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Abstract
We propose a geometric approach to 3-D motion segmenta-
tion from point correspondences in three perspective views.
We demonstrate that after applying a polynomial embed-
ding to the correspondences they become related by the
so-called multibody trilinear constraint and its associated
multibody trifocal tensor. We show how to linearly estimate
the multibody trifocal tensor from point-point-point corre-
spondences. We then show that one can estimate the epipo-
lar lines associated with each image point from the common
root of a set of univariate polynomials and the epipoles by
solving a plane clustering problem in R3 using GPCA. The
individual trifocal tensors are then obtained from the sec-
ond order derivatives of the multibody trilinear constraint.
Given epipolar lines and epipoles, or trifocal tensors, we
obtain an initial clustering of the correspondences, which
we use to initialize an iterative algorithm that finds an op-
timal estimate for the trifocal tensors and the clustering of
the correspondences using Expectation Maximization. We
test our algorithm on real and synthetic dynamic scenes.

1. Introduction
One of the most important problems in visual motion analy-
sis is that of reconstructing a 3-D scene from a collection of
images taken by a moving camera. At present, the algebra
and geometry of the problem is very well understood, and it
is usually described in terms of the so-called bilinear, trilin-
ear, and multilinear constraints among two, three and mul-
tiple views, respectively. Also, there are various algorithms
for performing the reconstruction task, both geometric and
optimization-based [4].

All the above algorithms are, however, limited by the as-
sumption that the scene is static, i.e. only the camera is
moving and hence there is a single motion model to be esti-
mated from the image measurements. In practice, however,
most of the scenes are dynamic, i.e. both the camera and
multiple objects in the 3-D world are moving. Thus, one is
faced with the more challenging problem of recovering mul-
tiple motion models from the image data, without knowing
the assignment of data points to motion models.

Previous work on 3-D motion segmentation [2, 9] has
addressed the problem using the standard probabilistic ap-

proach. Given an initial clustering of the image data, one
estimates a motion model for each group using standard
structure from motion algorithms. Given the motion pa-
rameters, one can easily update the clustering of the cor-
respondences. The method then proceeds by iterating be-
tween these two steps, using the Expectation Maximization
(EM) algorithm. When the probabilistic model generating
the data is known, this iterative method provides an optimal
estimate in the maximum likelihood sense. However, it is
well-known that EM is very sensitive to initialization [8].

In order to deal with the initialization problem, recent
work on 3-D motion segmentation has concentrated on the
study of the geometry of multiple motion models. [10] pro-
posed a polynomial factorization algorithm for segmenting
purely translating objects. [14] derived a bilinear constraint
in R6 which, together with a combinatorial scheme, seg-
ments two rigid-body motions from two perspective views.
[13] proposed a generalization of the epipolar constraint and
of the fundamental matrix to multiple rigid-body motions,
which leads to a motion segmentation algorithm based on
factoring products of epipolar constraints to retrieve the fun-
damental matrices associated with each one of the motions.
[11] extended this method to most two-view motion mod-
els, such as affine, translational and planar homographies,
by fitting and differentiating complex polynomials.

In this paper, we consider the problem of estimating and
segmenting multiple rigid-body motions from a set of point
correspondences in three perspective views. In Section 2
we study the three-view geometry of multiple rigid-body
motions. We demonstrate that, after a suitable embedding
into a higher-dimensional space, the three views are related
by the so-called multibody trilinear constraint and its asso-
ciated multibody trifocal tensor. In Section 3, we propose
a geometric algorithm for 3-D motion segmentation that es-
timates the motion parameters (epipoles, epipolar lines and
trifocal tensors) from the derivatives of the multibody tri-
linear constraint. This algebraic (non-iterative) solution is
then used to initialize an optimal algorithm. To the best of
our knowledge, there is no previous work addressing this
problem. The only existing works on multiframe 3-D mo-
tion segmentation are for points moving on a line in three
perspective views [7], and for rigid-body motions in three
or more [12] and/or four or more affine views [1, 5].
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2. Multibody three-view geometry
This section establishes the basic geometric relationships
among three perspective views of multiple rigid-body mo-
tions. We first review the trilinear constraint and its associ-
ated trifocal tensor for the case of a single motion. We then
generalize these notions to multiple motions via a polyno-
mial embedding that leads to the so-called multibody trilin-
ear constraint and its associated multibody trifocal tensor.

