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Abstract
We present a closed form solution to the problem of seg-
menting multiple 2-D motion models of the same type di-
rectly from the partial derivatives of an image sequence.
We introduce the multibody brightness constancy constraint
(MBCC), a polynomial equation relating motion models,
image derivatives and pixel coordinates that is independent
of the segmentation of the image measurements. We first
show that the optical flow at a pixel can be obtained ana-
lytically as the derivative of the MBCC at the correspond-
ing image measurement, without knowing the motion model
associated with that pixel. We then show that the param-
eters of the multiple motion models can be obtained from
the cross products of the derivatives of the MBCC at a set
of image measurements that minimize a suitable distance
function. Our approach requires no feature tracking, point
correspondences or optical flow, and provides a global non-
iterative solution that can be used to initialize more expen-
sive iterative approaches to motion segmentation. Experi-
ments on real and synthetic sequences are also presented.

1. Introduction
Motion segmentation refers to the problem of fitting a col-
lection of motion models to the image data, without know-
ing which data belong to which model. The mathematical
nature of this problem depends largely on whether the scene
is static or dynamic, on the type of image measurements that
are available (image derivatives, optical flow, point corre-
spondences), and on the type of motion and camera models
relating such measurements. In this paper, we consider the
segmentation of both static and dynamic scenes from mea-
surements of the image partial derivatives related by multi-
ple 2-D translational or 2-D affine motion models.

When the scene is static, i.e. when either the camera or a
single rigid object moves, one can model the 2-D motion of
the scene as a mixture of 2-D motion models such as transla-
tional, affine or projective. Even though a single 3-D motion
is present, multiple 2-D motion models arise, because of
perspective effects, depth discontinuities, occlusions, trans-
parent motions, etc. In this case, the task of 2-D motion seg-
mentation is to estimate these models from the image data.
Various iterative and probabilistic approaches to solving
this problem have been proposed in the past, such as look-

ing for flow discontinuities [11, 2], fitting a mixture of para-
metric models through successive computation of dominant
motions [7], clustering local motion profiles using K-means
[18], or fitting a mixture of probabilistic models iteratively
using EM [4, 8, 1, 19, 12]. The drawback of most of these
approaches is that they are based on a local computation of
2-D motion, which is subject to the aperture problem and to
the estimation of a single model across motion boundaries.
Some of these problems can be partially solved by incor-
porating multiple frames and a local process that forces the
clusters to be connected [9]. Another problem with iterative
approaches is that their solution depends strongly on good
initialization. This issue has been addressed using algebraic
methods that solve the motion segmentation problem glob-
ally. [10] deals with segmenting two transparent motions
by factorizing a second order homogeneous polynomial.
The method needs high order derivatives of the image se-
quence, which cannot be computed reliably even with mod-
erate noise. [17] deals with segmenting n affine motions by
factorizing a bi-homogeneous polynomial of degree n. The
method only requires first order derivatives of the image se-
quence, but the factorization is sensitive to noise.

When the scene is dynamic, i.e. when both the camera
and multiple objects move, one can still model the scene
with a mixture of 2-D motion models. Some of these mod-
els are due to independent 3-D motions, e.g., when the mo-
tion of an object relative to the camera can be well ap-
proximated by the affine motion model. Others are due to
perspective effects and/or depth discontinuities, e.g., when
some of the 3-D motions induce multiple 2-D motions. The
task of 3-D motion segmentation is to obtain a collection
of 3-D motion models, in spite of perspective effects and/or
depth discontinuities. Recently, the 3-D motion segmen-
tation has been enjoying a lot of attention in the litera-
ture, including probabilistic approaches [13] as well as ge-
ometric approaches for both affine [3, 14] and perspective
[20, 15, 16, 5] cameras. However, all existing methods as-
sume that point correspondences or optical flow measure-
ments are available. Obtaining such measurements can be
rather challenging in the presence of multiple motions.

To the best of our knowledge, although there is a lot of
work on direct methods for static scenes (see [6]), our work
is the first one to give an algebraic solution to 2-D mo-
tion segmentation of both static and dynamic scenes directly
from the first-order derivatives of the image sequence.



