
Optical Flow Estimation & Segmentation of Multiple Moving Dynamic Textures

René Vidal and Avinash Ravichandran
Center for Imaging Science, Johns Hopkins University

301 Clark Hall, 3400 N Charles St., Baltimore, MD, 21218, USA

Abstract
We consider the problem of modeling a scene containing
multiple dynamic textures undergoing multiple rigid-body
motions, e.g., a video sequence of water taken by a rigidly
moving camera. We propose to model each moving dynamic
texture with a time varying linear dynamical system (LDS)
plus a 2-D translational motion model. We first consider a
scene with a single moving dynamic texture and show how
to simultaneously learn the parameters of the time varying
LDS as well as the optical flow of the scene using the so-
called dynamic texture constancy constraint (DTCC). We
then consider a scene with multiple non-moving dynamic
textures and show that learning the parameters of each time
invariant LDS as well as their region of support is equiv-
alent to clustering data living in multiple subspaces. We
solve this problem with a combination of PCA and GPCA.
Finally, we consider a scene with multiple moving dynamic
textures, and show how to simultaneously learn the param-
eters of multiple time varying LDS and multiple 2-D trans-
lational models, by clustering data living in multiple dy-
namically evolving subspaces. We test our approach on se-
quences of flowers, water, grass, and a beating heart.

1. Introduction
The past few decades have witnessed significant advances
in motion analysis under the assumption that the scene is
Lambertian, rigid and static. The Lambertian assumption
is crucial to the problems of tracking, optical flow and cor-
respondences, because the intensity of a point is indepen-
dent of the view point. Given optical flow or point corre-
spondences, the assumption of a rigidly moving camera ob-
serving a static world enables us to both recover the camera
motion as well as reconstruct the rigid shape of the scene.

Recently there have been attempts to relax each one of
these assumptions separately. For example, the generalized
constant brightness constraint [8] allows us to compute the
optical flow in the case of non Lambertian scenes. Likewise,
the multibody fundamental matrix [14] allows us to recon-
struct dynamic scenes consisting of multiple rigid motions.

As for the assumption of rigidity, there have been three
main approaches to dealing with nonrigid scenes. In
feature-based methods such as [2, 1, 13, 6], a rigidly mov-
ing camera observes a single nonrigid shape. By modeling
the nonrigid shape as a linear combination of rigid shapes,
once can jointly recover rigid motion and nonrigid shape

from point correspondences in multiple views by extend-
ing the classical algorithm for static shapes [12]. In direct
approaches [10, 3, 16], a static camera observes a nonrigid
scene whose temporal evolution exhibits certain stationar-
ity, e.g., water, foliage, steam, etc. These scenes are called
dynamic textures. By modeling the temporal evolution of
the image intensities as the output of a time invariant linear
dynamical system (LDS), one can jointly recover a model
for the appearance and dynamics of the scene using classi-
cal system identification techniques. Other techniques, such
as [9], do not use a model to describe the dynamics of the
scene. Instead, the synthesis is done by choosing a frame in
the video that is ”close” to the current one.

To the best of our knowledge, there have been only two
attempts at dealing with both nonrigid and dynamic scenes.
The work of [5] introduces the concept of stochastic rigidity
for dealing with scenes in which a rigidly moving camera
observes a single dynamic texture. Unfortunately, the paper
provides no computational framework for either estimating
the optical flow or learning the appearance and dynamics
of the scene. The work of [4] deals with scenes in which
a static camera observes multiple dynamic textures. It pro-
poses a level set-based technique to segment the scene into
multiple regions, each one represented with a LDS. As with
most level set techniques, the method is very computation-
ally intense. Furthermore, it can only deal with scenes in
which the dynamic textures do not move.

1.1. Paper contributions
In this paper we look at the problem of modeling and seg-
menting a scene consisting of multiple dynamic textures un-
dergoing multiple rigid motions. More specifically, we con-
sider the following three problems.

1. Estimating the optical flow of a dynamic texture.
First, we consider the problem of jointly recovering
the optical flow and a dynamical model for a single
dynamic texture being observed by a rigidly moving
camera. We are faced with two key challenges:

(a) One cannot estimate a LDS for the dynamic tex-
ture as in [10], because the camera is moving, so
the appearance model is no longer time invariant.

