
Motion Segmentation with Missing Data using PowerFactorization and GPCA

René Vidal1,2 and Richard Hartley2,3

1Center for Imaging Science 3Dept. of Systems Engineering
Johns Hopkins University 2National ICT Australia Australian National University

rvidal@cis.jhu.edu Richard.Hartley@anu.edu.au

Abstract
We consider the problem of segmenting multiple rigid mo-
tions from point correspondences in multiple affine views.
We cast this problem as a subspace clustering problem in
which the motion of each object lives in a subspace of di-
mension two, three or four. Unlike previous work, we do not
restrict the motion subspaces to be four-dimensional or lin-
early independent. Instead, our approach deals gracefully
with all the spectrum of possible affine motions: from two-
dimensional and partially dependent to four-dimensional
and fully independent. In addition, our method handles
the case of missing data, meaning that point tracks do not
have to be visible in all images. Our approach involves
projecting the point trajectories of all the points into a 5-
dimensional space, using the PowerFactorization method to
fill in missing data. Then multiple linear subspaces rep-
resenting independent motions are fitted to the points in
R

5 using GPCA. We test our algorithm on various real se-
quences with degenerate and nondegenerate motions, miss-
ing data, perspective effects, transparent motions, etc. Our
algorithm achieves a misclassification error of less than 5%
for sequences with up to 30% of missing data points.

1. Introduction
The past few decades have witnessed significant advances
on the understanding of the geometry and reconstruction of
static scenes observed by a moving camera. More recently,
there has been an increasing interest on the geometrical and
statistical models for the understanding of dynamic scenes,
in which both the camera and multiple objects move.

The case of multiple moving objects seen by two per-
spective views was recently studied by Vidal et al. [19, 20],
who proposed a generalization of the 8-point algorithm
based on the so-called multibody epipolar constraint and its
associated multibody fundamental matrix. The method si-
multaneously recovers multiple fundamental matrices using
multivariate polynomial factorization, and can be extended
to most two-view motion models in computer vision, such
as affine, translational and planar homographies, by fitting
and differentiating complex polynomials [16]. The case of
multiple moving objects seen by three perspective views has
also been recently solved by exploiting the algebraic and
geometric properties of the multibody trifocal tensor [6].

To the best of our knowledge, motion segmentation from
multiple views has only been studied in the case of affine
cameras, because in this case the motion of each one of
the rigidly moving objects lives in a four-dimensional sub-
space [1, 14]. That is, if xfp is the image of point Xp ∈ P

3

in frame f and Af ∈ R
2×4 is the affine camera matrix in

frame f , then xfp = AfXp. Therefore if we stack all the
image measurements into a 2F × P matrix W, then we have

W = MS�x11 · · · x1P

...
...

xF1· · ·xFP


2F×P

=

A1

...
AF


2F×4

[
X1· · ·XP

]
4×P

. (1)

Therefore rank(W) ≤ 4 and the motion of each object lives
in a four-dimensional subspace of R

2F . This subspace con-
straint was used by Boult and Brown [1] to propose the first
multiframe motion segmentation algorithm based on thresh-
olding the leading singular vector of W. Costeira and Kanade
(CK) [2] extended this approach by thresholding the entries
of the so-called shape interaction matrix

Q = VV�, (2)

which is built from the SVD of the measurement matrix W =
USV� and has the property that

Qij

{
= 0 if i and j correspond to the same motion

�= 0 otherwise
. (3)

Unfortunately, thresholding the entries of the shape interac-
tion matrix is very sensitive to noise [8, 22]. Wu et al. [22]
reduce the effect of noise by building a similarity matrix
from the distances among the subspaces obtained by the CK
algorithm. Kanatani modifies the entries of the interaction
matrix using the geometric information criterion [8] and
also incorporates the fact that the subspaces are affine [10].