1.1. Paper contributions
In this paper, we propose a unified algebraic approach to di-
rect 2-D motion segmentation of static and dynamic scenes.
We show that one can estimate the number of motion mod-
els, the optical flow, and the parameters of each motion
model directly from the image intensities, without any need
for feature tracking, point correspondences, optical flow or
prior segmentation. We introduce the multibody brightness
constancy constraint (MBCC), a polynomial equation relat-
ing the motion models, the image derivatives, and the pixel
coordinates. This constraint is satisfied by all the pixels,
regardless of which motion model is associated with each
pixel. We show that one can compute the number of motion
models as the degree of the MBCC and the optical flow at a
pixel from the derivatives of the MBCC at the image mea-
surement corresponding to that pixel. The parameters of the
multiple motion models are then obtained from the cross
products of the derivatives of the MBCC at a set of image
measurements that minimize a suitable distance function.

This new approach to motion segmentation offers vari-
ous important technical advantages over the state-of-the-art.

1. With respect to local methods, our approach has the
advantage of using all the image data simultaneously
to fit all motion models. Therefore, it is less sensitive
to the aperture problem and to the estimation of a sin-
gle motion model across motion boundaries.

2. With respect to the direct algebraic approach of [17],
our approach is based on polynomial differentiation
rather than polynomial factorization, which greatly im-
proves the efficiency, accuracy and robustness of the
algorithm. Furthermore, our approach also applies to
other motion models, such as 2-D translational.

3. With respect to the feature-based algebraic method of
[15], our approach does not need require feature track-
ing, point correspondences or optical flow. Indeed, op-
tical flow is automatically computed in closed form,
without knowing the motion model associated with
each pixel. Furthermore, our approach does not require
the image measurements to be embedded in the com-
plex domain, which greatly simplifies the complexity
of the algorithm.

4. With respect to extant probabilistic methods, our ap-
proach has the advantage of providing a global, non-
iterative solution that does not need initialization.
Therefore, our method can be used to initialize any it-
erative or optimization based technique, such as EM,
or else in a layered (multiscale) or hierarchical fashion
at the user’s discretion.

Although the derivation of the algorithm will assume
noise free data, the algorithm is designed to work with a
moderate level of noise, as we will point out shortly. In its
present form, however, the algorithm does not consider the
presence of outliers in the data.

2. Direct motion segmentation
2.1. Multibody brightness constancy constraint
Consider a motion sequence taken by a moving camera ob-
serving an unknown number m of independently and rigidly
moving objects. The 3-D motion of each object relative to
the camera induces a 2-D motion field in the image plane.
Because of perspective effects, depth discontinuities, occlu-
sions, transparent motions, etc., each 3-D motion induces
one or more 2-D motions. Therefore, we assume that the 2-
D motion of the scene is generated from an unknown num-
ber n ≥ m of 2-D motion models {Mi}

n
i=1 of the form

u(x) = ui(x) if x ∈ Ri, i = 1, . . . , n, (1)

where u(x) = [u, v, 1]T ∈ P
2 is the optical flow at pixel

x = [x1, x2, 1]
T ∈ P

2, and Ri ⊂ P
2 is the region of the

image where the ith motion model holds.
Under the assumption that all surfaces in the scene are

Lambertian, for each pixel x there exist a motion model
Mi such that its optical flow ui(x) can be related to the
image partial derivatives y = [Ix1

, Ix2
, It]

T ∈ R
3 at x by

the well-known brightness constancy constraint (BCC)

BCCi(x,y)
.
= yT ui(x) = Ix1

ui + Ix2
vi + It = 0. (2)

Therefore, the following multibody brightness constancy
constraint (MBCC) holds at every pixel in the image

MBCC(x,y)
.
=

n
∏

i=1

(yT ui(x)) = 0. (3)

Note that if we fix x, then the MBCC is a homoge-
neous polynomial of degree n in y, which can be written
as a linear combination of the monomials In1

x1
In2

x2
In3

t with
n1+n2+n3 = n. If we stack these Mn = (n+1)(n+2)/2
independent monomials into a vector νn(y) ∈ R

Mn , we get

MBCC(x,y)=νn(y)TU(x)=
∑

Un1,n2,n3
(x)In1

x1
In2

x2
In3

t .

The vector U(x)∈R
Mn is called the multibody optical flow,

and νn :R3 7→R
Mn is called the Veronese map of degree n.