2.1. Trilinear constraint and trifocal tensor
Let x ↔ �′ ↔ �′′ be a point-line-line correspondence in
three perspective views with 3 × 4 camera matrices

P = [I 0], P′ = [R′ e′] and P′′ = [R′′ e′′], (1)

where e′ ∈ P2 and e′′ ∈ P2 are the epipoles in the 2nd and
3rd views, respectively. Then, the multiple view matrix [6][

�′�R′x �′�e′

�′′�R′′x �′′�e′′

]
∈ R2×2 (2)

must have rank 1, hence its determinant must be zero, i.e.

�′�(R′xe′′� − e′x�R′′�)�′′ = 0. (3)

This is the well-known point-line-line trilinear constraint
among the three views [4], which we will denote as

x�′�′′T = 0 (4)

where T ∈ R3×3×3 is the so-called trifocal tensor.

Notation. For ease of notation, we will drop the sum-
mation and the subscripts in trilinear expressions such as∑

ijk xi�
′
j�

′′
kTijk, and write them as shown above. Simi-

larly, we will write xT to represent the matrix whose (jk)th

entry is
∑

i xiTijk, and x�′T to represent the vector whose
kth entry is

∑
ij xi�

′
jTijk. The notation is somewhat con-

densed, and inexact, since the particular indices that are be-
ing summed over are not specified. However, the meaning
should in all cases be clear from the context.

Notice that one can linearly solve for the trifocal tensor
T from the trilinear constraint (4) given at least 26 point-
line-line correspondences. However, if we are given point-
point-point correspondences x ↔ x′ ↔ x′′, then for each
point in the 2nd view x′, we can obtain two lines �′1 and �′2
passing through x′, and similarly for the 3rd view. Since
each correspondence gives 4 independent equations on T ,
we only need 7 correspondences to linearly estimate T .1

2.2. The multibody trilinear constraint
Consider now a scene with a known number n of rigid-body
motions with associated trifocal tensors {Ti∈R3×3×3}n

i=1,
where Ti is the trifocal tensor associated with the motion of
the ith object relative to the moving camera among the three
views. We assume that the motions of the objects relative to
the camera are such that all the trifocal tensors are different
up to a scale factor. We also assume that the given images

1We refer the reader to [4] for further details and more robust linear
methods for computing the trifocal tensor T .

correspond to 3-D points in general configuration in R3, i.e.
they do not all lie in any critical surface, for example.

Let x ↔ �′ ↔ �′′ be an arbitrary point-line-line cor-
respondence associated with any of the n motions. Then,
there exists a trifocal tensor Ti satisfying the trilinear con-
straint in (3) or (4). Thus, regardless of the motion associ-
ated with the correspondence, the following constraint must
be satisfied by the number of independent motions n, the tri-
focal tensors {Ti}n

i=1 and the correspondence x ↔ �′ ↔ �′′
n∏

i=1

(x�′�′′Ti) = 0. (5)

The above multibody constraint eliminates the problem
of clustering the correspondences from the motion segmen-
tation problem by taking the product of all trilinear con-
straints. Although taking the product is not the only way
of algebraically eliminating feature segmentation, it has the
advantage of leading to a polynomial equation in (x, �′, �′′)
with a nice algebraic structure. Indeed, the multibody con-
straint is a homogeneous polynomial of degree n in each of
x, �′ or �′′. Now, suppose x = (x1, x2, x3)�. We may enu-
merate all the possible monomials xn1

1 xn2
2 xn3

3 of degree n
in (5) and write them in some chosen order as a vector

x̃ = (xn
1 , xn−1

1 x2, x
n−1
1 x3, x

n−2
1 x2

2, . . . , x
n
3 )� . (6)

This vector has dimension Mn = (n+1)(n+2)/2. The map
x �→ x̃ is known as the polynomial embedding of degree
n in the machine learning community and as the Veronese
map of degree n in the algebraic geometry community.