(b) One cannot estimate the optical flow using the
brightness constancy constraint, because the in-
tensity of a pixel changes with the viewpoint due
to the temporal evolution of the dynamic texture.



We solve the first problem by modeling moving dy-
namic textures using a time varying LDS together with
a 2-D translational motion model. These models to-
gether capture both the temporal evolution of the im-
age intensities as well as the camera motion and lead
to a generalization of the brightness constancy con-
straint to nonrigid scenes, the so-called dynamic tex-
ture constancy constraint (DTCC). The DTCC allows
us to jointly estimate the optical flow of the scene as
well as a LDS for the dynamic texture.

2. Segmenting non-moving dynamic textures. Second,
we consider the problem of modeling a static camera
observing multiple non-moving dynamic textures. We
demonstrate that the image intensities generated by a
single dynamic texture live in a low-dimensional sub-
space of a high-dimensional linear space. Therefore,
the problem of segmenting multiple dynamic textures
can be transformed into one of segmenting multiple
subspaces. We solve the latter problem in closed form
using an algebraic technique called Generalized Prin-
cipal Component Analysis (GPCA) [15].

3. Segmenting moving dynamic textures. Third, we
look at the problem of modeling scenes with multiple
moving dynamic textures. By combining step 1, which
allows us to estimate the LDS and the 2-D translational
model for a single moving dynamic texture, and step 2,
which allows us to segment multiple non-moving dy-
namic textures, we show that one can simultaneously
learn the LDS, the 2-D translational motion model, and
the region of support of each one of the moving dy-
namic textures.

As we will see shortly, our approach provides an extremely
simple and computationally straightforward solution to the
very challenging problem of simultaneous motion estima-
tion and segmentation of rigid and nonrigid motions.

2. Optical Flow of a Dynamic Texture
2.1. Modeling non-moving dynamic textures
Let I(x, y) be an image of a static texture T . A simple
model for the appearance of T is to assume that I can be
written as a linear combination of certain basis, i.e.

I(x, y) =
n

∑

i=1

Ci(x, y)zi. (1)

In vector notation we write I = Cz, where I ∈ R
P ,

C ∈ R
P×n and z ∈ R

n, with P the number of pixels
and n the number of texture bases. By an abuse of nota-
tion, we denote the row of C associated with pixel (x, y) as
C(x, y) ∈ R

1×n, so that I(x, y) = C(x, y)z.
Let us now consider a video sequence I(x, y, t) of a non-

moving dynamic texture T . As proposed in [10], we can

model the appearance of T as a linear combination of cer-
tain basis, except that the coefficients z are now a function
of time, i.e. the intensity value of pixel (x, y) at frame t is
given by I(x, y, t) = C(x, y)z(t). In vector notation we
write I(t) = Cz(t). The temporal evolution of the vec-
tor of coefficients can be described in a variety of ways.
A simple model is to assume that z evolves according to a
first-order linear dynamical system (LDS) driven by white
noise η(t) ∈ R

nη , i.e. z(t + 1) = Az(t) + Bη(t), for some
A ∈ R

n×n and B ∈ R
n×nη . The number of texture basis

n is assumed to be the same as the order of the LDS in this
model. We thus obtain the following ARMA model for a
dynamic texture T

z(t + 1) = Az(t) + Bη(t)

I(t) = Cz(t) + w(t), (2)

where w(t) is measurement white noise.
Given a video sequence {I(t)}F

t=1 of a dynamic tex-
ture, one can learn the parameters of the ARMA model
(A,B,C) optimally and in closed form using subspace
identification techniques such as N4SID [7]. Since

W = [I(1) · · · I(F )] = C[z(1) · · · z(F )] = CZ, (3)

when η = w = 0, a sub-optimal solution is to learn C and
Z from the singular value decomposition of [I(1) · · · I(F )].
Given Z, solving for A is a linear problem. Given A and Z,
solving for B (assuming now that η 6= 0) is also a linear
problem. We refer the reader to [10] for details about this
sub-optimal solution. Once the parameters (A,B,C) have
been learned, one can use the identified LDS for synthesis,
classification and recognition of dynamic textures.

2.2. Modeling moving dynamic textures
Consider now a video sequence I(x, y, t) of a dynamic tex-
ture T taken by a moving camera. In this case the temporal
evolution of I(x, y, t) is determined not only by the non-
rigid motion of the dynamic texture, but also by the rigid
motion of the camera.