Another disadvantage of the CK algorithm is that equa-
tion (3) holds if and only if the motion subspaces are lin-
early independent [8]. That is, the algorithm is not provably
correct for most practical motion sequences which usually
exhibit partially dependent motions, such as when two ob-
jects have the same rotational but different translational mo-
tion relative to the camera, or vice versa. This has moti-
vated the recent work of Zelnik-Manor and Irani [23] who

1



use the singular vectors of the normalized shape interaction
matrix to build a similarity matrix from which the clustering
of the features is obtained using spectral clustering tech-
niques (see [21] and references therein). This solution is
based on the expectation that on the average the angular dis-
placement of trajectories corresponding to the same motion
is smaller than the one of trajectories corresponding to dif-
ferent motions. This assumption is, however, not provably
correct. Kanatani [11] has also studied the case of partially
dependent (degenerate) motions under the assumption that
the type of degeneracy is known, e.g. 2-D similarity mo-
tion or pure translation. In these particular cases the motion
subspaces, though of smaller dimension, are still indepen-
dent. Once an initial clustering of the correspondences is
obtained, the motion models are estimated using an itera-
tive process that alternates between feature clustering and
motion estimation, similarly to the Expectation Maximiza-
tion (EM) algorithm. Other EM-like approaches to motion
segmentation can be found in [15].

1.1. Contributions of this paper
In this paper, rather than insisting on heuristics that modify
a motion segmentation algorithm that is provably correct
only when the motion subspaces are fully independent, we
seek an approach that works for all the spectrum of affine
motions: from two-dimensional and partially dependent to
four-dimensional and fully independent. This is achieved
by a combination of PowerFactorization, Generalized Prin-
cipal Component Analysis (GPCA), and spectral clustering
which leads to the following purely geometric solution to
the multiframe motion segmentation problem:

1. Project the point trajectories onto a five-dimensional
subspace using PowerFactorization, which automati-
cally deals with the case of missing data. A byproduct
of this projection is that our algorithm requires a min-
imum number of three views for any number of inde-
pendent motions.1

2. Fit a collection of subspaces to the projected trajecto-
ries using GPCA and spectral clustering. Specifically,

(a) Fit a set of homogeneous polynomials represent-
ing all motion subspaces to the projected data.

(b) Obtain a basis for each motion subspace from the
derivatives of these polynomials.

(c) Cluster the data by applying spectral clustering
to a similarity built from the subspace angles.

We demonstrate our approach on real and synthetic se-
quences with degenerate and nondegenerate motions, miss-
ing data, perspective effects, transparent motions, etc. Our
experiments show that our algorithm achieves a misclassifi-
cation error of less than 5% for sequences with up to 30%
of missing data points.

1Previous work required the image points to be visible in 2n views for
n independent motions, as we will see in the next section.

2. Multiframe Motion Segmentation
Let {xfp ∈ R

2}f=1,...,F
p=1,...,P be a collection of P feature

points in F frames, with xfp representing the image of a
point Xp ∈ P

3 in frame f . We assume an affine camera
model, which generalizes orthographic, weak perspective,
and paraperspective projection [4], i.e.

xfp = AfXp, (4)

where Af ∈ R
2×4 is the affine camera matrix for frame f ,

which depends on the position and orientation of the cam-
era as well as the internal calibration parameters. It follows
from equations (4) and (1) that when all the points {Xp}
correspond to a single moving object the trajectories gener-
ated by those points, that is the columns of the data matrix

W = MS� ∈ R
2F×P , (5)

live in a four-dimensional subspace of R
2F spanned by the

columns of the motion matrix M ∈ R
2F×4.

Consider now the case in which the set of points
{Xp}P

p=1 corresponds to n moving objects undergoing n
different motions. In this case, each moving object spans a
different four-dimensional subspace of R

2F . Therefore, if
we knew the clustering of the features we could build a data
matrix Wi ∈ R

2F×Pi , with
∑n

i=1 Pi = P , satisfying

Wi = MiSi
� i = 1, . . . , n. (6)

Since in this paper we assume that the clustering of the
features is unknown, we only know that the P columns of W
live in a union of n subspaces. Therefore, solving the mo-
tion segmentation problem is equivalent to finding a basis
for each one of such subspaces. When the rank of the data
matrix is rank(W) = 4n, which implies that F ≥ 2n and
P ≥ 4n, the motion subspaces are fully dimensional and
independent. Hence the problem can be solved as suggested
by the CK algorithm. The same principle applies when the
motion subspaces are not necessarily four-dimensional, but
independent, that is when rank(W) =

∑n
i=1 rank(Wi).