In the following subsections, we will demonstrate that in
the case of 2-D translational motion models {ui ∈ P

2}n
i=1

or 2-D affine motion models {Ai ∈ R
3×3}n

i=1

u = ui or u = Aix =





aT
i1

aT
i2

0, 0, 1



 x i = 1, . . . , n, (4)

respectively, the MBCC can be expressed linearly in terms
of a multibody motion model M. By exploiting the alge-
braic properties of M, we will derive an algebraic closed
form solution to the following problem:
Problem 1 (Direct multiple-motion segmentation)
Given the partial derivatives {(Ij

x, Ij
y , Ij

t )}N
j=1 of a motion

sequence generated from n 2-D translational or 2-D affine
motion models, estimate the number of motion models
n, the optical flow u(x) at each pixel {xj}N

j=1, and the
model parameters {Mi}

n
i=1, without knowing which image

measurements correspond to which model.



2.2. Computing the multibody motion model
and the number of motion models

In this subsection, we show that the MBCC can be ex-
pressed linearly in terms of a multibody motion model M
and derive a rank constraint on the image measurements,
from which one can linearly estimate n and M.

In the case of 2-D translational motions, the optical flow
ui(x) does not depend on the pixel coordinates x, hence the
multibody optical flow is a constant vector U . Therefore,
after evaluating the MBCC νn(y)TU = 0 at each measure-
ment {yj}N

j=1, we obtain the following linear system on U

LU
nU =

[

νn(y1) νn(y2) · · · νn(yN )
]T

U = 0. (5)

In the case of 2-D affine motions, the optical flow is lin-
ear in x ∈ P

2. Therefore, the MBCC is a homogeneous
polynomial in each of x and y that can be written as [17]

MBCC(x,y) = νn(y)TAνn(x) = 0, (6)

where A ∈ R
Mn×Mn is called the multibody affine matrix.

Since equation (6) holds for all (xj ,yj), we obtain the fol-
lowing linear system on a (the stack of the columns of A)

LA
n a =

[

νn(y1) ⊗ νn(x1) · · · νn(yN ) ⊗ νn(xN )
]T

a = 0.

In addition, note that A(n1,n2,n3),(m1,m2,m3) = 0 when 0 ≤
m3 < n3 ≤ n, because the entries (3,1) and (3,2) of each
Ai are zero. After enforcing these equations we obtain

L̃A
n ã = 0, (7)

where ã ∈ R
M2

n−Zn is equal to a without the zero entries,
Zn = n(n + 1)(n + 2)(3n + 5)/24 is the number of zero
entries in A, and L̃A

n ∈ R
N×(M2

n−Zn) are the columns of
LA

n ∈ R
N×M2

n that do not correspond to the zero entries.
Since equations (5) and (7) depend explicitly on the

number of motions n, in order to compute the multibody
motion model M = U or M = A we must first determine
n. To this end, we assume that the image measurements are
non-degenerate, i.e. they do not satisfy any homogeneous
polynomial of degree less than or equal to n other than the
MBCC. This assumption is analogous to the standard as-
sumption in structure from motion that the measurements
do not live in a critical surface. Under this non-degeneracy
assumption we have that:

1. There is no polynomial of degree i < n that is satisfied
by every data point, hence the embedded data matrices
of degree i, LU

i and L̃A
i , are of full column rank;

2. There is only one polynomial of degree n, namely the
MBCC, that is satisfied by all the data, hence LU

n and
L̃A

n are of rank Mn −1 and M2
n −Zn −1 respectively;

3. There are two or more polynomials of degree i > n,
namely any multiple of the MBCC, that are satisfied
by all the data points, hence the null space of LU

i and
L̃A

i is at least two-dimensional.

Table 1. Minimum number of image measurements as a function
of the number of motion models.

n 1 2 3 4 5 10
2-D Translational 2 5 9 14 20 65

2-D Affine 6 24 64 139 265 2430

Therefore, if N ≥ Mn − 1 or N ≥ M2
n −Zn − 1 image

measurements are given, then the number of 2-D transla-
tional and 2-D affine motion models can be obtained as

n = min{i ∈ N : rank(LU
i ) = Mi − 1} and (8)

n = min{i ∈ N : rank(L̃A
i ) = M2

i − Zi − 1}, (9)

respectively. Table 1 gives numeric values for the minimum
number of points needed to estimate the number of motions.
Notice that for 10 motion models less than 2500 pixels are
needed, which is feasible even with a 100 × 100 image.