In order to understand whether the model in (2) can cap-
ture both rigid and nonrigid motions, let us have a closer
look at the model. First, notice that A, B and z(t) do not
depend on the pixel coordinates. Therefore, they can only
capture the temporal evolution of the texture, i.e. the non-
rigid motion. The matrix C, on the other hand, depends ex-
plicitly on the pixel coordinates and, by construction, each
image I(t) is a linear combination of the columns of C with
time-varying coefficients z(t). Therefore, we can interpret
the C matrix as modeling the static texture or appearance of
the dynamic texture. In fact, if the scene was static and rigid
and n = 1, then we would have A = 1, B = 0, z(t) = 1,
and hence the matrix C would coincide with the image I(t).
Since the matrix C does not change with time, the image
would be forced to be constant. Therefore, the time invari-
ant LDS (2) can capture the nonrigid motion the dynamic
texture, but cannot capture the motion of the camera.



In order to capture both the rigid and nonrigid motions
present in the scene, we propose to modify the LDS (2) by
making the C matrix time dependent. That is, we propose to
model a moving dynamic texture with a time varying LDS

z(t + 1) = Az(t) + Bη(t)

I(t) = C(t)z(t) + w(t). (4)

Unfortunately, the optimal identification of the model pa-
rameters of a stochastic time varying LDS is not a straight-
forward problem. Even in the case of time invariant LDS,
the identification problem was solved in closed form only in
the last decade [7]. Therefore, similar to the work of [10],
in this paper we seek a sub-optimal solution under certain
assumptions on the temporal evolution of C(t).

As we will see in the next subsection, the rigid motion
of the camera already imposes some constraints on the tem-
poral evolution of C(t). Such constraints will be used for
estimating the optical flow given C(t). In order to estimate
C(t) directly from image data, we assume that the camera
motion is small so that C(t) is slowly varying. More specif-
ically, we assume that in each time window of size τ > n
C(t) is approximately constant and learn a time invariant
LDS for that time window using the method in [10]. By ap-
plying this to each time window [t−τ +1, t] we obtain C(t)
for t ∈ {τ, τ + 1, · · · , F} and z(t) for t ∈ {1, 2, · · · , F}.
Since the parameters of a time invariant LDS can only be
identified up to a change of basis L ∈ R

n×n, i.e. the models
(A,B,C) and (LAL−1, LB,CL−1) are equivalent, the last
step is to ensure that, as t varies, C(t) and z(t) are computed
with respect to the same basis. We do so by using the basis
at time t = τ as the reference. That is, given (At, Ct, Bt),
we compute a change of basis Lt such that Aτ = LtAtL

−1

t ,
and obtain our time varying LDS as (Aτ , LtBt, CtL

−1

t ).

2.3. Estimating optical flow from the dynamic
texture constancy constraint (DTCC)

In the proposed model of a moving dynamic texture (2) the
time invariant matrix A plays the same role as in a non-
moving texture, i.e. it captures the nonrigid motion of the
scene. On the other hand, the time varying matrix C(x, y, t)
captures both the static texture or appearance of the scene,
via its dependency on (x, y), as well as the camera motion,
via its dependency on t. Nevertheless, notice that in or-
der for the temporal evolution of C(t) to capture only the
camera motion, we cannot allow C(t) to be arbitrary. Oth-
erwise, a model with parameters n = 1, A = 1, B = 0,
and C(t) = I(t) would fit the image data perfectly, yet
the resulting model would not be meaningful in the sense of
capturing both the rigid and nonrigid dynamics of the scene.

In order to constraint the values that C can take on, we
propose to use an equivalent of the brightness constancy
constraint (BCC) for dynamic textures. To this end, re-
call that for a static Lambertian scene the image brightness
I(x, y, t) does not depend on the view point. Thus we have

I(x + u, y + v, t + 1) = I(x, y, t), (5)

where (u, v) is the image displacement or optical flow at
pixel (x, y). The BCC (5) can also be expressed in dif-
ferential form as a linear relationship between the spatio-
temporal image derivatives and the optical flow as

∂I(x, y, t)

∂x
u +

∂I(x, y, t)

∂y
v +

∂I(x, y, t)

∂t
= 0. (6)

Since the BCC gives one equation in two unknowns (u, v),
the simplest method for computing the optical flow is to
integrate the image measurements in a neighborhood Ω of
(x, y) and solve for the optical flow from

