
A New GPCA Algorithm for Clustering Subspaces
by Fitting, Differentiating and Dividing Polynomials∗

René Vidal Yi Ma Jacopo Piazzi
Center for Imaging Science Electrical & Computer Engineering Mechanical Engineering
Johns Hopkins University U. of Illinois at Urbana-Champaign Johns Hopkins University

rvidal@cis.jhu.edu yima@uiuc.edu piazzi@jhu.edu

Abstract
We consider the problem of clustering data lying on multiple
subspaces of unknown and possibly different dimensions.
We show that one can represent the subspaces with a set
of polynomials whose derivatives at a data point give nor-
mal vectors to the subspace associated with the data point.
Since the polynomials can be estimated linearly from data,
subspace clustering is reduced to classifying one point per
subspace. We do so by choosing points in the data set that
minimize a distance function. A basis for the complement of
each subspace is then recovered by applying standard PCA
to the set of derivatives (normal vectors) at those points.
The final result is a new GPCA algorithm for subspace clus-
tering based on simple linear and polynomial algebra. Our
experiments show that our method outperforms existing al-
gebraic algorithms based on polynomial factorization and
provides a good initialization to iterative techniques such as
K-subspace and EM. We also present applications of GPCA
on computer vision problems such as vanishing point detec-
tion, face clustering, and news video segmentation.

1 Introduction
Many segmentation problems in computer vision involve
the simultaneous estimation of multiple subspaces from
sample data points, without knowing which points corre-
sponds to which subspace (see Figure 1). For example, the
segmentation of dynamic scenes involves the estimation of
multiple 2-D or 3-D motion models from optical flow or
point correspondences in two or more views [4, 9, 10].

Subspace clustering is a challenging problem that is usu-
ally regarded as “chicken-and-egg.” If the segmentation of
the data was known, one could easily fit a single subspace to
each group of points using standard PCA [?]. Conversely,
if the subspace bases were known, one could easily find
the data points that best fit each subspace. Since in prac-
tice neither the subspaces nor the clustering of the data are
known, most of the existing approaches randomly choose a
basis for each subspace, and then iterate between data clus-
tering and subspace estimation. This can be done using,
e.g., K-subspace [3], an extension of K-means to the case of
subspaces, subspace growing and subspace selection [6], or

∗We thank Frederik Schaffalitzky for a fruitful discussion on the topic.

S1

S2

y1

y2x

b11

b12 b2

o

R
3

Figure 1: Data samples drawn from a mixture of one plane and
one line (through the origin o) in R

3. Arrows are normal vectors.

Expectation Maximization (EM) for mixtures of PCA’s [7].
However, the performance of iterative approaches to sub-
space clustering is in general very sensitive to initialization.
In fact, multiple starts are needed in order to obtain a good
solution, which greatly increases the computational cost.

The initialization problem has motivated the recent de-
velopment of algebraic and geometric approaches to sub-
space clustering that do not require initialization. When the
subspaces are orthogonal, of equal dimensions and intersect
only at the origin, one can define a similarity matrix from
which the segmentation of the data can be obtained using
spectral clustering techniques [1]. Once the clustering of the
data has been found, a basis for each subspace is estimated
using standard PCA. Unfortunately, this method is sensitive
to noise in the data, as pointed out in [5, 12], where vari-
ous improvements are proposed. When the subspaces are of
co-dimension one, i.e. hyperplanes, the above method does
not apply because the subspaces need not be orthogonal and
their intersection is nontrivial. A purely algebraic solution
to this problem, called Generalized PCA (GPCA), was re-
cently proposed in [8]. It was shown that one can model the
hyperplanes with a homogeneous polynomial that can be es-
timated linearly from data. The clustering problem is shown
to be equivalent to factorizing this polynomial into a product
of linear factors, where each factor corresponds to one of the
hyperplanes. A polynomial factorization algorithm (PFA)
based on linear algebraic techniques is then used to cluster
the hyperplanes. This can be done in closed form when the
number of hyperplanes is less than or equal to four. How-
ever, the PFA involves computing roots of univariate poly-
nomials, which can be sensitive to noise as the number of
hyperplanes (degree of the polynomial) increases.

1



Paper contributions. We propose an algebraic geometric
approach to subspace clustering based on polynomial differ-
entiation rather than polynomial factorization. Unlike prior
work, we do not restrict the subspaces to be orthogonal,
have a trivial intersection, or known and equal dimensions.
Instead, we consider the most general case of subspaces of
unknown and possibly different dimensions (e.g., Figure 1).

We model the collection of subspaces as an algebraic set
represented by a set of homogeneous polynomials in several
variables. We show that one can estimate the set of vectors
normal to each subspace by evaluating the derivatives of
these polynomials at any point lying on the subspace. Since
all the polynomials can be retrieved linearly from the data,
this reduces subspace clustering to the problem of classify-
ing one point per subspace. When those points are given
(e.g., in semi-supervised learning), this means that in or-
der to learn the mixture of subspaces, it is sufficient to have
one positive example per class. When the data is unlabeled
(e.g., in unsupervised learning), we propose a simple algo-
rithm that chooses points in the data set that minimize the
distance to the algebraic set, hence dealing automatically
with noise in the data. A basis for the complement of each
subspace is then obtained by applying standard PCA to the
set of derivatives (normal vectors) at those points.

