: min

n∑
i=1

I(‖B[i]c[i]‖q > 0) s.t. y = Bc, (2)

where I(·) is the indicator function, q ≥ 1, and c[i] ∈ Rmi

are the entries of c corresponding to the i-th block of the
dictionary, B[i] ∈ RD×mi , as shown in Figure 1. We also
show that both optimization programs can be properly mod-
ified to deal with corrupted data.

In order to solve these problems efficiently, we propose
convex relaxations for the two classes of non-convex pro-
grams and study conditions under which each class of con-
vex programs is equivalent to the original non-convex for-
mulation, hence can be used for classification. The state-of-
the-art structured sparse recovery literature [4, 3, 7] consid-
ers the case where q = 2 and the training data in each block

are linearly independent. We consider an arbitrary q ≥ 1
and, motivated by practical problems such as face recogni-
tion, we allow for arbitrary number of data in each block.

To evaluate the classification performance of the two
classes of convex programs, we consider the problem of
automatic face recognition. By extensive experiments, we
show that the methods based on structured sparse represen-
tation improve the state-of-the-art face recognition results
for classifying both uncorrupted and corrupted data. More
specifically, we show that the proposed convex programs
improve the face recognition results by 10% when the num-
ber of training data in each class is as small as the dimen-
sion of the face subspace [2]. In addition, we show that the
algorithms can efficiently handle corruption and occlusion.

Paper organization. In Section 2, we review the sparse
representation-based classification (SRC) method. In Sec-
tion 3, we formulate the classification problem as a struc-
tured sparse recovery problem using two different non-
convex optimization programs and propose convex relax-
ations. In Section 4, we derive conditions under which the
convex programs are equivalent to the original non-convex
formulations. In Section 5, we evaluate the performance of
the proposed algorithms on the problem of automatic face
recognition. Section 6 concludes the paper.

2. Classification via Sparse Representation
In this section, we review the problem of classification

of data in multiple subspaces using sparse representation.
Assume we have n classes and we are given mi training
data {bij ∈ RD}mi

j=1 for each class i. We denote by B[i] ∈
RD×mi the collection of training data in the i-th class

B[i] ,
[
bi1 bi2 · · · bimi

]
∈ RD×mi , (3)

and denote by B the collection of all training data across all
classes

B ,
[
B[1] B[2] · · · B[n]

]
. (4)

Given a test example y ∈ RD, which belongs to one of
the n classes, our goal is to find the class to which the test
example belongs.

In this paper, we assume that the data in each class live in
a low-dimensional linear subspace of RD. More precisely,
we assume that the data in the i-th class live in a subspace
Si of dimension di, where di � D. Thus, the training
data live in multiple low-dimensional subspaces of a high-
dimensional space. In fact, in several important problems
in computer vision such as face recognition [13], motion
segmentation [5], and activity recognition [14] the data can
be well approximated by a union of subspaces. The SRC
method [13] is based on the idea that in such cases, a test
example has a sparse representation in the dictionary of all
the training data across different classes. More precisely,

1874



since a test example belonging to one of the classes lives in
a low-dimensional subspace, its sparsest representation is a
linear combination of a few training data from the correct
class. Thus, in principle, we are interested in solving the
following optimization problem

P`0 : min ‖c‖0 s.t. y = Bc, (5)

where ‖ · ‖0 denotes the `0 semi-norm and indicates the
number of nonzero elements of the given vector. Since the
P`0 optimization program is NP-hard, a convex relaxation
of it is obtained by replacing the `0 with the `1 norm and
solving the following convex program

P`1 : min ‖c‖1 s.t. y = Bc. (6)

An important advantage of classification methods based
on sparse representation is their ability to deal with cor-
rupted data within the same framework. To see this, let y0

be a test example corrupted with an error e that has a few
nonzero entries, i.e., y = y0 + e. Note that y0 has a sparse
representation in the dictionary of the training data B and
the error has a sparse representation in the standard basis
I (the identity matrix in RD). Thus, in a new dictionary
formed by concatenating the training data and the standard
basis, y has a sparse representation that can be recovered
from