∑

Ω

[

I2
x IxIy

IxIy I2
y

] [

u
v

]

= −
∑

Ω

[

IxIt

IyIt

]

. (7)

Unfortunately, the BCC is not applicable to video se-
quences containing dynamic textures, because the bright-
ness of a pixel does change as a function of time without
any change of the view point. However, as we have alluded
to earlier, the matrix C(x, y, t) for a dynamic texture plays
the analogous role of I(x, y, t) for a static scene. By assum-
ing that C does not depend on the view point, we obtain the
following dynamic texture constancy constraint (DTCC)

C(x + u, y + v, t + 1) = C(x, y, t) (8)

or its differential form

∂C(x, y, t)

∂x
u +

∂C(x, y, t)

∂y
v +

∂C(x, y, t)

∂t
= 0. (9)

Unlike the BCC, which is a scalar equation, the DTCC
is a vector equation because C(x, y, t) ∈ R

1×n, where n is
the order of the LDS. Therefore, if C(x, y, t) was known,
we could immediate recover the optical flow at each pixel,
without integrating C in a neighborhood of (x, y), from

[

CxCT
x CxCT

y

CxCT
y CyCT

y

] [

u
v

]

= −

[

CxCT
t

CyCT
t

]

. (10)

The main problem with this approach to computing opti-
cal flow from dynamic textures is that it relies heavily on a
good knowledge of the C matrix, which may not be feasible
to obtain in practice. Therefore, it would be nice if we could
express the DTCC directly in terms of our measurements
I(x, y, t). This can be easily achieved by multiplying the
vector equation (9) by z(t). We obtain (assuming w = 0)

∂C(x, y, t)

∂x
z(t)u +

∂C(x, y, t)

∂y
z(t)v +

∂C(x, y, t)

∂t
z(t)

=
∂I(x, y, t)

∂x
u +

∂I(x, y, t)

∂y
v +

∂C(x, y, t)

∂t
z(t) = 0,

which except for the last term, depends directly on the im-
age data. Indeed, note that this version of the DTCC is es-
sentially the same as the BCC, except that the last term ∂I

∂t

is replaced by ∂C
∂t

z(t). Therefore, one may solve for the
optical flow using (7), or any of the existing approaches for
optical flow estimation that are based on the BCC.



There is a very intuitive reason for replacing ∂I
∂t

by
∂C
∂t

z(t) when going from static scenes to dynamic textures.
If there is no measurement noise in (4), i.e. w = 0, then

∂I(x, y, t)

∂t
= C(x, y, t)

∂z(t)

∂t
+

∂C(x, y, t)

∂t
z(t). (11)

Note that ∂I
∂t

is the sum of two terms: the first one due to
nonrigid motion and the other one due to rigid motion. Thus
in order to estimate the optical flow due to rigid motion,
we must only consider the rigid component ∂C

∂t
z(t) of ∂I

∂t
.

Because C(t) may not be estimated accurately, we avoid
computing ∂C

∂t
by using (11) to approximate ∂C

∂t
z(t) as ∂I

∂t
−

I(t) + C(t)zt−1.

3. Segmenting Non-moving Dynamic
Textures using Generalized PCA

Consider now a scene consisting of K non-moving dynamic
textures {Tk}

K
k=1

. Without knowing which pixels corre-
spond to which dynamic texture, we would like to simul-
taneously learn the parameters {(Ak, Bk, Ck)}K

k=1
of each

texture as well as the spatial segmentation of the scene.
If there is only one dynamic texture in the scene, then

from (3) we know that when w = 0 and F, P ≥ n, where
n is the order of the dynamic texture, then the P × F mea-
surement matrix W = [I(1) · · · I(F )] is of rank at most n.
Therefore, when w ≈ 0, each row of W lives approximately
in a subspace of R

F of dimension at most n and so if there
are K dynamic textures in the scene, then each row of W
lives in one out of K possible subspaces of R

F . The prob-
lem of segmenting multiple non-moving dynamic textures
is then equivalent to one of clustering the rows of W into K
subspaces.

Segmenting data living in multiple subspaces has been
an active topic of research over the past few years. Extant
methods randomly choose a basis for each subspace to then
iterate between data segmentation and subspace estimation.
This can be done using, e.g., K-subspace, an extension of K-
means to the case of subspaces, or Expectation Maximiza-
tion (EM) for mixtures of Principal Component Analysis
(PCA) [11].