Now, note that (5) is a sum of terms of degree n in each
of x, �′ and �′′. Thus, each term is a product of degree n
monomials in x, �′ and �′′. We may therefore define a 3-
dimensional tensor T ∈ RMn×Mn×Mn containing the co-
efficients of each of the monomials occurring in the product
(5) and write the multibody constraint (5) as

x̃ �̃′ �̃′′ T = 0, (7)

where summation over all the entries of the vectors x̃, �̃′ and
�̃′′ is implied. We call equation (7) the multibody trilinear
constraint, as it is a natural generalization of the trilinear
constraint valid for n = 1. The important point to observe
is that although (7) has degree n in the entries of x, �′ and

�′′, it is in fact linear in the entries of x̃, �̃′ and �̃′′.

2.3. The multibody trifocal tensor
The array T is called the multibody trifocal tensor, defined
up to indeterminate scale, and is a natural generalization of
the trifocal tensor. Given a point-line-line correspondence
x ↔ �′ ↔ �′′, one can compute the entries of the vectors

x̃, �̃′ and �̃′′ and use the multibody trilinear constraint (7) to
obtain a linear relationship in the entries of T . Therefore,
we may estimate T linearly from M3

n − 1 point-line-line
correspondences. That is 26 correspondences for one mo-
tion, 215 for two motions, 999 for three motions, etc.
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Fortunately, as in the case of n = 1 motion, one may
significantly reduce the data requirements by working with
point-point-point correspondences x↔x′↔x′′. Since each
point in the second view x′ gives two lines �′1 and �′2 and
each point in the third view x′′ gives two lines �′′1 and �′′2 ,
a naive calculation would give 22 = 4 constraints per cor-
respondence. However, due to the algebraic properties of
the polynomial embedding, each correspondence provides
in general (n+1)2 independent constraints on the multibody
trifocal tensor. To see this, remember that the multibody tri-
linear constraint is satisfied by all lines �′ = �′1 + α�′2 and
�′′ = �′′1 + β�′′2 passing through x′ and x′′, respectively.
Therefore, for all α ∈ R and β ∈ R we must have

n∏
i=1

(
x(�′1 + α�′2)(�

′′
1 + β�′′2)Ti

)
= 0. (8)

The above equation, viewed as a function of α, is a poly-
nomial of degree n, hence its n + 1 coefficients must be
zero. Each coefficient is in turn a polynomial of degree n in
β, whose n + 1 coefficients must be zero. Therefore, each
correspondence gives (n+1)2 constraints on the multibody
trifocal tensor T , hence we need only (M3

n − 1)/(n + 1)2

point-point-point correspondences to estimate T . That is 7,
24 and 63 correspondences for one, two and three motions,
respectively. This represents a significant improvement not
only with respect to the case of point-line-line correspon-
dences, as explained above, but also with respect to the case
of two perspective views which requires M2

n−1 point-point
correspondences for linearly estimating the multibody fun-
damental matrix [13], i.e. 8, 35 and 99 correspondences for
one, two and three motions, respectively.

Given a correspondence x ↔ x′ ↔ x′′, one may gener-
ate the (n+1)2 linear equations in the entries of T by choos-
ing �′1, �′2, �′′1 and �′′2 passing through x′ and x′′, respec-
tively, and then computing the coefficients of αiβj in (8). A
simpler way is to choose at least n+1 distinct lines passing
through each of x′ and x′′ and generate the corresponding
point-line-line equation. This leads to the following linear
algorithm for estimating the multibody trifocal tensor.

Algorithm 1 (Estimating the multibody trifocal tensor T )
Given N ≥ (M3

n − 1)/(n + 1)2 point-point-point cor-
respondences {xi ↔ x′

i ↔ x′′
i }N

i=1, with at least 7
correspondences per moving object, estimate T as follows:

1. Generate N� ≥ (n + 1) lines {�′ij}N�
j=1 and {�′′ik}N�

k=1

passing through x′
i and x′′

i , respectively, for i = 1..N .

2. Compute T , interpreted as a vector in RM3
n , as the null

vector of the matrix A ∈ RNN2
� ×M3

n , whose rows are

computed as x̃i⊗ �̃′ij ⊗ �̃′′ik ∈ RM3
n , for all i = 1 . . . N

and j, k = 1 . . . N�, where ⊗ is the Kronecker product.