Note that formulae (8) and (9) are valid only for noise-
free measurements, because with noisy data the matrices
LU

i and L̃A
i may be full rank even if i ≥ n. In this case,

we use model selection to determine the number of models.
Let Li ∈ R

N×ri be LU
i or LA

i , with ri = Mi or M2
i − Zi,

respectively. We determine the number of motions as

n = arg min
i=1,2,...

{

σ2
ri

(Li)
∑ri−1

k=1 σ2
k(Li)

+ κri

}

(10)

where σk(Li) is the kth eigenvalue of Li, and κ > 0 is a
parameter. The first term in (10) measures how close the
matrix Li is to dropping rank by one, and the second term
penalizes choosing a large number of motions.

Once n is known, we can solve for U uniquely from (5)
by enforcing its Mnth entry to be one, because the last entry
of each ui is one. Similarly, we can solve for A uniquely
from (7) by enforcing its (Mn,Mn)th entry to be one.

2.3. Computing the optical flow at each pixel
Given n and M, we can easily compute the optical flow
u(x) at each pixel in closed form, without knowing which
motion model is associated with each pixel. To this end,
notice that for each pixel x there is a k = 1, . . . , n such
that yT uk(x) = 0, hence

∏

`6=i(y
T u`(x)) = 0 for all i 6=

k. Therefore, if pixel x is associated with the kth motion
model only, its optical flow can be obtained from

∂MBCC(x,y)

∂y
=

n
∑

i=1

ui(x)
∏

`6=i

(yT u`(x)) ∼ uk(x), (11)

after normalizing its third entry to be equal to one. Note that
(11) does not apply to pixels coming from two or more mo-
tion models, as in this case the MBCC has a repeated factor,
hence its derivative is zero. Notice also that (11) computes
the optical flow globally from M, thus eliminating the aper-
ture problem. Even if M is computed locally, our method
can deal with multiple motions, thus it does not suffer from
estimating a single motion model across motion boundaries.



2.4. Segmenting the multibody motion model
In the case of 2-D translational motions, we can obtain the
n motion models {ui}

n
i=1 by computing the optical flow at

every pixel using (11), and then applying any 2-D clustering
algorithm to obtain n values for the optical flow. Unfortu-
nately, with noisy data we may not be able to estimate the
optical flow reliably at every pixel, which may seriously af-
fect the clustering results, thus the estimation of the models.

An alternative method is to first choose n pixels {xi}
n
i=1

with reliable optical flow and then evaluate the optical flow
at these n pixels. Under the assumption of zero-mean Gaus-
sian noise in y with covariance Λ ∈ R

3×3 we can choose
xn as the pixel that minimizes the negative log-likelihood
of the associated generative model. A first-order approxi-
mation of the negative log-likelihood is given by1

d2
n(x,y) =

|MBCC(x,y)|2

‖Λ∂MBCC(x,y)
∂y

‖2
. (12)

We choose the remaining n − 1 pixels recursively as pro-
posed in [15]. Assume we have computed pixels xn, . . . ,xi

by minimizing d2
n, . . . , d2

i , respectively. A pixel xi−1 asso-
ciated with one of the remaining i − 1 models is chosen by
minimizing

d2
i−1(x,y) =

d2
i (x,y)

|yT u(xi)|2

‖Λu(xi)‖2

. (13)

Note that in choosing the pixels there is no optimization
involved. We just need to evaluate the distance functions at
each pixel and choose the one giving the minimum distance.
Once the n pixels and their models have been obtained, we
assign pixel j to model i = arg min`=1,...,n

(uT
` yj)2

‖Λu`‖2 .
In the case of 2-D affine motion models, we have

νn(y)TAνn(x) = (yT A1x)(yT A2x) · · · (yT Anx). (14)

Since A is known, we can see that computing the affine
matrices {Ai}

n
i=1 is equivalent to factoring the MBCC, a

bi-homogeneous polynomial of degree n, into a product of
n bilinear factors. A factorization algorithm can be found in
[17]. However, with noisy data the linear estimate of A may
not necessarily factor as a product of bilinear forms. Even
if A is factorizable, the factorization process is sensitive to
noise, especially when two or more factors are similar.

In this section we propose a new solution to the factoriza-
tion of A that does not require polynomial factorization. In-
stead, we exploit the geometric properties of A to obtain the
following purely geometric solution for computing {Ai}

n
i=1

1. Compute derivatives of the MBCC with respect to x to
obtain linear combinations of the rows of each Ai.

2. Obtain the rows of each Ai up to a scale factor from
the cross products of these linear combinations.

3. Solve linearly for the scales from the optical flow.
1Recall that for any surface f(y) = 0, a first order approximation to

the geometric distance to the surface is given by |f(y)|/‖∇f(y)‖.