An alternative algebraic approach, which does not re-
quire any initialization, is Generalized PCA (GPCA) [15].
In this approach, the data points are first projected onto a
low-dimensional subspace to reduce dimensionality. Then,
a polynomial is fit to the projected data points and a basis
for each one of the projected subspaces is obtained from the
derivatives of this polynomials at the data points.

For the problem of segmenting non-moving dynamic
textures, the GPCA algorithm operates as follows:

1. Project the rows of W ∈ R
P×F onto a linear subspace

of dimension d = n + 1. This can be done by first
computing the SVD of W = USV T , and then letting
the projected W ∈ R

P×d be the first d columns of U .

2. Fit a polynomial to the projected data. The rationale
behind this step is as follows. Let w ∈ R

d be any
of the rows of W ∈ R

P×d. Since w must belong to
one of the K projected subspaces, say Sk, then there
exists a vector bk ∈ R

d normal to Sk such that b
T
k w =

0. Then any row w of W must satisfy the following
homogeneous polynomial of degree K in d variables

pn(w) = (bT
1 w)(bT

2 w) · · · (bT
Kw) = 0. (12)

This polynomial can be expressed linearly in terms of
its coefficients. For instance, if n = 2 and d = 2 we
have pn(w) = c1w

2
1 + c2w1w2 + c3w

2
2 , and we can

solve for the coefficients from the linear system

[c1, c2, c3]





w2
11 · · · w2

1P

w11w21 · · · w1P w2P

w2
21 · · · w2

2P



 = 0. (13)

3. Solve for the normal vectors from the derivatives of pn.
The polynomial pn = 0 describes a surface in R

d, i.e.
the union of the K projected subspaces. Therefore, the
derivative of pn at a data point gives a vector normal
to the subspace passing through that point, i.e.

bk =
Dpn(w)

‖Dpn(w)‖
. (14)

4. Segment the data. Assign every point w to the closest
subspace k if

k = arg min
`=1,...,K

{(bT
` w)2}. (15)

5. Learn the models. Use system identification to com-
pute (Ak, Bk, Ck) for each texture k = 1, . . . ,K.

4. Optical Flow Estimation & Segmen-
tation of Moving Dynamic Textures

Consider now a scene consisting of K moving dynamic tex-
tures {Tk}

K
k=1

. Without knowing at each frame which pix-
els belong to which dynamic texture, we would like to si-
multaneously learn the dynamical model (Ak, Ck(t), Bk)
associated with each texture, its optical flow uk(x, y, t)
and vk(x, y, t), and the spatio-temporal segmentation of the
scene.

In this case, the matrix C(t) varies as a function of time,
and so the rows of the matrix W = [I(1) · · · I(F )] no
longer live in a collection of K subspaces of dimension n.
However, if we assume that in each time window of size
τ each one of the matrices Ck(t) is slowly varying, then
the intensities generated by the K dynamic textures live ap-
proximately in a union of K subspaces that are slowly mov-
ing and changing orientation as a function of time. At each
frame, the problem of segmenting the dynamic textures is
equivalent to segmenting data in multiple subspaces. The
problem of optical flow is, on the other hand, equivalent es-
timating how these subspace evolve as a function of time.



In order to tackle this problem of simultaneous cluster-
ing and tracking multiple subspaces, we propose to combine
dynamic texture segmentation via GPCA with dynamic tex-
ture optical flow estimation via the DTCC as follows:

1. Compute the spatio-temporal image derivatives for all
F frames in I(t).

2. For each time window [t− τ + 1, t] compute C(t) and
z(t) from the singular value decomposition of W (t) =
[I(t − τ + 1) · · · I(t)], as described in Section 2.

3. For each time window [t − γ + 1, t] compute a spatial
segmentation of I(t) into K groups by applying the
dynamic texture segmentation algorithm described in
Section 3 to the matrix W (t) = [I(t− γ +1) · · · I(t)].

4. For each group k = 1, · · · ,K, compute the optical
flow (uk, vk) at time t from Ix(t), Iy(t), Ck(t) and
zk(t), as described in Section 2.