Our experiments on low-dimensional data show that our
algorithm gives about half the error of the PFA of [8], and
improves the performance of iterative techniques, such as
K-subspace and EM, by about 50% with respect to random
initialization. The best performance is achieved by using
our algorithm to initialize K-subspace and EM. We also
present computer vision applications on vanishing point de-
tection, face clustering, and news video segmentation.

2 An introductory example
Imagine we are given data in R

3 drawn from the line S1 =
{x : x1 = x2 = 0} and the plane S2 = {x : x3 = 0}, as
shown in Figure 1. We can describe the entire data set as:

S1 ∪ S2 = {x : (x1 = x2 = 0) ∨ (x3 = 0)}
= {x : (x1x3 = 0) ∧ (x2x3 = 0)}.

Therefore, even though each individual subspace is de-
scribed with polynomials of degree one (linear equations),
the mixture of two subspaces is described with the two poly-
nomials of degree two p21(x) = x1x3 and p22(x) = x2x3.
More generally, any two subspaces in R

3 can be represented
as the set of points satisfying some polynomials of the form

c1x
2
1 + c2x1x2 + c3x1x3 + c4x

2
2 + c5x2x3 + c6x

2
3 = 0.

Although these polynomials are nonlinear in each data point
[x1, x2, x3]T , they are actually linear in the vector of coef-
ficients c = [c1, . . . , c6]T . Therefore, given enough data
points, one can linearly fit these polynomials to the data.

Given these collection of polynomials, we are now in-
terested in estimating a basis for each subspace. In our

example, let P2(x) = [p21(x) p22(x)] and consider the
derivatives of P2(x) at two points in each of the subspaces
y1 = [0, 0, 1]T ∈S1 and y2 = [1, 1, 0]T ∈S2:

DP2(x)=




x3 0
0 x3

x1 x2


 ⇒ DP2(y1) =




1 0
0 1
0 0


, DP2(y2) =




0 0
0 0
1 1


.

Then the columns of DP2(y1) span S⊥
1 and the columns of

DP2(y2) span S⊥
2 (see Figure 1). Thus the dimension of

the line is given by k1 = 3 − rank(DP2(y1)) = 1, and the
dimension of the plane is k2 = 3 − rank(DP2(y2)) = 2.
In conclusion, if we are given one point in each subspace,
we can obtain the subspace bases and their dimensions from
the derivatives of the polynomials at these points.

The final question is how to find one point per subspace.
With perfect data, we may choose a first point as any of the
points in the data set. With noisy data, we may first define a
distance from any point in R

3 to one of the subspaces, e.g.,
d2(x)2 = p21(x)2 + p22(x)2 = (x2

1 + x2
2)x

2
3, and then

choose a point in the data set that minimizes this distance.
Say we pick y2 ∈ S2 as such point. We can then compute
the normal vector b2 = [0, 0, 1]T to S2 from DP (y2) as
above. How do we now pick a point in S1 but not in S2?
As it turns out, this can be done by polynomial division. We
can just divide the original polynomials of degree n = 2 by
bT
2 x to obtain polynomials of degree n − 1 = 1

p11(x) =
p21(x)
bT
2 x

= x1 and p12(x) =
p22(x)
bT
2 x

= x2.

Since these new polynomials vanish on S1 but not on S2, we
can find a point y1 in S1 but not in S2, as a point in the data
set that minimizes d2

1(x) = p11(x)2 + p12(x)2 = x2
1 + x2

2.
More generally, one can solve the problem of cluster-

ing a collection of n subspaces {Si ⊂ R
K}n

i=1 of unknown
and possibly different dimensions {ki}n

i=1 by polynomial
fitting (Section 3.1), differentiation (Section 3.2) and divi-
sion (Section 3.3), as we will show in the next section.

3. Algebraic subspace clustering
Let x be a vector in R

K . A homogeneous polynomial of
degree n in x is a polynomial pn(x) such that pn(λx) =
λnpn(x) for all λ in R. The space of all homogeneous
polynomials of degree n in K variables is a vector space

of dimension Mn =
(

n + K − 1
K − 1

)
. A particular basis for

this space is obtained by considering all the monomials of
degree n in K variables, that is xI = xn1

1 xn2
2 · · ·xnK

K with
0 ≤ nj ≤ n for j = 1, . . . , K, and n1 +n2+ · · ·+nK = n.
Thus, each homogeneous polynomial can be written as a
linear combination of a vector of coefficients cn ∈ R

Mn as

pn(x) = cT
nνn(x) =

∑
cn1,n2,...,nK

xn1
1 xn2

2 · · ·xnK

K , (1)

where νn : R
K →R

Mn is the Veronese map of degree n [8],
also known as the polynomial embedding in machine learn-
ing, defined as νn : [x1, . . . , xK ]T 	→ [. . . ,xI , . . .]T with I
chosen in the degree-lexicographic order.