For step 1, note that if the image measurement (x,y)
comes from the ith motion model, i.e. if yT Aix = 0, then

∂MBCC(x,y)

∂x
∼ yT Ai. (15)

That is, the derivatives of the MBCC with respect to x give
linear combinations of the rows of the affine model at x.
Now, since the optical flow u = [u, v, 1]T at pixel x is
known, we can compute the vectors y1 = [1, 0,−u]T and
y2 = [0, 1,−v]T . Although these vectors are not actual
image measurements, they do satisfy yT

1 u = yT
2 u = 0.

Hence, we can use them to obtain the following linear com-
bination of the rows of the affine model Ai at (x,y)

gi1 ∼ ai1 − ue3 and gi2 ∼ ai2 − ve3, (16)

where e3 = [0, 0, 1]T , from the derivatives of the MBCC at
(x,y1) and (x,y2), respectively.

For step 2, notice that bi1 = gi1 × e3 ∼ ai1 × e3

and bi2 = gi2 × e3 ∼ ai1 × e3 are vectors orthogonal to
ai1 and ai2, respectively. As a consequence, even though
the pairs (bi1, e1) and (bi2, e2), where e1 = [1, 0, 0]T and
e2 = [0, 1, 0]T , are not actual image measurements, they do
satisfy eT

1 Aibi1 = aT
i1bi1 = 0 and eT

2 Aibi2 = aT
i2bi2 = 0.

Therefore we can immediately compute the rows of Ai up
to scale factors λi1 and λi2 as

ãT
i1 = λ−1

i1 aT
i1 =

∂MBCC(x,y)

∂x

∣

∣

∣

∣

(x,y)=(bi1,e1)

, (17)

ãT
i2 = λ−1

i2 aT
i2 =

∂MBCC(x,y)

∂x

∣

∣

∣

∣

(x,y)=(bi2,e2)

. (18)

For step 3, from the optical flow equations u = Aix

we have that u = λi1ã
T
i1x and v = λi2ã

T
i2x, hence the

unknown scales are automatically given by

λi1 =
u

ãT
i1x

and λi2 =
v

ãT
i2x

. (19)

By applying steps 1-3 to all N pixels in the image, we
can effectively compute one affine matrix A for each pixel,
without yet knowing the segmentation of the image mea-
surements. Since in our model we only have n � N dif-
ferent affine matrices, we only need to apply steps 1-3 to
n pixels corresponding to each one of the n models. We
can automatically choose the n pixels at which to perform
the computation using the same methodology proposed for
2-D translational motions. Once the {Ai}

n
i=1 are calcu-

lated we can cluster the data by assigning (xj ,yj) to group
i = arg min`=1,...,n

|yjT A`xj |2

‖ΛA`x‖2 . We can then refine the
affine motion model parameters by solving the linear equa-
tion yT Aix = 0 for each separate cluster.

Remark 1 (Spatial smoothness) Note that our algorithm
computes one model per pixel without enforcing that nearby
pixels belong to the same group. We can incorporate spa-
tial regularization by applying any smoothing filter, e.g., an
average or median filter, to {ui}

n
i=1 or {Ai}

n
i=1.



3. Experimental results
Synthetic data. We first test our 2-D affine algorithm on
synthetic data. We randomly pick n = 2 collections of
N = 300 pixel coordinates and apply a different (randomly
chosen) affine motion model to each collection of pixels to
generate their optical flow. From the optical flow associated
with each pixel, we generate a random vector y of spatial
and temporal image derivatives satisfying the BCC (2). The
coordinates of y are constrained to be in [−1, 1] to simu-
late image intensities in the [0, 1] range. Zero-mean Gaus-
sian noise with standard deviation σ ∈ [0, 0.02] is added
to the partial derivatives y. We run 5,000 trials for each
noise level. For each trial the error between the true affine
motions {Ai}

n
i=1 and the estimates {Âi}

n
i=1 is computed as

Affine error =
1

n

n
∑

i=1

‖Ai − Âi‖

‖Ai‖
(%). (20)

We compare our method against the following algorithms:

1. K-means: starting from an initial set of affine matri-
ces, it alternates between assigning data to clusters and
computing {Ai}

n
i=1 linearly for each motion class.