5. Experimental Results
Estimating optical flow for one moving dynamic texture.
To test the proposed algorithm for modeling and optical
flow estimation of a single moving dynamic texture, we
used a 120 × 160 video sequence of a flower bed taken by
a panning camera as shown in Figure 1. The camera is ini-
tially stationary, then it moves to the right, and then it stops.

We learned a time varying LDS for the sequence by iden-
tifying a time invariant LDS of order n = 20 using a moving
window of size τ = 22 frames, as described in Section 2.
In learning this model, we did not enforce that the matrix A
be time invariant. In order to validate the assumption of A
being time invariant, in Figure 2 we plot the eigenvalues of
the A matrices for different time windows. Notice that in-
deed the eigenvalues of the A matrices are very similar for
different time windows.

Given the estimated C(t) and z(t), we calculated the op-
tical flow as described in Section 2. Since in this case the
optical flow of all the pixels is the same, we took the region
of integration Ω for the optical flow calculation in (7) to be
the entire image, i.e. we computed only one value for the
optical flow at each frame. Figure 3 plots the estimated op-
tical flow as a function of time. Note that the optical flow in
the vertical direction is estimated to be approximately zero,
as expected. The optical flow in the horizontal direction
is approximately zero for the first 50 frames, negative for
the next 150 frames, and approximately zero for the last 40
frames. By integrating the horizontal optical flow, we esti-
mated the overall displacement of the sequence as 60 pix-
els. The ground truth displacement was computed from the
motion of one of the red flowers as 85 pixels. Therefore,
our algorithm underestimates the amount of rigid motion
for this sequence. This is because for t ∈ [30, 50] the flow-
ers oscillate more frequently when compared to the first 30
frames of the video sequence. This causes our algorithm to
estimate a positive optical flow for a few frames.

Figure 1. A sequence of moving flowers taken by a moving camera.
See http://www.robots.ox.ac.uk/∼awf/iccv01/.

−1 0 1

−1

−0.5

0

0.5

1

Real Part

Im
ag

in
ar

y 
P

ar
t

−1 0 1

−1

−0.5

0

0.5

1

Real Part

Im
ag

in
ar

y 
P

ar
t

−1 0 1

−1

−0.5

0

0.5

1

Real Part

Im
ag

in
ar

y 
P

ar
t

−1 0 1

−1

−0.5

0

0.5

1

Real Part

Im
ag

in
ar

y 
P

ar
t

−1 0 1

−1

−0.5

0

0.5

1

Real Part

Im
ag

in
ar

y 
P

ar
t

−1 0 1

−1

−0.5

0

0.5

1

Real Part

Im
ag

in
ar

y 
P

ar
t

Figure 2. Eigenvalues of the A matrices for the flower sequence.

50 100 150 200 250

−0.5

−0.4

−0.3

−0.2

−0.1

0

Frames

O
pt

ic
al

 F
lo

w

Figure 3. Optical flow estimation for the flower sequence.

Segmentation of non-moving dynamic textures. The pro-
posed algorithm for segmentation of non-moving dynamic
textures was applied to 20 ECG gated Magnetic Resonance
images corresponding to one cardiac cycle of a beating heart
surrounded by a static chest wall, as shown in Figure 4
(left). We modeled the visual dynamics of the heart with
a 4th order LDS, and obtained the segmentation by apply-
ing GPCA to the first d = 5 principal components of the
video sequence, as described in Section 3. Figure 4 shows
the segmentation of the sequence into the chest wall (cen-
ter) and the beating heart (right). Note that our algorithm
performs very well using only the 5 principal components.

Figure 4. Segmentation of a beating heart and a static chest wall.

Segmentation of moving dynamic textures. In order to
test our algorithm for optical flow and segmentation of mov-
ing dynamic textures, we generated a synthetic sequence by
superimposing two real sequences, one containing moving



Figure 5. Segmentation of grass moving over static water.

water and the other containing the motion of grass due to
wind. The grass sequence was scaled to 25% of its original
size and then placed over the water sequence and moved in
the x and y directions by 1 pixel/frame. Thus the resulting
sequence consists of one non-moving and one moving dy-
namic texture. Simultaneous dynamic texture segmentation
and optical flow estimation was performed using the algo-
rithm of Section 4 with γ = 5, n = 30 and τ = 32.