However, it could be the case that two motions are differ-
ent, but their associated subspaces are partially dependent,
e.g. when they have the same rotation and a different trans-
lation. Furthermore, it could be the case that the two mo-
tions are fully independent, yet their motion subspaces are
partially dependent, e.g. with n = 2 four-dimensional mo-
tions and F = 3 frames we have rank(W) ≤ 6 < 4 + 4 = 8.
In general, partially dependent motions satisfy

n∑
i=1

rank(Wi) > rank(W) and

rank([Wi Wi′ ]) > max{rank(Wi), rank(Wi′)},
(7)

where the latter equation rules out the case of fully depen-
dent motions. The problem is then to find an algorithm that
deals both with the case of partially dependent and fully in-
dependent motions, which we do in the following sections.

2



2.1. Projecting onto a 5-dimensional subspace
2.1.1 SVD and complete data
Let us first consider the case in which all the feature points
are visible in all frames, so that all the entries of the data
matrix W ∈ R

2F×P are known. The first step of our algo-
rithm is to project the point trajectories (columns of W) from
R

2F to R
5. In choosing a projection, it makes sense to lose

as little information as possible by projecting into a domi-
nant eigensubspace, which we can do simply by computing
the SVD of W = UDV�, and then defining a new data matrix
Ŵ to consist of the first 5 rows of V�. At a first sight, it may
seem counter-intuitive to perform this projection. For in-
stance, if we have F = 4 frames of n = 2 independent four-
dimensional motions, then we can readily apply the CK al-
gorithm, because we are in a nondegenerate situation. How-
ever, if we first project onto R

5, the motions subspaces be-
come partially dependent because rank(Ŵ) = 5 < 4+4 = 8.
What is the reason for projecting then? The reason is that
the clustering of data lying on subspaces is preserved by a
generic linear projection. For instance, if one is given data
lying on two lines in R

3 passing through the origin, then
one can first project the two lines onto a plane in general
position2 and then cluster the data inside that plane. More
generally the principle is [18]:

Theorem 2.1. If a set of vectors {wi} all lie in a linear
subspace of dimension k in R

N , and if π represents a lin-
ear projection into a subspace S of dimension K, then the
points {π(wi)} lie in a linear subspace of S of dimension
no greater than k. Furthermore, if K > k, then there is an
open and dense set of projections such that the dimension
of the projected subspaces is still k.
The same principle applies to the motion segmentation
problem. Since we know that the maximum dimension of
each motion subspace is four, then projecting onto a generic
five-dimensional subspace preserves the clustering of the
motion subspaces. Loosely speaking, in order for two dif-
ferent motions to be distinguishable from each other, it is
enough for them to be different along one dimension, i.e.
we do not really need to have the subspaces be different in
all four dimensions. It is this key observation the one that
enable us to treat all partially dependent motions as well as
all independent motions in the same framework: clustering
subspaces of dimension two, three or four living in R

5.
Another advantage of projecting the data onto a 5-

dimensional space is that, except for the projection itself,
the complexity of the motion segmentation algorithm we
are about to present becomes independent on the number
of frames. Indeed, our algorithm requires a minimum of
only three frames.1 Furthermore, it enables us to handle the
case of missing data, which could not be done with the CK
algorithm, as we explain in the next section.

2A plane perpendicular to any of the lines or perpendicular to the plane
containing the lines would fail.

2.1.2 PowerFactorization and incomplete data

As an alternative to using the SVD to do the projection, we
can use the technique of PowerFactorization [5], which in
some cases may be more rapid. In addition, it allows us
deal with the case in which some entries of the data ma-
trix W ∈ R

2F×P are missing, a fairly common occurrence
in feature tracking due to occlusions or points disappearing
from the field of view. In this case, we need a way to project
such point trajectories into R

5 in the same way as with com-
plete trajectories. Clearly this cannot be done using SVD,
as detailed in the previous section.

We use a method adapted for incomplete data, based
on an analysis of the “power method” for computation of
eigenvalues of a matrix. The method known as PowerFac-
torization gives a rapid method for approximating low rank
matrices. The PowerFactorization algorithm is discussed in
some detail in [5].
Complete data case. We begin by describing PowerFac-
torization in the complete data case. Let W be a matrix of
dimension N × P that we want to approximate by some
matrix of rank r. We start with a random matrix A0 of di-
mension N × r, and then carry out the following steps for
k = 1, 2, . . . until convergence of the product AkBk

�.