P̄`0 : min ‖
[
c
e

]
‖0 s.t. y =

[
B I

] [c
e

]
. (7)

To solve this problem efficiently, we can use an `1 relax-
ation and instead solve the following convex program

P̄`1 : min ‖
[
c
e

]
‖1 s.t. y =

[
B I

] [c
e

]
. (8)

We can then find the class of a given test example as the
class that best represents the test example using its training
data. More precisely, for a given test example y, if we de-
note by c∗> =

[
c∗>[1] · · · c∗>[n]

]
the optimal solution

of P`1 , the class of y can be obtained by1

class(y) = arg min
i
‖y −B[i]c∗[i]‖2. (9)

3. Classification via Structured Sparsity
As discussed in the previous section, when the training

data in each class live in a low-dimensional subspace of a
high-dimensional ambient space, the classification problem
can be cast as the problem of finding the sparsest represen-
tation of a test data in the dictionary of all the training data.

In this section, we argue that looking for the sparsest rep-
resentation of a test example might not be the best criterion

1For data corrupted with sparse outliers, we use the modified criterion
class(y) = arg mini ‖y − e∗ −B[i]c∗[i]‖2.

S1
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Figure 2. Left: sparsest representation of a test example does not neces-
sarily come from the correct class. y can be written as a linear combination
of one data point from S2 and one from S3 as well as a linear combination
of two data points from S1. Right: training data in a class might be sep-
arated into several blocks. Thus, a test example can be written as a linear
combination of a few blocks in each class.

for classification. In order to see this, we consider the ex-
ample in Figure 2 (left) where we have 3 classes whose data
live in three subspaces; S1 being a 2-dimensional subspace,
S2 and S3 being 1-dimensional subspaces. The test exam-
ple y, which belongs to class 1, can be written as a linear
combination of any two data points from class 1, while it
can also be written as a linear combination of one data point
from class 2 and one from class 3. Thus, from the sparsest
representation perspective, there is no difference between
the two representations as they both have two nonzero el-
ements, while obviously from a classification perspective,
the first one is the desired solution. Now, if instead of look-
ing for the sparsest representation we look for a represen-
tation that uses the minimum number of blocks, we obtain
the desired solution for perfect classification.

In a general classification task, the dictionary of the
training data has a block structure where a few blocks of
the dictionary correspond to the training data in each class.
Thus, a test example can be represented as a linear combi-
nation of training data from a few blocks of the dictionary
corresponding to its class. For example, in Figure 2 (right),
the test example y1 can be written as a linear combination
of 1 block while y2 can be written as a linear combination
of two blocks of the underlying class.2 As another example,
in the face recognition problem, each class consists of im-
ages of a single subject that can be separated into multiple
blocks based on different expressions as shown in Figure 1.

Structured sparse representation via P`q/`0 . Based on
what we have discussed so far, a better objective for classi-
fication is to solve

P`q/`0: min
n∑

i=1

I(‖c[i]‖q > 0) s.t. y = Bc, (10)

where I(·) is the indicator function and q ≥ 1. While in
principle we could have chosen any value of q > 0, we
choose q ≥ 1 for reasons that will become clear shortly.

2When each class i consists of several blocks indexed by Ci, the class
of a test example y is given by arg mini ‖y −

P
j∈Ci

B[j]c∗[j]‖2.
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This optimization problem seeks the minimum number of
nonzero coefficient blocks that reconstruct the test exam-
ple. Note that the optimization program P`q/`0 is NP-hard
since it requires searching exhaustively over all possible few
blocks of B and checking whether they span the given y.
An `1 relaxation of this program is given by

P`q/`1 : min
n∑

i=1

‖c[i]‖q s.t. y = Bc, (11)

which is a convex program when q ≥ 1.
For q = 1, while the non-convex programs P`1/`0 and

P`0 are different, their convex relaxations P`1/`1 and P`1

are the same. Thus, P`1 can also be thought of as a struc-
tured sparse recovery method that under appropriate condi-
tions, as will be discussed in the next section, finds a repre-
sentation of the test example with the minimum number of
nonzero blocks.