Figure 5 shows the segmentation of some frames of the
sequence, which was near perfect for all frames. Figure 6
shows the estimated optical flow. For the group of pixels
corresponding to the water, which is not undergoing rigid
motion, we obtained an optical flow close to zero for all
frames. For the group of pixels corresponding to the moving
grass, the estimated optical flow in the x and y direction is
approximately 0.8 pixels/frame. As before, note that the
algorithm underestimates the amount of rigid motion.

6. Summary and Conclusions
We have presented a new approach to modeling scenes
containing multiple dynamic textures undergoing multiple
rigid-body motions. By combining time varying linear dy-
namical models with 2-D translational motion models, we
demonstrated that it is possible to simultaneously estimate
a dynamical model for each moving texture, its optical flow
and the spatio-temporal segmentation of the scene using
a combination of Generalized PCA with the so-called dy-
namic texture constancy constraint. Experiments in various
video sequences demonstrated the ability of the method to
estimate and segment both rigid and nonrigid motions.

0 10 20 30 40 50 60
−0.2

0

0.2

0.4

0.6

0.8

Frames

O
pt

ic
al

 F
lo

w

Figure 6. Optical flow estimation for grass (top) & water (bottom).

Acknowledgments
Work funded by Johns Hopkins Whiting School of Enginee-
ring startup funds and NSF CAREER Award ISS-0447739.

References
[1] M. Brand. Morphable 3D models from video. In IEEE Conference

on Computer Vision and Pattern Recognition, pages 456–463, 2001.
[2] C. Bregler, A. Hertzmann, and H. Biermann. Recovering non-rigid

3D shape from image streams. In IEEE Conference on Computer
Vision and Pattern Recognition, pages 2690–2696, 2000.

[3] G. Doretto, A. Chiuso, Y. Wu, and S. Soatto. Dynamic textures.
International Journal of Computer Vision, 51(2):91–109, 2003.

[4] G. Doretto, D. Cremers, P. Favaro, and S. Soatto. Dynamic texture
segmentation. In IEEE Conference on Computer Vision, pages 44–
49, 2003.

[5] Andrew Fitzgibbon. Stochastic rigidity: Image registration for
Nowhere-Static scenes. In IEEE International Conference on Com-
puter Vision, pages 662–669, 2001.

[6] Takeo Kanade Jing Xiao, Jin-Xiang Chai. A closed-form solution to
non-rigid shape and motion recovery. In European Conference on
Computer Vision, pages 573–587, 2004.

[7] B. De Moor, P. Van Overschee, and J. Suykens. Subspace algorithms
for system identification and stochastic realization. Technical Report
ESAT-SISTA Report 1990-28, Katholieke Universiteit Leuven, 1990.

[8] S. Negahdaripour. Revised definition of optical flow: integration of
radiometric and geometric clues for dynamic scene analysis. IEEE
Trans. on Pattern Analysis and Machine Intelligence, 20(9):961979,
1998.

[9] A. Schödl, R. Szeliski, D. H. Salesin, and I. Essa. Video textures. In
SIGGRAPH, pages 489–498, 2000.

[10] S. Soatto, G. Doretto, and Y. Wu. Dynamic textures. In IEEE Inter-
national Conference on Computer Vision, pages 439–446, 2001.

[11] M. Tipping and C. Bishop. Mixtures of probabilistic principal com-
ponent analyzers. Neural Computation, 11(2), 1999.

[12] C. Tomasi and T. Kanade. Shape and motion from image streams
under orthography. International Journal of Computer Vision,
9(2):137–154, 1992.

[13] L. Torresani, D. Yang, E. Alexander, and C. Bregler. Tracking and
modeling non-rigid objects with rank constraints. In IEEE Confer-
ence on Computer Vision and Pattern Recognition, pages 493–500,
2001.

[14] R. Vidal and Y. Ma. A unified algebraic approach to 2-D and 3-D
motion segmentation. In European Conference on Computer Vision,
pages 1–15, 2004.

[15] R. Vidal, Y. Ma, and J. Piazzi. A new GPCA algorithm for clus-
tering subspaces by fitting, differentiating and dividing polynomials.
In IEEE Conference on Computer Vision and Pattern Recognition,
volume I, pages 510–517, 2004.

[16] Lu Yuan, Fang Wen, Ce Liu, and Heung-Yeung Shum. Synthesizing
dynamic texture with closed-loop linear dynamic system. In Euro-
pean Conference on Computer Vision, 2004.