2



3.1. Representing subspaces with polynomials
It is well known that a subspace Si ⊂ R

K of dimension ki,
where 0 < ki < K can be represented with K − ki linear
equations (polynomials of degree one) of the form1

Si = {x ∈ R
K : BT

i x = 0} =
{

x ∈ R
K:

K−ki∧
j=1

(bT
ijx = 0)

}
,

where Bi
.= [bi1, . . . , bi(K−ki)] ∈ R

K×(K−ki) is a basis
for the orthogonal complement of Si, S⊥

i . We now demon-
strate that one can also represent a collection of n subspaces
{Si ⊂ R

K}n
i=1 with a set of polynomials, except that the

polynomials are of degree n. To see this, we notice that an
arbitrary point x ∈ R

K belongs to ∪n
i=1Si if and only if it

satisfies (x∈S1) ∨ · · · ∨ (x∈Sn). This is equivalent to
n∨

i=1

(x ∈ Si) ⇔
n∨

i=1

K−ki∧
j=1

(bT
ijx = 0) ⇔

∧
σ

n∨
i=1

(bT
iσ(i)x = 0),

where the right hand side is obtained by exchanging ands
and ors using De Morgan’s laws, and σ represents a partic-
ular choice of one normal vector biσ(i) from each basis Bi.
Notice that each one of the above equations is of the form

n∨
i=1

(bT
i σ(i)x=0)⇔

( n∏
i=1

(bT
i σ(i)x)=0

)
⇔(pnσ(x)=0),

which is simply a homogeneous polynomial of degree n in
K variables that is factorizable as a product of n linear ex-
pressions in x. Therefore, we can write each one of those
polynomials as a linear combination of a vector of coeffi-
cients cn ∈ R

Mn as in (1). We have shown the following.

Theorem 1 (Representing subspaces with polynomials)
A collection of n subspaces can be described as the set of
points satisfying a set of homogeneous polynomials of the
form

pn(x) =
n∏

i=1

(bT
i x) = cT

nνn(x) = 0, (2)

where bi ∈ R
K is a normal vector to the i-th subspace.

Let X
.= {xj}N

j=1 be given a set of points lying on the n

subspaces. Since each polynomial pn(x) = cT
nνn(x) must

be satisfied by every data point, we have cT
nνn(xj) = 0 for

all j = 1, . . . , N . Therefore, the vector of coefficients of
each one of the polynomials in the set In

.= spanσ{pnσ}
must lie in the null space of the matrix

Ln
.= [νn(x1), . . . , νn(xN )]T ∈ R

N×Mn . (3)

Therefore, if we denote mn
.= dim(In), then we must have

Mn−
n∏

i=1

(K−ki) ≤ rank(Ln) = Mn−mn ≤ Mn−1. (4)

This means that, given Mn − mn sample points from the
algebraic set ∪n

i=1Si, with at least ki points in subspace Si,
we can obtain a basis {pn�}mn

�=1 for the polynomials in In

by computing its coefficients linearly as null vectors of Ln.
1For affine subspaces (which do not necessarily pass the origin), we

first make them subspaces using the homogeneous coordinates.

Remark 1 (Estimating the polynomials from noisy data points)
In the absence of noise, we can estimate the number of polynomi-
als from a generic data set X as mn = Mn − rank(Ln) and the
polynomials {pn�} as the mn singular vectors of Ln associated
with its mn zero singular values. In the presence of moderate
noise, this suggests a least squares solution for the coefficients of
the polynomials, except that we do not know mn. We use model
selection to determine mn as

mn = arg min
m

σ2
m+1(Ln)∑m

k=1 σ2
k(Ln)

+ κ m, (5)

with σk(Ln) the kth singular vector of Ln and κ a parameter.

3.2. Obtaining a basis for each subspace
For the sake of simplicity, let us first consider the case of hy-
perplanes, i.e. subspaces of equal dimension ki = K − 1.
In this case, there is only one vector bi ∈ R

K normal to
subspace Si, for i = 1, . . . , n. Therefore, there is only
one polynomial, pn(x) = (bT

1 x) · · · (bT
nx) = cT

nνn(x),
representing the n hyperplanes and its coefficients cn can
be computed as the unique vector in the null space of Ln.
Given cn, computing the normal vectors {bi} is equivalent
to factorizing pn(x) into a product of linear forms as in (2).
In [8], we solved this problem using a polynomial factoriza-
tion algorithm (PFA) that computes the roots of a univariate
polynomial of degree n and solves K − 2 linear systems.

Unfortunately, one may not be able to apply the PFA in
the presence of noisy data, because cn may correspond to a
polynomial that is not factorizable. The same situation oc-
curs in the case of subspaces of unknown and different di-
mensions, even with perfect data, because here we can only
obtain a basis for the polynomials in In and the elements of
this basis may not be factorizable. For example x2

1 + x1x2

and x2
2 − x1x2 are factorizable but their linear combination

x2
1 + x2

2 is not. One way of avoiding this problem is to find
another basis for the null space of Ln whose elements cor-
respond to coefficients of factorizable polynomials. This is
in general a daunting task, since it is equivalent to solving a
set of multivariate homogeneous polynomials of degree n.

In this section, we propose a new algorithm for cluster-
ing subspaces which is based on polynomial differentiation
rather than polynomial factorization. In essence, we show
that one can recover a basis for the orthogonal complement
of each subspace {Bi}n

i=1 by differentiating all the polyno-
mials {pn�} obtained from null(Ln) (factorizable or not).

We will first illustrate our polynomial differentiation al-
gorithm in the case of hyperplanes. Consider the derivatives
of the polynomial pn(x) representing the hyperplanes:

Dpn(x)=
∂pn(x)

∂x
=

∂

∂x

n∏
i=1

(bT
i x)=

n∑
i=1

(bi)
∏
� �=i

(bT
� x). (6)

We notice that if we evaluate Dpn at a point yi ∈ Si, i.e. yi

is such that bT
i yi = 0, then all summands in (6), except the

ith, vanish, because
∏

� �=i(b
T
� yj) = 0 for j �= i. Therefore,

we can immediately obtain the normal vectors as

bi =
Dpn(yi)
‖Dpn(yi)‖

, i = 1, . . . , n. (7)

3



Therefore, in a semi-supervised learning scenario in which
we are given only one positive example per class, the hy-
perplane clustering problem can be solved analytically by
simply evaluating the derivatives of pn(x) at each one of
the points with known labels.