Notice that Algorithm 1 is essentially the same as the
linear algorithm for estimating the trifocal tensor T . The
only differences are that we need to generate more than 2

lines per point in the second and third views x′ and x′′, and
that we need to replace the original correspondences x ↔
� ↔ �′ by the embedded correspondences x̃ ↔ �̃′ ↔ �̃′′

in order to build the data matrix A, whose null-space is the
multibody trifocal tensor.

3. Motion Segmentation from 3 views
In this section, we present a linear algorithm for estimating
and segmenting multiple rigid-body motions. More specif-
ically, we assume we are given a set of point correspon-
dences {xj ↔ x′

j ↔ x′′
j }N

j=1, from which we can estimate
the multibody trifocal tensor T , and would like to estimate
the individual trifocal tensors {Ti}n

i=1 and/or the clustering
of the correspondences according to the n motions.

3.1. From T to epipolar lines
Given the trifocal tensor T , it is well known how to compute
the epipolar lines in the 2nd and 3rd views of a point x in
the 1st view [4]. Specifically, notice from (3) that the matrix

Mx = (xT ) = (R′xe′′� − e′x�R′′�) ∈ R3×3 (9)

has rank 2. In fact its left null-space is �′x =e′×(R′x) and
its right null-space is �′′x =e′′×(R′′x), i.e. the epipolar lines
of x in the second and third views, respectively. In brief

Lemma 1 The epipolar line �′x in the second view corre-
sponding to a point x in the first view is the line such that
x�′xT = 0. Similarly the epipolar line �′′x in the third view
is the line satisfying x�′′xT = 0. Therefore, rank(xT ) = 2.

In the case of multiple motions, we are faced with the
more challenging problem of computing the epipolar lines
�′x and �′′x without knowing the individual trifocal tensors
{Ti}n

i=1 or the clustering of the correspondences. The ques-
tion is then how to compute such epipolar lines from the
multibody trifocal tensor T . To this end, we notice that
with each point in the first view x we can associate n epipo-
lar lines {�′ix}n

i=1, each one of them corresponding to one
of the n motions between the first and second views. We
thus have x�′ixTi = 0 which implies that for any line �′′ in

the third view x�′ix�′′Ti = 0. Now, since the span of �̃′′ for
all �′′ ∈ R3 is RMn , we have that for all i = 1, . . . , n

∀�′′
[ n∏

k=1

(x�′ix�′′Tk) = (x̃�̃′ix�̃′′T ) = 0
]
⇐⇒ (x̃�̃′ixT = 0).

Since the vectors �̃′ix are linearly independent when �′ix are
pairwise different in P2 (See [13]), we have the following:

Theorem 1 If �′ix and �′′ix are the epipolar lines in the 2nd

and 3rd views corresponding to a point x in the 1st view

according to the ith motion, then x̃�̃′ixT= x̃�̃′′ixT=0∈RMn .
Thus rank(x̃T )≤Mn−n if the epipolar lines are different.

This result alone does not help us to find �′ix according to
a given motion, since any one of the n epipolar lines �′ix will
satisfy the above condition. This question of determining

3



the epipolar line �′x corresponding to a point x is not well
posed as such, since the epipolar line �′x depends on which
of the n motions the point x belongs to, which cannot be
determined without additional information. We therefore
pose the question a little differently, and suppose that we
know the point x′ in the second view corresponding to x
and wish to find the epipolar line �′x also in the second view.
This epipolar line must of course pass through x′. To solve
this problem, notice that �′x can be parameterized as

�′x = �′1 + α�′2, (10)

where, as before, �′1 and �′2 are two different lines passing
through x′. From Theorem 1 we have that for some α ∈ R

x̃ ˜(�′1 + α�′2)T = 0. (11)

Each of the Mn components of this vector is a polynomial
of degree n in α. These polynomials must have a common
root α∗ for which all the polynomials (and hence the vector)
vanish. The epipolar line of x in the second view is then
�′x = �′1 + α∗�′2. In practice, we do not need to consider
all the Mn polynomials, but can instead find the common
root of random linear combinations of these polynomials.
We therefore have the following algorithm for computing
epipolar lines from the multibody fundamental tensor.