Structured sparse representation via P ′`q/`0
. We will

also consider an alternative optimization program for the
classification problem, which can be formulated as

P ′`q/`0
: min

n∑
i=1

I(‖B[i]c[i]‖q > 0) s.t. y = Bc, (12)

whose `1 relaxation for q ≥ 1 gives the following convex
optimization program

P ′`q/`1
: min

n∑
i=1

‖B[i]c[i]‖q s.t. y = Bc. (13)

Unlike P`q/`0 that minimizes the number of nonzero
coefficient blocks c[i], the optimization program P ′`q/`0

minimizes the number of nonzero reconstructed vectors
B[i]c[i]. When the blocks consist of linearly independent
data, the solution of P ′`q/`0

has also the minimum number of
nonzero coefficient blocks, because ‖B[i]c[i]‖q > 0 if and
only if ‖c[i]‖q > 0. However, this does not necessarily hold
when the blocks consist of linearly dependent data. To see
this, consider a simple example where the data in each class
form a single block of the dictionary. Let y be a test exam-
ple belonging to class l. Thus, it can be written as a linear
combination of the training data in the l-th class. Since the
vectors in each block are linearly dependent, for every i 6= l,
we can choose a nonzero c[i] in the null space of B[i], i.e.,
‖B[i]c[i]‖q = 0, while ‖c[i]‖q > 0. Obviously, this does
not affect either the value of the cost function or the equality
constraint in P ′`q/`0

.
Despite the above argument, we will use P ′`q/`0

for clas-
sification in dictionaries whose blocks have linearly inde-
pendent or linearly dependent data because it still gives the
correct classification as per (9). To see this, let us assume
for simplicity that each class consists of training data in a

single block. If for a test example that belongs to the l-
th class, we denote the optimal solution of P ′`q/`0

by c∗,
then for the l-th block we have B[l]c∗[l] = y. For other
blocks i 6= l, while c∗[i] might be nonzero, we always have
B[i]c∗[i] = 0. Thus, the l-th class would minimize the
classification objective function in (9), ‖y − B[i]c∗[i]‖2,
resulting in correct classification.

Dealing with corrupted data. We will now show that the
proposed structured sparse recovery methods can also deal
with corrupted data within the same framework. Let y0 be a
test example corrupted by a sparse error e, i.e., y = y0 +e.
The uncorrupted data y0 can be written as a linear combi-
nation of a few blocks of the training data dictionary. Also,
e can be written as a linear combination of a few blocks of
the standard basis I , where we treat each column of I as a
block of length 1. Thus, the corrupted test example, y, can
be written as a linear combination of few blocks of a new
dictionary composed of the training data and the standard
basis. This structured sparse representation can be recov-
ered, after convex relaxation, by

P̄`q/`1: min
n∑

i=1

‖c[i]‖q +‖e‖1 s.t. y=
[
B I

][c
e

]
, (14)

where we used the fact that the blocks of I have length 1,
i.e., e[i] ∈ R. Thus,

∑D
i=1 ‖e[i]‖q = ‖e‖1. Similarly,

P ′`q/`0
can also deal with corrupted data, in which case we

have to solve the following convex program

P̄`q/`1: min
n∑

i=1

‖B[i]c[i]‖q + ‖e‖1 s.t. y =
[
B I

][c
e

]
.