As it turns out, the same principle applies to subspaces
of arbitrary dimensions. In this case, we can compute mn

(not necessarily factorizable) polynomials representing the
union of the n subspaces. By construction, even though
each vector of coefficients cn ∈ null(Ln) may not corre-
spond to a factorizable polynomial, we can still write cn

as a linear combination of vectors cn� which correspond to
factorizable polynomials, i.e. cn =

∑
α�cn�. Then the

derivative at a point yi ∈ Si is

∂

∂x
cT

nνn(x)
∣∣∣∣
x=yi

=
∂

∂x

∑
�

α�c
T
n�νn(x)

∣∣∣∣∣
x=yi

=
∑

�

α�bi�, (8)

where bi� ∈ S⊥
i is a normal vector to subspace Si. There-

fore, although each polynomial in In may not be factoriz-
able, its derivative at yi still gives a vector normal to Si.
This fact should come at no surprise. The zero set of each
polynomial pn� is just a surface in R

K , therefore its deriva-
tive at point yi ∈ Si, Dpn�(yi), gives a vector normal to
the surface. Since a mixture of subspaces is locally flat, i.e.
in a neighborhood of yi the surface is merely the subspace
Si, then the derivative at yi lives in the orthogonal comple-
ment S⊥

i of Si. Indeed, as stated by the following theorem,
the span of all the derivatives equals S⊥

i , hence we can also
obtain the dimension of each subspace ki = dim(Si).
Theorem 2 (Subspace bases by polynomial differentiation)
If the set X is such that dim(null(Ln)) = dim(In) = mn,
and one generic point yi is given for each subspace Si,
then we have

S⊥
i = span

{ ∂

∂x
cT

nνn(x)
∣∣∣
x=yi

, ∀cn ∈ null(Ln)
}

. (9)

Therefore, the dimensions of the subspaces are given by

ki = K − rank
(
DPn(yi)

)
i = 1, . . . , n, (10)

where DPn(x) .= [Dp11(x), . . . , Dp1mn
(x)] ∈ R

K×mn .

As a consequence of Theorem 2, we already have the
sketch of an algorithm for clustering subspaces of arbitrary
dimensions in a semi-supervised learning scenario in which
we are given one example per class {yi ∈ Si}n

i=1:

1. Compute a basis for the null space null(Ln) using, for
example, SVD.

2. Evaluate the derivative of the (possibly nonfactoriz-
able) polynomial cT

nνn(x) at yi for each cn in the ba-
sis of null(Ln) to obtain a set of normal vectors in S⊥

i .
3. Compute a basis for S⊥

i by applying PCA to the nor-
mal vectors obtained in step 2. PCA automatically
gives the dimension of each subspace ki = dim(Si).

4. Cluster the data points by assigning point xj to sub-
space i if

i = arg min
�=1,...,n

‖BT
� xj‖. (11)

Remark 2 (Estimating the bases from noisy data points)
Since we are using PCA, with a moderate level of noise we can
still obtain a basis for each subspace and cluster the data as above,
because the coefficients of the polynomials and their derivatives
depend continuously on the data. In fact, one can compute the
derivatives of pn(x) = cT

nνn(x) algebraically. For instance, one
may compute Dpn(x) = cT Dνn(x) = cT Enνn−1(x), with
En ∈ R

Mn×Mn−1 a constant matrix containing the exponents
of the Veronese map νn(x). Notice that we can also obtain the
dimension of each subspace by looking at the singular values of
the matrix of derivatives, similarly to (5).

3.3. Obtaining one point per subspace
Theorem 2 demonstrates that one can obtain a basis for each
S⊥

i directly from the derivatives of the polynomials repre-
senting the union of the subspaces. However, in order to
proceed we need to have one point per subspace, i.e. we
need to know the vectors {yi}n

i=1. We now consider the
unsupervised learning scenario in which we do not know
the label for any of the data points.

The idea is that we can always choose a point yn lying on
one of the subspaces, say Sn, by checking that Pn(yn) = 0.
Since we are given a set of data points X = {xj}n

j=1 lying
on the subspaces, in principle we can choose yn to be any
of the data points. However, in the presence of noise and
outliers, a random choice of yn may be far from the true
subspaces. One may be tempted to choose a point in the
data set X that minimizes ‖Pn(x)‖, as we did in Section 2.
However, such a choice has the following problems:

1. The value ‖Pn(x)‖ is merely an algebraic error, i.e. it
does not really represent the geometric distance from
x to its closest subspace. In principle, finding the geo-
metric distance from x to its closest subspace is a hard
problem, because we do not know the bases {Bi}n

i=1.
2. Points x lying close to the intersection of two or more

subspaces are more likely to be chosen, because two
or more factors in pn(x) = (bT

1 x) · · · (bT
nx) are ap-

proximately zero, which yields a smaller value for
|pn(x)|. Since Dpn(x) = 0 for x in the intersection
of two or more subspaces, one should avoid choos-
ing such points, because they typically give very noisy
estimates of the normal vectors. In fact, we can see
from (6) and (8) that for an arbitrary x the vector
Dpn(x) is a linear combination of the normal vectors
{bi}n

i=1. Thus if x is close to two subspaces, Dpn(x)
will be a linear combination of both normals.