Algorithm 2 (Estimating epipolar lines from T ) Given
a point-point-point correspondence x ↔ x′ ↔ x′′,

1. Choose two different lines �′1 and �′2 passing through
x′. Choose N� ≥ 2 vectors {w′′

k ∈ RMn}N�

k=1 and

build the polynomials q′k(α) = x̃ ˜(�′1 + α�′2)w
′′
kT , for

k = 1, . . . , N�. Compute the common root α∗ of these
N� polynomials as the root of q′(α) =

∑N�

k=1 q′k(α)2

that minimizes q′(α). The epipolar line of x in the
second view is given by �′x = �′1 + α∗�′2.

2. Determine the epipolar line of x in the third view, �′′x,
in an entirely analogous way.

We may apply the above process to all correspondences
{xj ↔ x′

j ↔ x′′
j }N

j=1 and obtain the set of all N epipolar
lines in the second and third views according to the motion
associated with each correspondence. Notice, again, that
this is done from the multibody trifocal tensor only, without
knowing the individual trifocal tensors or the clustering of
the correspondences.

It is also useful to note that the only property of �′1 and
�′2 that we used in the above algorithm was that the desired
epipolar line �′x could be expressed as a linear combination
of �′1 and �′2. If instead we knew the epipoles correspond-
ing to the required motion, then we could choose �′1 and �′2
to be any two lines passing through the epipole and apply
Algorithm 2 to determine the epipolar line �′x.

Observe therefore that, once we know the set of epipoles
corresponding to the n motions, we may compute the epipo-
lar lines corresponding to any point x in the first image.

Consequently, we can determine the individual fundamen-
tal matrices and the trifocal tensors, as we will see in Sec-
tion 3.3. Before proceeding, we need to show how to deter-
mine the epipoles, which we do in the next section.

3.2. From T to epipoles
In the case of one rigid-body motion, the epipoles in the
second and third views e′ and e′′ must lie on the epipolar
lines in the second and third views, {�′xj

}N
j=1 and {�′′xj

}N
j=1,

respectively. Thus we can obtain the epipoles from

e′�[�′x1
, . . . , �′xN

] = 0 and e′′�[�′′x1
, . . . , �′′xN

] = 0. (12)

Clearly, we only need 2 epipolar lines to determine the
epipoles, hence we do not need to compute the epipolar
lines for all points in the first view. However, it is better
to use more than two lines in the presence of noise.

In the case of n motions there exist n epipole pairs,
{(e′

i,e
′′
i )}n

i=1, where e′
i and e′′

i are epipoles in the second
and third views corresponding to the ith motion. Given a
set of correspondences {xj ↔ x′

j ↔ x′′
j } we may compute

the multibody trifocal tensor T and determine the epipo-
lar lines �′xj

and �′′xj
associated with each correspondence

{xj ↔ x′
j ↔ x′′

j } by the method described in Section 3.1.
Then, for each pair of epipolar lines (�′xj

, �′′xj
) there exists

an epipole pair (e′
i,e

′′
i ) such that

e′
i
��′xj

= 0 and e′′
i
��′′xj

= 0. (13)

Our task is two-fold. First, we need to find the set of epipole
pairs {(e′

i,e
′′
i )}. Second, we need to determine which pair

of epipoles lie on the epipolar lines (�′xj
, �′′xj

) derived from
a given point correspondence.

If two point correspondences xj ↔ x′
j ↔ x′′

j and
xk ↔ x′

k ↔ x′′
k both belong to the same motion, then

the pair of epipoles can be determined easily by intersect-
ing the epipolar lines. If the two motions are different, then
the intersection points of the epipolar lines will have no
geometric meaning, and will be essentially arbitrary. This
suggests an approach to determining the epipoles based on
RANSAC [3] in which we intersect pairs of epipolar lines to
find candidate epipoles, and determine their degree of sup-
port among the other point correspondences. This method
is expected to be effective with small numbers of motions.