1. Let Bk = W�Ak−1.

2. Orthonormalize the columns of Bk by (for instance) the
Gram-Schmidt algorithm. This sometimes called QR
algorithm, since it is equivalent to replacing Bk by a
matrix B′k such that Bk = B′kNk, where B′k has orthonor-
mal columns, and Nk is upper-triangular.

3. Let Ak = WB′k.

It was indicated in [5] that the sequence AkBk
� con-

verges rapidly to the rank-r matrix closest to W in Frobenius
norm, provided that W is close to having rank r. Specifi-
cally, the rate of convergence is proportional to (sr+1/sr)k,
where si is the ith largest singular value of W. Observe that
this algorithm is very simple, requiring only matrix multi-
plications and Gram-Schmidt normalization.

In the case of motion segmentation, the subject of this
paper, we wish to replace W by a matrix obtained by project-
ing its columns onto a 5-dimensional subspace. If W = AB�

is the nearest rank-5 factorization to W, then B� is the matrix
that we require.
Missing data case. In the case where some of the entries
of W are not known, we can not carry out SVD or matrix
multiplication either. However, the goal remains the same
– to find matrices A and B such that AB� is as close to W as
possible. The measure of closeness is∑

(i,j)∈I
(Wij − (AB�)ij)2 (8)

where I is the set of pairs (i, j) for which Wij is known.

3



In the case of missing data, PowerFactorization takes a
slightly different form. Starting as before with a random
matrix A0, we alternate the following steps until conver-
gence of AkBk

�.

1. Given Ak−1, find the n × r matrix Bk that minimizes∑
(i,j)∈I |Wij − (Ak−1Bk

�)ij |2.

2. Normalize Bk.

3. Given Bk, find the matrix Ak that minimizes∑
(i,j)∈I |Wij − (AkBk

�)ij |2.

In this algorithm, the computation of each Bk and Ak pro-
ceeds just one column at a time, and consists of finding the
least-squares solution to a set of linear equations.

It was pointed out in [5] that if W has no missing en-
tries, then this algorithm gives precisely the same sequence
of products as the version of the algorithm involving matrix
multiplications. Consequently, it is provably rapidly con-
vergent to the optimal solution. In the case of moderate
amounts of missing data, we can not strongly assert this,
though the theoretical result for complete data gives us a
strong expectation that this will be so; this expectation is
borne out by practical experience. PowerFactorization fails
to converge to the global minimum only in rare cases, such
as with strongly banded data (that is a long image sequence
with only short point-tracks).

Essentially what this algorithm is doing is simply alter-
nating between computing Ak and Bk using least-squares.
Similar (not identical) alternation algorithms have been pro-
posed in [12, 3]. As mentioned [5] gives theoretical justifi-
cation for this algorithm.

2.2. Fitting motion subspaces using GPCA
We have reduced the motion segmentation problem to find-
ing a set of linear subspaces in R

5, each of dimension at
most 4, which contain the data points (or come close to
them). The points in question are the columns of the pro-
jected data matrix Ŵ. We solve this problem by fitting and
differentiating polynomials using GPCA [18, 17].

2.2.1 Representing motion subspaces with polynomials
It serves our purposes to fit a slightly more general model
to the points, fitting them by an algebraic variety. In essen-
ce, notice that the n motion subspaces can be represented
as the zero-set of m polynomials {pn�(w)}m

�=1 of degree n
in 5 variables, i.e. w ∈ R

5. That is, a set of linear sub-
spaces forms an algebraic variety in R

5. Our task is to find
the algebraic variety that best fits the set of points in R

5.
The fact that the set of linear subspaces forms an algebraic
variety (in simple terms, can be expressed as the zero set
of a collection of polynomials) is simple enough. If all the
subspaces are hyperplanes (having dimension 4) in R

5, then
a single polynomial of degree n suffices. This is because a
single plane is represented by a single linear polynomial,
just as a plane in R

3 is represented by a linear polynomial

equation ax+by+cz = 0. Similarly, a set of n hyperplanes
is represented by the product of n linear polynomials, one
for each plane, e.g. (ax + by + cz)(dx + ey + fz) = 0.