As it turns out, one can avoid both of these problems thanks
to the following lemma.

Lemma 1 Let x̃ be the projection of x ∈ R
K onto its clos-

est subspace. The Euclidean distance from x to x̃ is

‖x−x̃‖=

√
Pn(x)

(
DPn(x)T DPn(x)

)†
Pn(x)T+O

(‖x−x̃‖2),
where Pn(x) = [pn1(x), . . . , pnmn

(x)] ∈ R
1×mn ,

DPn(x) = [Dpn1(x), . . . , Dpnmn
(x)] ∈ R

K×mn , and
A† is the Moore-Penrose inverse of A.

4



Thanks to Lemma 1, we can immediately choose a point
yn lying on (close to) one of the subspaces and not in (far
from) the other subspaces as

yn = arg min
x∈X:DPn(x) �=0

Pn(x)
(
DPn(x)T DPn(x)

)†
Pn(x)T, (12)

and then compute the basis Bn ∈ R
K×(K−kn) for S⊥

n by
applying PCA to DPn(yn).

In order to find a point yn−1 lying on (close to) one of
the remaining (n−1) subspaces but not in (far from) Sn, we
could in principle choose yn−1 as in (12) after removing the
points in Sn from the data set X . With noisy data, however,
this depends on a threshold and is not very robust. Alterna-
tively, we can find a new set of polynomials {p(n−1)�(x)}
defining the algebraic set ∪n−1

i=1 Si. In the case of hyper-
planes, there is only one such polynomial, namely

pn−1(x) .= (b1x) · · · (bT
n−1x) =

pn(x)
bT

nx
= cT

n−1νn−1(x).

Therefore, we can obtain pn−1(x) by polynomial division.
Notice that dividing pn(x) by bT

nx is a linear problem of
the form Rn(bn)cn−1 = cn, where Rn(bn) ∈ R

Mn×Mn−1 .
This is because solving for the coefficients of pn−1(x) is
equivalent to solving the equations (bT

nx)(cT
n−1νn(x)) =

cT
nνn(x), where bn and cn are already known.

Example 1 If n = 2 and b2 = [b1, b2, b3]
T , then the matrix

R2(b2) is given by

R2(b2) =




b1 b2 b3 0 0 0
0 b1 0 b2 b3 0
0 0 b1 0 b2 b3




T

∈ R
6×3.

In the case of subspaces of arbitrary dimensions, in
principle we cannot simply divide the polynomials Pn by
bT

nx for any column bn of Bn, because the polynomials
{pn�(x)} may not be factorizable. Furthermore, they do not
necessarily have the common factor bT

nx. The following
theorem resolves this difficulty by showing how to compute
the polynomials associated with the remaining subspaces
∪n−1

i=1 Si.

Theorem 3 (Obtaining points by polynomial division)
If the set X is such that dim(null(Ln)) = dim(In), the set
of homogeneous polynomials of degree (n − 1) associated
with the algebraic set ∪n−1

i=1 Si is given by {cT
n−1vn−1(x)}

where the vectors of coefficients cn−1 ∈ R
Mn−1 must

satisfy

LnRn(bn)cn−1 = 0, for all bn ∈ S⊥
n . (13)

Thanks to Theorem 3, we can obtain a collection of poly-
nomials {p(n−1)�(x)}mn−1

�=1 representing ∪n−1
i=1 Si from the

null space of LnRn(bn) ∈ R
N×Mn−1 . We can then repeat

the same procedure to find a basis for the remaining sub-
spaces. We thus obtain the following polynomial differen-
tiation algorithm (PDA) for finding a basis for a collection
of subspaces of unknown and possibly different dimensions
from sample data points {xj}N

j=1.

Polynomial Differentiation Algorithm (PDA)

set Ln = [νn(x1), . . . , νn(xN )]T ∈ R
N×Mn ;

for i = n : 1 do
solve Lic = 0 to obtain a basis {ci�}mi

�=1 of null(Li), where
the number of polynomials mi is obtained as in (5);
set Pi(x) = [pi1(x), . . . , pimi(x)] ∈ R

1×mi , where
pi�(x) = cT

i�νi(x) for � = 1, . . . , mi;
do

yi= argmin
x∈X :DPi(x) �=0

Pi(x)
(
DPi(x)T DPi(x)

)†
Pi(x)T ,

Bi= PCA
(
DPi(yi)

)
,

Li−1= Li

[
RT

i (bi1) · · ·RT
i (bi,K−ki)

]T

, with bij columns of Bi;

end do
end for
for j = 1 : N do

assign point xj to subspace Si if i = arg min� ‖BT
� xj‖;

end for

Remark 3 (Avoiding polynomial division) Notice that one may
avoid computing Pi for i < n by using a heuristic distance func-
tion to choose the points {yi}n

i=1 as follows. Since a point in
∪n

�=iS� must satisfy ‖BT
i x‖ · · · ‖BT

n x‖ = 0, we can choose a
point yi−1 on ∪i−1

�=1S� as:

yi−1 = argmin
x∈X :DPn(x) �=0

√
Pn(x)(DPn(x)T DPn(x))†Pn(x)T + δ

‖BT
i x‖ · · · ‖BT

n x‖ + δ
,

where δ > 0 is chosen to avoid cases in which both the numerator
and the denominator are zero (e.g., with perfect data).