(15)

4. Theoretical Results
In the previous section, we showed that when data

in multiple classes live in multiple low-dimensional sub-
spaces, the classification problem can be cast as a structured
sparse recovery problem where we are interested in solving
the non-convex optimization programs P`q/`0 and P ′`q/`0

.
In this section, we study conditions under which the con-

vex relaxations P`q/`1 and P ′`q/`1
are equivalent to the orig-

inal non-convex programs. Unlike the state-of-the-art struc-
tured sparse recovery literature [4, 3, 7] that only consider
the case where q = 2 and the data in each block are lin-
early independent, our theoretical analysis allows for arbi-
trary q ≥ 1. Also, motivated by practical problems such
as classification, we allow for arbitrary number of data in
each block. In addition, our theoretical results can be sim-
ply generalized to the convex programs P̄`q/`1 and P̄ ′`q/`1

that deal with corrupted data.
Recall that a dictionary B consists of the training data

from n blocks B[i] ∈ RD×mi , where the data in each
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block live in a low-dimensional subspace Si of dimension
di � D. We can characterize a dictionary from two dif-
ferent perspectives. On the one hand, we can capture the
relations between different blocks (interblock relation) and
on the other hand, we can capture the relations among data
in each block (intrablock relation). First, we characterize
the relations between different blocks of a dictionary by as-
suming that the collection of subspaces is disjoint.

Definition 1 A collection of subspaces {Si}ni=1 is called
disjoint if each pair of subspaces intersect only at the ori-
gin. For a collection of disjoint subspaces, define the mutual
subspace coherence as

µS = max
i 6=j

max
x∈Si,z∈Sj

x>z

‖x‖2‖z‖2
. (16)

Note that the mutual subspace coherence is equal to the co-
sine of the smallest principal angle among all pairs of dif-
ferent subspaces. Next, we characterize the relation among
the data in the blocks of the dictionary.

Definition 2 For a dictionary B, define εq as the smallest
constant such that for every i there exists a full rank subma-
trix of B[i], denoted by B̄[i] ∈ RD×di , such that for every
c̄[i] we have

(1− εq)‖c̄[i]‖2q ≤ ‖B̄[i]c̄[i]‖22 ≤ (1 + εq)‖c̄[i]‖2q. (17)

Also, define σq as the smallest constant such that for every
i and c[i] we have

‖B[i]c[i]‖2q ≤ σq‖c[i]‖2q. (18)

When q = 2 and the blocks are full rank, i.e., B[i] = B̄[i],
ε2 coincides with the 1-block restricted isometry constant
defined in [4]. Thus, εq can be thought of as a more general
notion that allows for any q ≥ 1 and arbitrary number of
data in each block.

Definition 3 For a dictionary B, define ε′q as the smallest
constant such that for every i and c[i] we have

(1− ε′q)‖B[i]c[i]‖2q ≤ ‖B[i]c[i]‖22 ≤ (1 + ε′q)‖B[i]c[i]‖2q.
(19)

ε′q characterizes the relation between the `q and `2 norms
of vectors in RD and does not depend on the number of the
data in each block. Note that for q = 2, we have ε′2 = 0.

The following results establish conditions under which
the convex programs P`q/`1 and P ′`q/`1

are equivalent to the
original non-convex programs. The proofs of the results can
be found in [6].

Theorem 1 For a vector that can be written as a linear
combination of k blocks of the dictionary, the optimization
program P`q/`1 is equivalent to P`q/`0 if

(k
√

σq

1 + εq
+ k − 1)µS <

1− εq
1 + εq

. (20)

Theorem 2 For a vector that can be written as a linear
combination of k blocks of the dictionary, the optimization
program P ′`q/`1

is equivalent to P ′`q/`0
if

(2k − 1)µS <
1− ε′q
1 + ε′q

. (21)

5. Experiments
In this section, we evaluate the performance of the two

classes of convex programs on the problem of automatic
face recognition. We also investigate the robustness of the
proposed algorithms in dealing with corrupted data.