A linear subspace of codimension greater than one (that
is, dimension less than 4 in R

5) is not represented by a sin-
gle equation. Instead, it may be expressed as the intersec-
tion of a set of hyperplanes. Equivalently, the points on the
subspace simultaneously satisfy the equations of each of the
intersecting hyperplanes – Thus, a subspace of codimen-
sion c is the common zero-set of c distinct linear polyno-
mials. Finally, points on a collection of n linear subspaces
will satisfy any polynomial formed as the product of lin-
ear polynomials, where each linear polynomial represents a
hyperplane plane through one of the subspaces. Thus, the
collection of n subspaces forms the zero set of a collection
of degree n polynomials, as claimed.

Although by the above argument each of the polynomi-
als factors into linear factors, we will not use this condition,
since it is not preserved in the presence of slight perturba-
tions (noise) applied to the points. The polynomials that
we find will not exactly factor, hence their zero set (the al-
gebraic variety) will not precisely consist of a set of linear
subspaces. We will deal with this difficulty later.

Although in the case of degenerate motions, the data
points (namely the columns of Ŵ) will generally lie in a sub-
spaces of R

5 of dimension less than 4, we nevertheless ob-
tain good results by fitting to dimension 4 subspaces. Con-
sequently, for the present we limit the discussion to fitting
the points to a codimension-1 variety. This means that we
need only find a single polynomial that fits the points.

2.2.2 Fitting points to polynomials
In an abstract context, we are given a set of points wi in
R

5 and we wish to find a homogeneous polynomial of de-
gree n (in 5 variables) that fits the points. Recall that n
is the expected number of independent motions. To con-
sider a more familiar problem, suppose we want to fit a
homogeneous polynomial of degree n in three variables to
a set of points. For simplicity, let n = 2. The general
homogeneous polynomial of degree 2 in three variables is
ax2 + by2 + cz2 + dxy + exz + fyz. This is in fact the
equation of a conic in the projective plane P2. Now, sup-
pose that a point (xi, yi, zi) lies on this curve. We substitute
into this polynomial and equate to zero to obtain a linear
equation in the six unknowns a, . . . , f . It does not matter
that the polynomial is non-linear in the variables x, y and
z; it is linear in the coefficients that we need to determine.
Given sufficiently many points (in this case 5) on the curve
we may solve a set of linear equations to determine the co-
efficients a, . . . , f . With more than 5 equations we find a
least-squares fit to the points. This is a common procedure
of algebraic fitting of a curve to a conic.

The process extends naturally to fitting any number of
points in any space R

K to a curve of degree n. The pro-

4



cess consists of generating all the possible Mn monomi-
als of degree n in the K variables, i.e. wn1

1 wn2
2 · · ·wnK

K ,
which we can stack into a vector w̃ ∈ R

Mn . A gen-
eral homogeneous polynomial of degree n is a combi-
nation of these monomials with certain coefficients, i.e.∑

cn1,...,nK
wn1

1 wn2
2 · · ·wnK

K = c�w̃. Each point required
to satisfy the polynomial will lead to a linear equation in
these coefficients c, and sufficiently many points will allow
us to determine c as the least-squares solution of

W̃�c = 0, (9)

where the columns of W̃=[w̃1 · · · w̃P ]∈R
Mn×P contain all

the monomials of degree n generated by the columns of Ŵ.

2.2.3 Motion segmentation by polynomial differentiation

At this stage, we have a homogeneous degree-n polynomial
p in 5 variables fitting a set of points wi. Ideally, the poly-
nomial p factors into n linear factors, each one correspond-
ing to a hyperplane in R

5. The present task is to partition
the points wi according to which of these hyperplanes they
lie on (or near). With inexact measurements, the polyno-
mial p will not exactly factor into linear factors. However,
the variety it defines (its zero-set) will approximate a set of
codimension-one subspaces, or hyperplanes.

We consider the derivative of p. This is a 5-vector

Dp = (∂p/∂x1, . . . , ∂p/∂x5)

where p is a polynomial in the variables xi. The key obser-
vation is that this derivative, when evaluated at a point w
lying on the variety defined by p, yields the normal vector
to the variety at that point.

Considering still the ideal case, if two points wi and wj

lie on the same hyperplane, then Dp(wi) and Dp(wj) will
be vectors in the same direction, whereas if they lie on dif-
ferent hyperplanes, these direction vectors will be different.
In fact, since p is a homogeneous polynomial, the hyper-
planes in question will be linear codimension-1 subspaces
passing through the origin. Therefore, two such hyper-
planes are identical if and only if they have the same unit
normal vector. Therefore two data points wi and wj will
lie on the same hyperplane if and only if the angle between
Dp(wi) and Dp(wj) is zero (or 180◦).