4. Further analysis of the algorithm
4.1. Projection and minimum representation
In practice, when the dimension of the ambient space K
is large, the complexity of the above polynomial-based al-
gorithms becomes prohibitive.2 If the dimension of the in-
dividual subspaces ki is relatively small, it seems rather re-
dundant to use R

K to represent such low-dimensional linear
structure. In such cases, one may reduce the dimensionality
by projecting the data onto a lower-dimensional (sub)space.

We will distinguish between two different kinds of “pro-
jections.” The first kind is for the case in which the span of
all the subspaces is a proper subspace of the ambient space,
i.e. span(∪n

i=1Si) ⊂ R
K . In this case, one may simply

run the classic PCA algorithm to eliminate the redundant
dimensions. The second kind is for the case in which the
largest dimension of the subspaces, denoted by kmax, is
strictly less than K − 1. When kmax is known,3 one may
choose a (kmax+1)-dimensional (affine) subspace P such
that, by projecting R

K onto this subspace:
πP : x ∈ R

K 	→ x′ = πP(x) ∈ P,

2This is because Mn is of the order nK .
3For example, in 3-D motion segmentation from affine cameras, it is

known that the subspaces have dimension at most four [5, 10].

5



the dimension of each original subspace Si is preserved,4

and there is a one-to-one correspondence between Si and
its projection – no reduction in the number of subspaces n.5

Although all (kmax+1)-dimensional affine subspaces of R
K

that have the above properties form an open and dense set,
it remains unclear what a “good” choice is for such a sub-
space when there is noise in the data. One possibility is to
randomly select a few projections and choose the one that
results in the smallest fitting error. Another possibility is to
apply classic PCA to project onto a (kmax+1)-dimensional
affine subspace. In either case, the resulting P gives a “min-
imum” representation that preserves the multilinear struc-
ture of the original data.6

Therefore, given a sample data set X embedded in a
high-dimensional space, we can simultaneously identify
and represent its multilinear structure in a space with the
lowest possible dimension through the following steps:

X
PCA(πP )−−−−−−→ X ′ PDA−−−−−→ ∪n

i=1πP(Si)
π−1
P−−−−−→ ∪n

i=1Si.

4.2. Robustness and outlier rejection
In practice, there could be points in X that are far away
from any of the subspaces. Such sample points are called
outliers. By detecting and rejecting those samples we can
typically ensure a much better estimate for the subspaces.
Many methods can be deployed to detect and reject the out-
liers. For instance, the function

d2(x) = Pn(x)
(
DPn(x)T DPn(x)

)†
Pn(x)T

approximates the squared distance of a point x to the sub-
spaces. From the d2-histogram of the sample set X , we
may exclude from X all points that have unusually large
d2 values and use only the remaining sample points to re-
run the PDA algorithm. For instance, if we assume that the
sample points are drawn around each subspace from inde-
pendent Gaussian distributions with a small variance σ2, d2

σ2

is approximately a χ2-distribution with
∑

i(K−ki) degrees
of freedom. We can apply standard χ2-test to reject samples
which deviate significantly from this distribution.

4.3. Combining PDA with spectral clustering
Although subspace clustering can be viewed as a special
clustering problem, many of the classical clustering algo-
rithms such as spectral clustering [11] cannot be directly
applied. This is because, in order for spectral clustering al-
gorithms to work well, one would need to define a distance
between any pair of points in the subspaces that depends

4This requires that P be transversal to each S⊥
i , i.e. span{P, S⊥

i } =

R
K for every i = 1, . . . , n. Since n is finite, this transversality condi-

tion can be easily satisfied. Furthermore, the set of positions for P which
violate the transversality condition is only a zero-measure closed set [2].

5This requires that all S′
i be transversal to each other in P , which is

guaranteed if we require P to be transversal to S⊥
i ∩S⊥

j for i, j = 1, .., n.
All P’s which violate this condition form again only a zero-measure set.

6The effect of the projection πP can also be explained from an alge-
braic viewpoint. In the case of hyperplanes i.e. k = K − 1, the ideal I
associated with the algebraic set ∪n

i=1Si becomes a principle ideal gener-
ated by a unique homogeneous polynomial with the lowest possible degree.

only on the geometry of the subspaces but not on the lo-
cations of the points inside the subspaces. The Euclidean
distance between sample points in the sample set X does
not have this property. However, Theorem 2 enables us to
associate every point xi in Si with a basis Bi for S⊥

i . A
distance function between points xi in Si and xj in Sj can
be defined between the two bases:

Dij
.
= 〈Bi, Bj〉, (14)

where 〈·, ·〉 denotes the largest subspace angle between the
two subspaces. Notice that this distance does not depend on
the particular location of the point in each subspace. Based
on this distance function, one can define an N × N sim-
ilarity matrix, e.g., Sij = exp(−D2

ij), for the N samples
in X . This allows one to apply classical spectral clustering
algorithms to the subspace clustering problem.