In reality, we used a different method based on the idea
of multibody epipoles proposed in [13] for the case of two
views, which we now extend and modify for the case of
three views. Notice from (13) that, regardless of the motion
associated with each pair of epipolar lines, we must have

n∏
i=1

(e′
i
��′x) = c′��̃′x = 0,

n∏
i=1

(e′′
i
��′′x) = c′′��̃′′x = 0,

where the multibody epipoles c′∈RMn and c′′∈RMn are the
coefficients of the homogeneous polynomials of degree n
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p′(�′x) = c′��̃′x and p′′(�′′x) = c′′��̃′′x,

respectively. Similarly to (12), we may obtain the multi-
body epipoles from

c′�[�̃′x1
, . . . , �̃′xN

] = 0 and c′′�[�̃′′x1
, . . . , �̃′′xN

] = 0. (14)

In order to estimate the epipoles, we notice that if a pair
of epipolar lines (�′x, �′′x) corresponds to the ith motion,
then the derivatives of p′ and p′′ at the pair (�x′ , �′′x) give
the epipoles e′

i and e′′
i , i.e.

∂

∂�′x
(c′��̃′x) ∼ e′

i and
∂

∂�′′x
(c′′��̃′′x) ∼ e′′

i . (15)

Remark 1 (Computing derivatives) Note that given c the
computation of the derivatives of p(�) = cT �̃ can be done
algebraically, i.e. it does not involve taking derivatives of
the (possibly noisy) data. For instance, one may compute

Dp(�) as cT D�̃ = cT En�̃
n−1

, where En ∈ RMn×Mn−1 is
a constant matrix containing the exponents of �̃ ∈ RMn and

�̃
n−1

∈RMn−1 contains all monomials of degree n−1 in �.

In the case of noise-free correspondences, this means
that we can immediately obtain the epipoles by evaluating
the derivatives of p′ and p′′ at different epipolar lines. Then
epipolar lines belonging to the same motion will give the
same epipoles, hence we can automatically cluster all the
correspondences. However, with noisy correspondences the
derivatives of p′ and p′′ will not be equal for two pairs of
epipolar lines corresponding to the same motion. Instead,
we may use (15) to compute the (unit) epipoles (e′

xj
,e′′

xj
)

and (e′
xk

,e′′
xk

) from the derivatives of (p′, p′′) at (�′xj
, �′′xj

)
and (�′xk

, �′′xk
), respectively. Then the similarity measure

Sjk =
1
2

(∣∣∣e′
xj

�e′
xk

∣∣∣ +
∣∣∣e′′

xj

�e′′
xk

∣∣∣) (16)

is approximately one for points j and k in the same group
and strictly less than one for points in different groups.
Given the so-defined similarity matrix S ∈ RN×N , one
can apply any spectral clustering technique to obtain the
clustering of the correspondences. Then, one can obtain
the epipoles, fundamental matrices and camera matrices
from the correspondences associated with each one of the
n groups. We therefore have the following algorithm for
computing the epipoles and clustering the correspondences.

Algorithm 3 (Estimating epipoles from T ) Given a set of
epipolar lines {(�′xj

, �′′xj
)}N

j=1,

1. Compute the multibody epipoles c′ and c′′ from (14).
2. Compute the epipole at each epipolar line from the

derivatives of the polynomials p′ and p′′ as in (15).
3. Define a pairwise similarity matrix as in (16) and ap-

ply spectral clustering to segment the epipolar lines,
hence the original point correspondences.

4. Compute the epipoles e′
i and e′′

i , i = 1, . . . , n, for each
one of the n groups of epipolar lines as in (12).

3.3. From T to trifocal tensors
The algorithm for motion segmentation that we have pro-
posed so far computes the motion parameters (trifocal ten-
sors, camera matrices and fundamental matrices) by first
clustering the image correspondences using the geometric
information provided by epipoles and epipolar lines. In this
section, we demonstrate that one can estimate the individual
trifocal tensors without first clustering the image correspon-
dences. The key is to look at second order derivatives of the
multibody trilinear constraint. Therefore, we contend that
all the geometric information about the multiple motions is
already encoded in the multibody trifocal tensor.

Let x be an arbitrary point in P2 (not necessarily a point
in the first view). Since the ith epipole e′

i is known, we can
compute two lines �′i1 and �′i2 passing through e′

i and apply
Algorithm 2 to compute the epipolar line of x in the second
view �′ix according to the ith motion. In a completely anal-
ogous fashion, we can compute the epipolar line of x in the
third view �′′ix from two lines passing through e′′

i . Given
(�′ix, �′′ix), a simple calculation shows that the slices of the
trifocal tensor Ti can be expressed in terms of the second
derivative of the multibody epipolar constraint, as follows:

∂2(x̃�̃
′
�̃
′′
T )

∂�′∂�′′

∣∣∣∣∣
(x,�′ix,�′′ix)

= Mix ∼ xTi ∈ R3×3. (17)

Thanks to (17), we can immediately outline an algorithm
for computing the individual trifocal tensors.