This suggests a procedure for partitioning the points wi.
When p does not factor into linear factors, the normal vec-
tors Dp(wi) and Dp(wj) will not be exactly the same.
Nevertheless, we may define a similarity measure for two
such points, as follows.

Sij = cos2(θij)

where θij is the angle between the two vectors Dp(wi) and
Dp(wj). Then Sij ≈ 1 if points wi and wj are from

the same motion (and so belong to the same hyperplane),
whereas Sij < 1 if they belong to different motions.

Given the so-defined similarity matrix S ∈ R
P×P , one

can apply any spectral clustering technique to obtain the
segmentation of the feature points, e.g. [21]. Once the
features have been clustered, one can estimate the motion
and structure of each moving object using the standard fac-
torization approach for affine cameras, e.g. [14]. We there-
fore have the following algorithm for motion estimation and
segmentation from multiple affine views.

Algorithm 1 (Multiframe motion segmentation algorithm)
Given a matrix W ∈ R

2F×P containing P feature points in
F frames (possibly with missing data)

1. Projection: Project the data onto a five-dimensional
space using either SVD (complete data) or power fac-
torization (incomplete data) to obtain a (complete)
data matrix Ŵ = [w1, . . . ,wP ] ∈ R

5×P .

2. Multibody motion estimation via polynomial fitting:
Compute the left null-vector c of the embedded data
matrix W̃= [w̃1, . . . , w̃P ] ∈ R

Mn×P to obtain a poly-
nomial p representing the n motion subspaces.

3. Feature clustering via polynomial differentiation:
Cluster the feature points by applying spectral cluster-
ing to the similarity matrix Sij = cos2(θij), where θij

is the angle between the vectors Dp(wi) and Dp(wj)
for i, j = 1, . . . , P .

4. Motion Estimation: apply the standard factorization
approach for affine cameras to each one of the n group
of features to obtain motion and structure parameters.

2.2.4 Degenerate and dependent motions

Since our method is particularly intended to handle degen-
erate and dependent motions, in which the different lin-
ear subspaces interesect non-trivially, or have smaller di-
mension than 4, we need to understand why the proposed
method works in this case.

In the case of dependent (but full-dimension) motions,
the hyperplane subspaces will have dimension 4 in R

5, as
usual. Two such subspaces will have distinct normals, even
if they intersect in some non-zero subspace. Since the nor-
mals are different, our method will work effectively.

In the case of degenerate motions, some of the subspaces
may have smaller dimension than the expected dimension
4. Such a subspace may be defined as the intersection of
more than one hyperplane. By choosing a single polyno-
mial p to fit all subspaces, we effectively choose a single
one of these hyperplanes containing the low-dimensional
subspace.3 As long as this hyperplane does not correspond

3It was shown in [17] that even though for degenerate motions the poly-
nomial p may not be factorizable, its derivative at a point in one of the

5



with the hyperplane defining one of the other motions, there
will be no problem with using such a hyperplane to seg-
ment the degenerate motion. Generically this favorable
condition will apply. In fact a degenerate motion can al-
ways be separated from a non-degenerate one, unless the
low-dimensional subspace lies inside the hyperplane corre-
sponding to the non-degenerate motion.

Modelling low-dimension subspaces We refer the reader
to [17] for a possible extension of the above techniques to
model low-dimension subspaces explicitly. To do this, in-
stead of fitting the data to a single polynomial, we need to
compute a set of independent polynomials pk that fit the
points. Derivatives of these polynomials represent a set of
vectors generating a normal subspace, rather than a single
normal. The similarity measure defined previously may be
generalized to measure the largest principal angle between
the normal subspaces corresponding to different points. De-
tails are left to a more complete report.

3. Experiments on real images
In this section, we test our 3-D motion segmentation algo-
rithm on various motion sequences, some of them shown in
Figure 1. The sequences were chosen to display the perfor-
mance of our algorithm in the following situations:

1. Sequences with missing data: we choose some se-
quences with more than 10 frames for which data
points are not present in all the frames. In such se-
quences, typically, about 30% of the data was missing.