5. Experiments on synthetic data
We first evaluate the performance of PDA by comparing
it with PFA, K-subspace and EM on synthetically gener-
ated data. The experimental setup consists of choosing
n = 2, 3, 4 collections of N = 200n points on randomly
chosen planes in R

3. Zero-mean Gaussian noise with s.t.d.
from 0% to 5% is added to the sample points. We run 1000
trials for each noise level. For each trial the error between
the true (unit) normals {bi}n

i=1 and the estimates {b̂i}n
i=1 is

computed as

error =
1

n

n∑
i=1

acos
(
bT

i b̂i

)
(degrees). (15)

Error vs. noise. Figure 2 (top) plots the mean error as a
function of noise for n = 4. Similar results were obtained
for n = 2, 3, though with smaller errors. Notice that the
estimates of PDA with δ = 0.02 have an error of about 50%
compared to PFA. This is because PDA deals automatically
with noisy data and outliers by choosing the points {yi}n

i=1

in an optimal fashion. The choice of δ was not important
(results were similar for δ ∈ [0.001, 0.1]), as long as it is
a small number. Notice also that both K-subspace and EM
have a nonzero error in the noiseless case, showing that they
frequently converge to a local minima when a single ran-
domly chosen initialization is used. When initialized with
PDA, both K-subspace and EM reduce the error to approx-
imately 35-50% with respect to random initialization.

Error vs. number of subspaces. Figure 2 (bottom) plots
the estimation error of PDA as a function of the number of
subspaces n, for different levels of noise. As expected, the
error increases as a function of n.

Computing time. Table 1 shows the mean computing time
and the mean number of iterations for a MATLAB imple-
mentation of each one of the algorithms over 1000 trials.
Among the algebraic algorithms, the fastest one is PFA
which directly factors pn(x) given cn. The extra cost of
PDA relative to PFA is to compute the derivatives Dpn(x)
for all x ∈ X and to divide the polynomials. Overall, PDA
gives half of the error of PFA in about twice as much time.
Notice also that PDA reduces the number of iterations of

6



0 1 2 3 4 5
0

2

4

6

8

10

12

14

16

18

Noise level [%]

E
rr

or
 in

 th
e 

no
rm

al
s 

[d
eg

re
es

]

PFA
K−sub
PDA
EM
PDA+K−sub
PDA+EM
PDA+K−sub+EM

0 1 2 3 4 5
0

1

2

3

4

5

6

7

8

9

10

Noise standard deviation [%]

M
ea

n 
E

rr
or

 (
de

gr
ee

s)

n = 1
n = 2
n = 3
n = 4

Figure 2: Error vs. noise for data lying on two-dimensional
subspaces of R

3. Top: PFA, PDA (δ = 0.02), K-subspace and
EM randomly initialized, K-subspace and EM initialized with
PDA, and EM initialized with K-subspace initialized with PDA
for n = 4 subspaces. Bottom: PDA for n = 1, . . . , 4 subspaces.

K-subspace and EM to approximately 1/3 and 1/2, respec-
tively. The computing times for K-subspace and EM are
also reduced including the extra time spent on initialization
with PDA or PDA+K-subspace.

Table 1: Mean computing time and mean number of iterations for
each one of the algorithms.

Algorithms Lnc = 0 PFA PDA K-sub
Time (sec.) 0.0854 0.1025 0.1818 0.4637
# Iterations none none none 19.7

Algorithms PDA +K-sub EM PDA+EM PDA+K-sub+EM
Time (sec.) 0.2525 1.0408 0.6636 0.7528
# Iterations 7.1 30.8 17.1 15.0

6. Applications in computer vision
In this section, we apply GPCA to problems in computer vi-
sion such as vanishing point detection, face clustering, and
news video segmentation. We refer the reader to [9], [4]
and [10] for applications in 2-D and 3-D motion segmenta-
tion from two, three and multiple views, respectively.

Detection of vanishing points. Given a collection of par-
allel lines in 3-D, it is well know that their perspective pro-
jections intersect at the so-called vanishing point, which is
located either in the image or at infinity. Let {�j ∈P

2}N
j=1

be the projection of n sets of parallel lines intersecting at the
vanishing points {vi ∈ P

2}n
i=1. Since for each line j there

exists a point i such that vT
i �j = 0, the problem of esti-

20 40 60 80 100 120

20

40

60

80

100

120

140

160

180

5 10 15 20 25 30

red

green

blue

−300 −200 −100 0 100

100

200

300

400

500

600

700

Ground Truth
GPCA−PDA
GPCA−PDA + K−sub

Figure 3: Top-left: Image #364081 from the Corel database with
3 sets of 10 parallel lines superimposed. Top-right: Segmentation
of the 30 lines given by PDA. Bottom: Vanishing points estimated
by PDA and PDA+K-subspace and the true vanishing points.

mating the n vanishing points from the set of N lines with-
out knowing which subsets of lines intersect in the same
point, is equivalent to estimating a collection of n planes
in R

3 with normal vectors {vi ∈ P
2}n

i=1 from sample data
points {�j ∈ P

2}N
j=1. Figure 3 shows an example from the

Corel Database with n = 3 sets of N = 30 parallel lines,
which were manually extracted. For each one of the three
set of lines we computed their intersecting point (assuming
known segmentation) and regarded those intersection points
as ground truth data. We then applied PDA to the set of
lines assuming unknown segmentation and used the result-
ing vanishing points to initialize K-subspace. Figure 3 (top-
right) shows the segmentation of the lines obtained by PDA.
Only one line is misclassified, the top horizontal line, be-
cause it approximately passes through two vanishing points.
Figure 3 (bottom) shows the vanishing points estimated by
PDA and PDA+K-subspace, and compares them with the
ground truth. The error in the estimation of the vanishing
points with respect to the ground truth are 1.7◦, 11.1◦ and
1.5◦ for PDA and 0.4◦, 2.0◦, and 0.0◦ for PDA+K-sub.