5.1. Classifying Uncorrupted Images

In this part, we evaluate the performance of the pro-
posed methods as well as the state-of-the-art face recogni-
tion algorithms for classifying uncorrupted data on the Ex-
tended Yale B database [10]. The Extended Yale B database
consists of 2, 414 cropped frontal face images of n = 38 in-
dividuals. For each subject, there are approximately 64 face
images of size 192×168 = 32, 256, which are captured un-
der various laboratory-controlled lighting conditions. Since
the dimension of the original face vectors is large, we re-
duce the dimension of the data using the following methods.
–We down-sample the images by a factor r such that the
dimension of the down-sampled face vectors is D.
–We use the eigenfaces approach [12] by projecting the face
vectors to the first D principal components of the training
data covariance matrix.
–We multiply the face vectors by a random projection ma-
trix Φ ∈ RD×32,256 which has i.i.d. entries drawn from a
zero mean Gaussian distribution with variance 1

D [1] .
In the experiments, we set D = 132. For simplicity of

the analysis, we assume that all classes have the same num-
ber of training data, mi = m. To investigate the effect
of the number of training data in the classification perfor-
mance, we randomly select m ∈ {9, 18, 25, 32} training
images for each subject, forming blocks B[i] ∈ RD×m,
and use the remaining images for testing. For every test im-
age, we solve the convex programs P`q/`1 and P ′`q/`1

for
q ∈ {1, 2} and determine the identity of the test image us-
ing (9). 3 We compute the classification rate as the average
number of correctly classified test images for which the re-
covered identity matches the ground-truth. We repeat this
experiment 20 times for random choices of m training data
for each subject and compute the mean classification rate
among all the trials.

Note that P`1/`1 , which is equivalent to P`1 , corresponds
to the SRC method [13] that has previously reported the best

3Because of modeling error and noise in the real data, we use the
modified convex programs whose equality constraints are replaced with
‖y −Bc‖2 ≤ ε. In our experiments, ε = 0.05.
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Figure 3. Recognition results on the Extended Yale B database as a function of the number of training data in each class.

results on the database. Since the dataset contains a single
expression for each person, the training data for each sub-
ject form one block of the dictionary. Hence, one can think
of a classification method that looks for a subject whose un-
derlying subspace is closest to the given test image. This
method is known in the literature as the nearest subspace
(NS) method [8] and we use it as a baseline for comparison.

The recognition results are shown in Figure 3. As the
results show, the NS method has, in general, lower perfor-
mance than methods based on sparse representation. More-
over, for a fixed value of q, the convex program P ′`q/`1

al-
most always outperforms P`q/`1 .

While the performances of different methods are close
for large number of training data in each class, the differ-
ence in their performances becomes evident when the num-
ber of data in each class decreases. Note that while the per-
formance of all the algorithms degrade by decreasing the
number of data in each class, the convex programs P ′`q/`1

are more robust to decreasing the number of training data.
Specifically, when the number of training data in each class
is as small as the dimension of the face subspace [2], i.e.,
m = d = 9, P ′`2/`1

has almost 10% higher recognition rate
than the SRC method. It is also important to note that our
results are independent of the choice of features, i.e., the
results follow the same pattern for the three types of fea-
tures as shown in Figure 3. In all of them P ′`2/`1

and P ′`1/`1
achieve the best recognition results.

5.2. Robustness to Random Corruption

In this section, we test the robust versions of the struc-
tured sparsity-based algorithms in dealing with random
pixel corruption. To that end, we choose images in subset
1 (and 2) of the Extended Yale B database for training and
choose images in subset 3 for testing. We downsample the
images so that D = 1, 400. Without corrupting the images,
this is not a hard problem and this choice is to isolate the
effect of random corruption. Next, we corrupt ρ percentage
of randomly chosen pixels in each test image. We replace
the values of the chosen pixels by i.i.d. values drawn from a
uniform distribution in the range of the image pixel values.
We change ρ from 0 to 90 percent and compute the recog-

nition rate. We compare the results of the robust structured
sparsity-based classification algorithms P̄`2/`1 and P̄ ′`2/`1
with three other methods. First, we use the robust version
of the SRC method, P̄`1 . Next, we use the basic PCA to
project the data into lower dimensions and use the NN clas-
sifier. Third, we use the Independent Component Analysis
(ICA) architecture I [9] with a NN classifier.4

For m ∈ {7, 19} training data in each class, the recogni-
tion rates as a function of the percentage of corrupted pixels
are shown in Figure 4. For both cases, P̄`2/`1 and P̄ ′`2/`1

as
well as P̄`1 achieve almost 100% recognition rate with up to
50% corruption, while the recognition rates of the two other
methods drop quickly to less than 30% when we have 50%
corrupted pixels. Note that P̄`2/`1 and P̄ ′`2/`1

obtain better
classification results than P̄`1 when the number of training
data in each class is small (m = 7). However, for m = 19,
the performances of P̄`2/`1 and P̄`1 are similar.