Algorithm 4 (Estimating trifocal tensors from T ) Let
{e′

i,e
′′
i }n

i=1 be the set of epipoles in the 2nd and 3rd views.
Also let {xj}N

j=1 be a set of N ≥4 randomly chosen points.

1. Use Algorithm 2 to obtain the epipolar lines of xj

in the second and third views �′ixj
and �′ixj

from the
epipoles e′

i and e′′
i , respectively.

2. Use (17) to obtain Mixj
, the slice of Ti along xj .

3. Solve for Ti for i = 1, . . . , n from the set of linear
equations

Mixj
∼ xjTi j = 1, . . . , N.

Once the individual trifocal tensors have been computed,
one may cluster the correspondences by assigning each fea-
ture to the trifocal tensor Ti which minimizes the Sampson
error. Alternatively, one may first reconstruct the 3-D struc-
ture by triangulation, project those 3-D points onto the three
views, and then assign points to the trifocal tensor Ti that
minimizes the reprojection error. We refer the reader to [4]
for details of the computation of both errors.

3.4. Iterative refinement by EM
The motion segmentation algorithm we have proposed so
far is purely geometric and provably correct in the absence
of noise. Since most of the steps of the algorithm involve
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solving linear systems, the algorithm will also work with a
moderate level of noise (as we will show in the experiments)
provided that one solves each step in a least-squares fashion.

However, in order to obtain an optimal estimate for the
trifocal tensors and the clustering of the correspondences
in the presence of noise, we assume a generative model in
which the probability of a point belonging to the i-th motion
model is given by πi, and the correspondences are corrupted
with zero-mean Gaussian noise with variance σ2

i for the i-th
model. We introduce latent variables wij representing a soft
assignment of point j to motion model i, and maximize the
expected complete log-likelihood

N∑
j=1

n∑
i=1

wij

(
log(

πi

σi
) − εij

2σ2
i

)
(18)

with respect to the wij and parameters θ =
{(Ti, σi, πi)}n

i=1 given the data X = {(xj ,x
′
j ,x

′′
j )}N

j=1.
Maximation is carried out using the Expectation-
Maximization (EM) algorithm. The expected complete
log-likelihood (18) is maximized with respect to the wij

in the E-step, and with respect to parameters θ in the
M-step. In the M-step, computation of each Ti simply
involves using standard structure-from-motion algorithms
with correspondences weighted by wij . The EM algorithm
proceeds by iterating between the E and M steps, until the
estimates converge to a local maximum.

4. Experiments
In our experiments, we consider the following algorithms:

1. Algebraic I: this algorithm clusters the corresponden-
ces using epipoles and epipolar lines computed from
the multibody trifocal tensor, as in Algorithms 1-3.

2. Algebraic II: this algorithm clusters the corresponden-
ces using the Sampson-distance residual to the differ-
ent trifocal tensors computed as in Algorithms 1-4.

3. K-means: this algorithm alternates between comput-
ing (linearly) the trifocal tensors for different motion
classes and clustering the point correspondences using
the Sampson-distance residual to the different motions.

4. EM: This algorithm refines the classification and the
motion parameters as described in Section 3.4. For
ease of computation, in the M-step we first compute
each trifocal tensor linearly as in Section 2.1. If the
error (18) increases, we recompute the trifocal ten-
sors using the linear algebraic algorithm in [4]. If
the error (18) still increases, then we use Levenberg-
Marquardt to solve for the trifocal tensors optimally.

Figure 1 shows three views of the Tshirt-Book-Can se-
quence which has two rigid-body motions, the camera and
the can, for which we manually extracted a total of N =
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Figure 1: Top: views 1-3 of a sequence with two rigid-body
motions. Bottom: 2D displacements of the 140 correspon-
dences from the current view (’o’) to the next (’→’).