2. Sequences with degenerate and nondegenerate mo-
tions: we choose sequences with full motions (Can-
Book), linear motions (Castle), planar motions (Cas-
tle), screw motions (Puma) and combinations of linear
and full motions (3-Cars), so as to display the perfor-
mance of the algorithm both in degenerate and nonde-
generate motion configurations.

3. Sequences with perspective effects: most of the cho-
sen sequences present noticeable perspective effects,
due to large depth variations, or forward motions. Our
algorithm does not model such effects, because it is
based on the affine projection model.

4. Sequences with transparent motions: except for the
3-Cars and Can-Book sequences, which truly contain
multiple motions, all the other sequences are actually
static. We made them dynamic by generating a second
set of correspondences with the x and y coordinates in-
terchanged. In this fashion, the compound correspon-
dences have no spatial separation, hence motion is the
only cue for clustering.

motion subspaces still gives a normal vector to that subspace. It is the
hyperplane associated with this normal vector the one we are referring to
here, which exists for any p, factorizable or not.

5. Sequences with minimum number of frames: we
choose some sequences where only three views are
available, e.g. Can-Book, Wilshire and Tea-Tins.
Three is the minimum number of views needed so that
our algorithm can project the data onto R

5. Notice that
this number does not depend on the number indepen-
dent motions. Also, remember that the CK algorithm
needs at least four frames for two independent mo-
tions, and that the minimum number of frames is 2n
for n independent motions.

Table 1 shows the segmentation results for each one of
the sequences. Notice that the sequences have rather differ-
ent number of feature points and number of frames. How-
ever, in all the cases the algorithm gives a misclassification
error of less than 5.5%. Furthermore, notice that the al-
gorithm achieved perfect classification for some of the se-
quences. It is important to emphasize here that, given the
matrix of projected data, Ŵ ∈ R

5×P , we applied our alge-
braic motion segmentation algorithm directly. That is, we
did not apply any pre or post processing to the data, nor
did we remove outliers or improve the segmentation by it-
erative refinement. However, one may further improve the
estimates of our algorithm by using it to initialize any it-
erative technique that alternates between motion estimation
and data clustering, such as K-subspace [7] or EM for mix-
tures of PCA’s [13].

Figure 2 shows the shape interaction (similarity) matrix
used by the CK algorithm for the Can-Book sequence. We
built the interaction matrix by using different values for
the rank of the W matrix. It can be noticed that, because
of degenerate motions and partial dependencies among the
motion subspaces, the interaction matrices of the CK algo-
rithm do not give much information about the clustering of
the correspondences. In contrast, our algorithm computes a
similarity matrix from the angles between the motions sub-
spaces, after extracting a basis for them in a purely algebraic
fashion. Exploiting the algebraic structure of the mixture
model, enabled us to define a much better measure of simi-
larity among motion subspaces.

4. Conclusions
This paper has presented a new algorithm for 3-D motion
segmentation from multiple affine views, which deals with
both complete and incomplete data, and applies to indepen-
dent and partially dependent (degenerate) motions. The al-
gorithm uses power factorization to project the data onto a
five dimensional space, and GPCA to cluster the projected
subspaces. Our experiments demonstrated that our algo-
rithm works also for projective sequences, even though it
is not designed for that case. Overall it gives a misclas-
sification error of less than 5.5% with up to 30% miss-
ing data. Open research avenues include extending the al-
gorithm to projective reconstruction of multiple rigid-body
motions from multiple perspective views.

6



Table 1: Misclassification error for different sequences.
Sequence Points Frames Motions Error

Boat 686 11 2 2.19%
Can-Book 170 3 2 1.18%
Wilshire 200 3 2 5.50%
Tea-Tins 84 3 2 1.19%

NEC 82 8 2 0.00%
3-Cars 173 15 3 4.62%
Puma 64 16 2 0.00%
Castle 56 11 2 0.00%

References
[1] T.E. Boult and L.G. Brown. Factorization-based segmentation of motions. In

Proc. of the IEEE Workshop on Motion Understanding, pages 179–186, 1991.

[2] J. Costeira and T. Kanade. Multi-body factorization methods for motion analy-
sis. In CVPR, pages 1071–1076, 1995.

[3] F. De la Torre and M. J. Black. Robust principal component analysis for com-
puter vision. In CVPR, pages 362–369, 2001.

[4] R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision.
Cambridge, 2000.