Face clustering under varying illumination. Given a col-
lection of unlabeled images {Ij ∈ R

K}N
j=1 of n different

faces taken under varying illumination, we would like to
cluster the images corresponding to the same person. For
a Lambertian object, it has been shown that the set of all
images taken under all lighting conditions forms a cone in
the image space, which can be well approximated by a low-

7



0 50 100 150 200

Face 10

Face 5

Face 8

Figure 4: Clustering a subset of the Yale Face Database B con-
sisting of 64 frontal views under varying lighting conditions for
subjects 2, 5 and 8. Left: Image data projected onto the three prin-
cipal components. Right: Clustering of the images given by PDA.

dimensional subspace [3]. Therefore, we can cluster the
collection of images by estimating a basis for each one of
those subspaces, because the images of different faces will
live in different subspaces. Since in practice the number
of pixels K is large compared with the dimension of the
subspaces, we first apply PCA to project the images onto
R

K′
with K ′ << K. More specifically, we compute the

SVD of the data [I1 I2 · · · IN ]K×N = USV T and consider

a matrix X ∈ R
K′×N consisting of the first K ′ columns of

V . We obtain a new set of data points in R
K′

from each
one of the rows of X . We use homogeneous coordinates
{xj ∈ R

K′+1}N
j=1 so that each subspace goes through the

origin. The new data set also lives in a collection of sub-
spaces, because it is the projection of the original set of sub-
spaces onto a lower-dimensional linear space. We consider
a subset of the Yale Face Database B consisting of N = 64n
frontal views of n = 3 faces (subjects 5, 8 and 10) under 64
varying lighting conditions. For computational efficiency,
we downsampled each image to K = 30 × 40 pixels. Then
we projected the data onto the first K ′ = 3 principal com-
ponents, as shown in Figure 4 (left). We applied PDA to
the data in homogeneous coordinates and fitted three sub-
spaces of dimension 3, 2, and 2. PDA obtained perfect a
segmentation as shown in Figure 4 (right).
Segmentation of news video sequences. Consider a news
video sequence in which the camera is switching among a
small number of scenes. For instance, the host could be
interviewing a guest and the camera may be switching be-
tween the host, the guest and both of them, as shown in Fig-
ure 5. Given the frames {Ij ∈ R

K}N
j=1, we would like to

cluster them according to the different scenes. We assume
that all the frames corresponding to the same scene live in a
low-dimensional subspace of R

K and that different scenes
correspond to different subspaces. As in the case of face
clustering, we may segment the video sequence into dif-
ferent scenes by applying PDA to the image data projected
onto the first few principal components. Figure 5 shows
the segmentation results for two video sequences. In both
cases, a perfect segmentation is obtained.

0 5 10 15 20 25 30

1

2

3

0 10 20 30 40 6050

1

2

3

Figure 5: Clustering frames of a news video into groups of
scenes. Top: 30 frames clustered into 3 groups: host, guest and
both. Bottom: 60 frames clustered into 3 groups: rear of a car
with a burning wheel, a burnt car with people and a burning car.

7 Conclusions
We have presented a new algebraic algorithm for subspace
clustering. Our algorithm is based on estimating a col-
lection of polynomials from data and then evaluating their
derivatives at points on the subspaces. We showed that our
algorithm gives about half of the error w.r.t extant algebraic
algorithms based on polynomial factorization, and signif-
icantly improves the performance of iterative techniques
such as K-subspace and EM. We also demonstrated the per-
formance of the new algorithm on the estimation of vanish-
ing points, face clustering, and news video segmentation.

References
[1] J. Costeira and T. Kanade. A multibody factorization method for independently

moving objects. IJCV, 29(3):159–179, 1998.
[2] M. Hirsch. Differential Topology. Springer, 1976.
[3] J. Ho, M.-H. Yang, J. Lim, K.-C. Lee, and D. Kriegman. Clustering apperances

of objects under varying illumination conditions. In CVPR, pages 11-18, 2003.
[4] R. Hartley and R. Vidal. The multibody trifocal tensor: Motion segmentation

from 3 perspective views. In CVPR, 2004.
[5] K. Kanatani. Motion segmentation by subspace separation and model selection.

In ICCV , volume 2, pages 586–591, 2001.
[6] A. Leonardis, H. Bischof, and J. Maver. Multiple eigenspaces. Pattern Recog-

nition, 35(11):2613–2627, 2002.
[7] M. Tipping and C. Bishop. Mixtures of probabilistic principal component ana-

lyzers. Neural Computation, 11(2), 1999.
[8] R. Vidal, Y. Ma, and S. Sastry. Generalized principal component analysis

(GPCA). In CVPR, volume 1, pages 621–628, 2003.
[9] R. Vidal and Y. Ma. A unified algebraic approach to 2-D and 3-D motion

segmentation. In ECCV, 2004.
[10] R. Vidal and R. Hartley. Motion segmentation with missing data using Power-

Factorization and GPCA. In CVPR, 2004.
[11] Y. Weiss. Segmentation using eigenvectors: a unifying view. In IEEE Interna-

tional Conference on Computer Vision, pages 975–982, 1999.
[12] Y. Wu, Z. Zhang, T.S. Huang and J.Y. Lin. Multibody grouping via orthogonal

subspace decomposition. In CVPR, volume 2, pages 252–257, 2001.

8