2. Factorization [17]: it solves for {Ai}
n
i=1 by applying

homogeneous polynomial factorization to the MBCC.

3. Our algorithm + K-means: it uses our algorithm’s out-
put to initialize the K-means algorithm.

Figure 1 plots the mean affine error as a function of σ
for all algorithms. Notice that K-means has a nonzero error
with perfect data, showing that it usually converges to a lo-
cal minima when a single random initialization is used. The
average number of iterations needed for convergence is 12.
The factorization algorithm performs better than K-means
for a small level of noise. However, its performance deteri-
orates quickly as σ increases. In fact, when the multibody
affine matrix A is not factorizable due to noise, the factor-
ization algorithm gives complex results. Our algorithm’s
estimates are always real and within 5% of the true affine
motions, thus outperforming the K-means and factorization
algorithms. The best results are obtained by using our al-
gorithm to initialize K-means, which reduces the error to
about 1% and the average number of iterations to 3. Figure
1 also shows the percentage of misclassification. Our algo-
rithm’s misclassification rate is 6.5%, even for a noise level
of 2% in the image derivatives. The percentage reduces to
about 2% by following our algorithm with K-means.

Figure 2 shows the mean error in estimation of optical
flow as a function of σ. Note that the error in either compo-
nent is less than 0.35 pixels for σ = 0.02.

Real sequences. Figure 3 shows segmentation results for a
240×320 sequence of a person’s head rotating from right to
left in front of a lab background using two 2-D translational
motions. The top row shows the pixels associated with the
camera’s fronto-parallel motion and the bottom row shows

the pixels associated with the head motion. In each row,
pixels that do not correspond to the group are colored red.

Figure 4 shows another example on the segmentation of
a 240 × 320 sequence of a car leaving a parking lot us-
ing two 2-D translational motions. The top row shows the
pixels associated with the camera’s downward motion and
the bottom row shows the pixels associated with the car’s
right-downward motion. In each row, pixels that do not
correspond to the group are colored black. Figure 5 shows
segmentation results for the same sequence using two 2-D
affine motion models.

Figure 6 shows the segmentation of a sequence taken by
a static camera observing a moving car and a moving box
using two 2-D affine motions. The top row shows the seg-
mentation of the box motion while the bottom row shows
the segmentation of the car motion. In each row the pixels
that do not correspond to the group are colored black.

The segmentation results in Figures 3-6 are encourag-
ing. Although we are using a simple mixture of two 2-D
translational or two 2-D affine motion models for the en-
tire scene, the two motion models are segmented accurately
to a great extent. Most of the errors occur at regions with
low texture, e.g., the black sweater and white wall regions
in Figure 3, parts of the body of each car and the road in
Figures 4 and 5, as well as pixels in highly specular regions
where the BCC is not satisfied. In Figure 6 the discrepan-
cies arise from the fact that the 2-D affine motion model
gives a rough approximation to the motion of the two ob-
jects, because this scene contains noticeable perspective ef-
fects. Note also that for the parking lot sequence using 2-D
affine motion models gives better segmentation results than
using 2-D translational models, as can be seen by compar-
ing Figures 4 and 5. Overall, about 85% of the image pixels
are correctly classified with respect to ground truth manual
segmentation. These results can be used as an initial seg-
mentation for any more computationally intense nonlinear
iterative refinement scheme.

4. Summary and Conclusions
We have presented a closed form solution to direct motion
segmentation from the image derivatives. Our approach fits
a multibody brightness constancy constraint (MBCC) to all
image measurements, and computes the optical flow and
the parameters of each motion model from the derivatives
of the MBCC. Our algorithm deals properly with moderate
amounts of noise, and can be used to initialize any iterative
refinement scheme, e.g., EM, to deal with larger amounts of
noise. Open research avenues include dealing with outliers
in the image measurements as well as dealing with motion
models of different type.
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Figure 1. Left: Error in affine parameters as a function of noise.
Right: Percentage of misclassification as a function of noise.
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Figure 2. Error in the estimated optical flow as a function of noise.

Figure 3. 2-D translational segmentation of head and lab sequence.

Figure 4. 2-D translational segmentation of parking lot sequence.

Figure 5. 2-D affine segmentation of parking lot sequence.

Figure 6. 2-D affine segmentation of car and box sequence.
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