[5] R. Hartley and F. Schaffalitzky. PowerFactorization: an approach to affine
reconstruction with missing and uncertain data. In Australia-Japan Advanced
Workshop on Computer Vision, 2003.

[6] R. Hartley and R. Vidal. The multibody trifocal tensor: Motion segmentation
from three perspective views. In CVPR, 2004.

[7] J. Ho, M.-H. Yang, J. Lim, K.-C. Lee, and D. Kriegman. Clustering apperances
of objects under varying illumination conditions. In CVPR, volume 1, pages
11-18, 2003.

[8] K. Kanatani. Motion segmentation by subspace separation and model selection.
In CVPR, volume 2, pages 586–591, 2001.

[9] K. Kanatani. Evaluation and selection of models for motion segmentation. In
Asian Conference on Computer Vision, pages 7–12, 2002.

[10] K. Kanatani and C. Matsunaga. Estimating the number of independent motions
for multibody motion segmentation. In ECCV, pages 25–31, 2002.

[11] K. Kanatani and Y. Sugaya. Multi-stage optimization for multi-body motion
segmentation. In Australia-Japan Advanced Workshop on Computer Vision,
pages 335–349, 2003.

[12] H. Y. Shum, K. Ikeuchi, and R. Reddy. Principal component analysis with miss-
ing data and its application to polyhedral object modeling. IEEE Transactions
on PAMI, 17(9):854–867, 1995.

[13] M. Tipping and C. Bishop. Mixtures of probabilistic principal component ana-
lyzers. Neural Computation, 11(2), 1999.

[14] C. Tomasi and T. Kanade. Shape and motion from image streams under orthog-
raphy. IJCV, 9(2):137–154, 1992.

[15] P. H. S. Torr. Geometric motion segmentation and model selection. Phil. Trans.
Royal Society of London A, 356(1740):1321–1340, 1998.

[16] R. Vidal and Y. Ma. A unified algebraic approach to 2-D and 3-D motion
segmentation. In ECCV, 2004.

[17] R. Vidal, Y. Ma, and J. Piazzi. A new GPCA algorithm for clustering subspaces
by fitting, differentiating and dividing polynomials. In CVPR, 2004.

[18] R. Vidal, Y. Ma, and S. Sastry. Generalized principal component analysis
(GPCA). In CVPR, volume 1, pages 621–628, 2003.

[19] R. Vidal, Y. Ma, S. Soatto, and S. Sastry. Two-view multibody structure from
motion. International Journal of Computer Vision, 2004.

[20] R. Vidal and S. Sastry. Optimal segmentation of dynamic scenes from two
perspective views. In CVPR, volume 1, pages 281-286, 2003.

[21] Y. Weiss. Segmentation using eigenvectors: a unifying view. In CVPR, pages
975–982, 1999.

[22] Y. Wu, Z. Zhang, T.S. Huang and J.Y. Lin. Multibody grouping via orthogonal
subspace decomposition. In CVPR, volume 2, pages 252–257, 2001.

[23] L. Zelnik-Manor and M. Irani. Degeneracies, dependencies and their impli-
cations in multi-body and multi-sequence factorization. In CVPR , volume 2,
pages 287-293, 2003.

0 200 400 600 800 1000 1200
0

100

200

300

400

500

600

700

800

900

70 170

1

2

Can-Book sequence

0 100 200 300 400 500
0

100

200

300

400

500

100 200

1

2

Wilshire sequence

0 100 200 300 400 500 600 700
0

100

200

300

400

500

42 84

1

2

Tea-Tins sequence

0 200 400 600 800 1000 1200 1400
0

200

400

600

800

1000

1200

1400

41 82

1

2

NEC sequence

0 50 100 150 200 250 300
0

50

100

150

200

44 92 173

1

2

3

3-Cars sequence

Figure 1: Motion segmentation results. Left: first frame
of each sequence. Center: displacement of the correspon-
dences between two views. Right: clustering of the corre-
spondences given by our algorithm.

20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

160

20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

160

20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

160

rank = 2 rank = 3 rank = 4

20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

160

20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

160

70 170

1

2

rank = 5 Our similarity Our segmentation

Figure 2: Similarity/Interaction matrices from the Costeira
and Kanade algorithm for different rank approximations
and from our algorithm for the Can-Book sequence.

7