5.3. Robustness to Random Block Occlusion

In this section, we test the performance of the structured
sparsity-based classification methods in dealing with cor-
rupted data, where corruption appears in a block of a face
image instead of being distributed across all image pixels.

We use images in subset 1 (and 2) of the Extended Yale B
database for training and use images in subset 3 for test-
ing. We down-sample the images so that D = 1, 400. In
order to examine the robustness of the methods to occlu-
sions we replace a randomly chosen square block of each
test image with an unrelated image and change the percent-
age of occlusion from 0 to 50 percent. Similar to the pre-
vious section, we compare the performance of P̄`2/`1 and
P̄ ′`2/`1

against the SRC method, PCA+NN and ICA+NN.
For m ∈ {7, 19} training data in each class, the results
are shown in Figure 5. Note that the sparse representation
based methods achieve almost 100% recognition rate up to
20% occlusion, while the recognition rates of PCA+NN and
ICA+NN quickly drop as we increase the the percentage of
occlusion. In addition, for m = 7, both P̄`2/`1 and P̄ ′`2/`1

4For PCA and ICA, we choose the number of basis components over
the range {100, 200, 300, 400} to give the best test performance.
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Figure 4. Recognition results on the Extended Yale B database as a func-
tion of the percentage of corruption.
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Figure 5. Recognition results on the Extended Yale B database as a func-
tion of the percentage of block occlusion.

Table 1. Recognition rates on the AR database for robustness to disguise.
Algorithms P ′`2/`1

P`2/`1 P`1 PCA+NN ICA+NN

Sunglasses 66.5% 80.5% 84.3% 57.5% 51.7%

Scarves 41.7% 59.8% 35.2% 10.5% 9.2%

All 54.1% 70.2% 59.8% 34.0% 30.5%

obtain better recognition rates than P̄`1 for all percentages
of occlusion.

5.4. Robustness to Disguise

In this part, we examine the robustness of the proposed
algorithms to real malicious occlusions in images. We use
the AR database [11] which consists of face images of
n = 100 individuals acquired under the same pose with
varying illuminations and expressions. Out of the 26 images
for each subject, in 6 images the subject is wearing sun-
glasses, roughly occluding 20% of the image, and in 6 im-
ages, the subject is wearing a scarf, occluding nearly 40% of
the image. We down-sample the images so thatD = 1, 400.
We randomly select m = 9 images for each subject as the
training data and use the images with sunglasses and scarves
as test examples. We evaluate the recognition rates of the
structured-sparsity based algorithms as well as the SRC
method and the two other algorithms we used in the pre-
vious experiments: PCA+NN and ICA+NN. The results are
shown in Table 1. While P̄`1 obtains slightly better recog-
nition rate than P̄`2/`1 for images with sunglasses, P̄`2/`1

obtains about 25% higher recognition rate than P̄`1 for im-
ages with scarves.

6. Conclusions
We formulated the problem of classification as a struc-

tured sparse recovery problem using two non-convex opti-
mization programs P`q/`0 and P ′`q/`0

. To solve them effi-
ciently, we proposed convex relaxations for the two non-
convex programs and studied conditions under which they
are equivalent to the original non-convex formulations. We
showed that the proposed algorithms can be modified to
also deal with corrupted data. Our experiments on the face
recognition problem showed that the proposed classification
methods lead to better recognition results especially when
the number of training data in each class is relatively small.
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