Table 1: Percentage of misclassification of each algorithm.
K-means Alg. I Alg. II Alg. II +

K-means
Alg. II +

K-means+EM

Tshirt-Book-Can 24.6% 24.3% 23.6% 7.1% 1.4%

Wilshire 39.5% 4.1% 2.5% 2.5% 0.0%

140 correspondences, 70 per motion. Figure 1 also shows
the relative displacement of the correspondences between
pairs of frames. We first run 1000 trials of the K-means al-
gorithm starting from different random classifications. On
average, the K-means algorithm needs 39 iterations (max-
imum was set to 50) to converge and yields a misclassi-
fication error of about 24.6%, as shown in Table 1. The
(non-iterative) algebraic algorithms I and II, on the other
hand, give a misclassification error of 24.3% and 23.6%.
Running the K-means algorithm starting from the cluster-
ing produced by the second algebraic algorithm resulted in
convergence after 3 iterations to a misclassification error of
7.1%. Finally, after 10 iterations of the EM algorithm, the
misclassification error reduced to 1.4%.

We also tested the performance of our algorithm on a
sequence with transparent motions, so that the only cue for
clustering the correspondences is the motion cue. Given
correspondences in a sequence with one rigid-body mo-
tion, we generated a second set of correspondences by flip-
ping the x and y coordinates of the first set of correspon-
dences. In this way, we obtain a set of correspondences with
no spatial separation and undergoing two different rigid-
body motions. Figure 2 shows frames 1, 4 and 7 of the
Wilshire sequence and the inter-frame displacement of the
N = 164×2 = 328 correspondences. As shown in Table 1,
the K-means algorithm gives a mean misclassification error
(over 1000 trials) of 35.5% with a mean number of iter-
ations of 47.1. The algebraic algorithms I and II give an
error of 4.1% and 2.5%. Following Algebraic II with K-
means did not improve the classification, while following
this with EM achieved a perfect segmentation.

We also tested our algorithm on synthetic data. We ran-
domly generated two groups of 100 3-D points each with
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Figure 2: Top: frames 1, 4 and 7 of the Wilshire sequence.
Bottom: 2D displacement of the 328 original and flipped
correspondences from current view (’◦’) to the next (’→’).

a depth variation 100-400 units of focal length (u.f.l.). The
two motions were chosen at random with an inter-frame ro-
tation of 5◦ and an inter-frame translation of 30 u.f.l. We
added zero-mean Gaussian noise with standard deviation
between 0 and 1 pixel in an image size of 1000 × 1000.
Figure 3 shows the percentage of misclassified correspon-
dences and the error in the estimation of the epipoles (de-
grees) over 100 trials. The K-means algorithm usually con-
verges to a local minimum due to bad initialization. The
algebraic algorithms (I and II) achieve a misclassification
ratio of about 20.2% and 9.1% and a rotation error of 22.4◦

and 11.7◦, respectively, for 1 pixel noise. These errors are
reduced to about 2.9% and 3.8◦, respectively, by the K-
means algorithm and to 2.4% and 2.8◦, respectively by the
EM algorithm. This is expected, as the algebraic algorithms
do not enforce the nonlinear algebraic structure of the multi-
body trifocal tensors. The K-means algorithm improves the
estimates by iteratively clustering the correspondences us-
ing the trifocal tensors. The EM algorithm further improves
the estimates in a probabilistic fashion, at the expense of a
higher computational cost.

5. Conclusions
The multibody trifocal tensor is effective in the analysis of
dynamic scenes involving several moving objects. The al-
gebraic method of motion classification involves computa-
tion of the multibody tensor, computation of the epipoles
for different motions and classification of the points accord-
ing to the compatibility of epipolar lines with the different
epipoles. Our reported implementation of this algorithm
was sufficiently good to provide an initial classification of
points into different motion classes. This classification can
be refined using a K-means or EM algorithm with excellent
results. It is likely that more careful methods of computing
the tensor (analogous with best methods for the single-body
trifocal tensor) could give a better initialization.

The algebraic properties of the multibody trifocal tensor
are in many respects analogous to those of the single-body
tensor, but provide many surprises and avenues of research
that we have not yet exhausted.
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Figure 3: Motion segmentation and motion estimation (ro-
tation) errors as a function of noise.
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