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Abstract
In this paper, we propose a robust model selection cri-
terion for mixtures of subspaces called minimum effec-
tive dimension (MED). Previous information-theoretic
model selection criteria typically assume that data can
be modelled with a parametric model of certain (pos-
sibly differing) dimension and a known error distribu-
tion. However, for mixtures of subspaces with different
dimensions, a generalized notion of dimensionality is
needed and hence introduced in this paper. The pro-
posed MED criterion minimizes this geometric dimen-
sion subject to a given error tolerance (regardless of
the noise distribution). Furthermore, combined with a
purely algebraic approach to clustering mixtures of sub-
spaces, namely the Generalized PCA (GPCA), the MED
is designed to also respect the global algebraic and geo-
metric structure of the data. The result is a non-iterative
algorithm called robust GPCA that estimates from noisy
data an unknown number of subspaces with unknown
and possibly different dimensions subject to a maximum
error bound. We test the algorithm on synthetic noisy
data and in applications such as motion/image/video
segmentation.

1. Introduction
Many segmentation and compression problems in com-
puter vision (e.g., image or motion segmentation, video
segmentation, feature clustering) require to group data
into multiple subsets so that each subset can be fit with
a single parametric model (which is typically a clus-
ter, a probability distribution, or a manifold). With-
out knowing either the segmentation of the data or the
corresponding model parameters, this problem is tradi-
tionally approached within the framework of maximum
likelihood estimation by assuming a known error distri-
bution. An optimal solution is typically sought in an it-
erative manner via the expectation-maximization (EM)
algorithm.

However, it has been recently shown that if the un-
derlying model is a mixture of linear subspaces,1 then

1For instance, perspective images of different textures, images of
multiple faces under varying illumination, affine trajectories of points
undergoing multiple rigid-body motions, etc., all span different sub-
spaces.

the segmentation problem can be solved non-iteratively
via algebraic geometric means using a generalization of
principal component analysis (PCA) to mixtures of sub-
spaces called generalized PCA (GPCA) [14]. Although
this algorithm clearly reveals the algebraic nature of
the problem and provides an elegant solution when the
number of models is known and the data presents a mod-
erate level of noise, in practical applications one must
also deal with the following issues:
• Selectivity. For a given set of data, if the number

of subspaces and their dimension are not given a
priori, then there might be more than one model
that fits the data. For instance, (see Fig. 1) sample
points drawn from two intersecting lines in R

3 can
also be fit by the plane spanned by the two lines.
In such cases, the purely algebraic method does
not provide a guiding criterion for making a choice
among the possible models.

• Robustness. Although the purely algebraic algo-
rithm can tolerate a moderate amount of noise in
the data [14], the fact that large amounts of noise
and outliers are commonplace for many segmen-
tation problems in vision calls for improving the
robustness of the GPCA algorithm.

For the selection of an “optimal” model among a class
of models, many useful criteria have been developed in
the algorithmic complexity and statistics communities,
such as minimum message length (MML) [16], min-
imum description length (MDL) [8, 6], Bayesian in-
formation criterion (BIC), Akaike information criterion
(AIC) [1] and Geometric AIC (G-AIC) [7]. All these
criteria are very similar in nature: they all try to strike
a balance between the model complexity (measured say
by the dimension of the parameter space) and the data
fidelity to the chosen model (typically measured as the
sum of squares of the residuals). However, there are
several technical difficulties that prevent us from di-
rectly applying these model selection criteria to a mix-
tures of subspaces:

1. These criteria are mostly based on maximum like-
lihood (ML) or maximum a posteriori (MAP) es-
timation,2 hence they typically assume a known

2Although MML is measured as the algorithmic complexity of the

1



probability distribution for the data and the mod-
els. However, there are many GPCA problems for
which we do not know a priori the statistical na-
ture of the models and the data, e.g., in the estima-
tion of multiple epipoles from epipolar lines [13].
Furthermore, we do not even know the number and
dimensions of the subspaces.

2. All these criteria reduce to minimizing the “aver-
age” of the error residuals (and the model length)
[6]. But as for the robustness of the solution, we
often need to impose a hard bound on the maxi-
mum error residual even for the “worst” fit data.

3. These criteria are designed to find the most com-
pressed model for the data in the information-
theoretic sense, which however does not neces-
sarily respect the global algebraic and geometric
structure of the data.

Contributions of this paper. In this paper, we
show how to solve these difficulties by introducing a
model selection criterion that is specifically designed
for GPCA-type models. In particular, we address the
first difficulty by minimizing the “effective dimension”
of the data, which only depends on the geometric con-
figuration of the data and its model and does not as-
sume any particular probability distributions for either
the data or the models. As for the second difficulty, we
propose to minimize the effective dimension with re-
spect to a maximum error tolerance so as to improve
the robustness of the resulting algorithm. The last dif-
ficulty is resolved by minimizing the effective dimen-
sion over the subset of models that can be derived from
the algebraic GPCA method hence restricting the possi-
ble solutions to those which are geometrically and alge-
braically correct. The combination of MED with max-
imum error tolerance and algebraic GPCA also leads
to a non-iterative algorithm, while other robust tech-
niques such as [11] typically require iterative optimiza-
tion/minimization when searching for the best model.

The final result is a non-iterative and robust algo-
rithm for estimating a unknown number of subspaces of
varying dimensions from given data. We demonstrate
the performance (especially the robustness) of the algo-
rithm via a variety of simulations on synthetic data and
a wide spectrum of applications in motion, image, and
video segmentation.
Relations to prior work. Various methods have
been developed in the literature in an effort to extract
multiple-subspace type models from data. When the
subspaces are linearly independent, geometric methods
have been proposed [7, 2, 4]. When the subspaces either
independent or partially dependent, [15, 14] showed
that one can resort to an algebraic embedding of the data
into a high-dimensional space and obtain the segmenta-
tion from the factors of the polynomials that fit the data

data, it can be easily associated with a probabilistic (MAP) interpre-
tation via Shannon’s optimal coding theory.

(GPCA). When the data in each one of the subspaces are
assumed to have a Gaussian distribution, [10] developed
an EM-like algorithm called probabilistic PCA (PPCA)
to simultaneously perform data segmentation and model
estimation. This is generalized to arbitrary distributions
in the exponential family in [3]. If the underlying model
is a manifold, [9] shows how one can still apply PCA
after embedding the data into a high-dimensional space
via a nonlinear kernel function (KPCA). In [7], general
information theoretic criteria such as MDL [8] and AIC
[1] have been applied to select a mixture of geometric
models from data. [11] has proposed to improve the
robustness of these criteria via the use of Huber func-
tion (robust AIC). Our paper shows how to modify and
improve these model selection criteria and robust tech-
niques for GPCA-type model selection. The result is a
non-iterative algorithm that not only selects an optimal
model for data with a guaranteed error bound, but also
respects the global algebraic structure encoded in the
data.

2 Minimum effective dimension
for GPCA-type model selection

Definition 1 (Effective dimension) Given n sub-
spaces3 S = ∪n

i=1Si in R
K of dimension ki < K, and

Ni sample points Xi = {Xij}Ni
j=1 drawn from each

subspace Si, the effective dimension of the entire set
of N =

∑n
i=1 Ni sample points, X = ∪n

i=1Xi, is
defined to be:

ED(X, S) .=
1
N

n∑
i=1

ki(K − ki) +
1
N

n∑
i=1

Niki. (1)

We contend that ED(X, S) is the “average” num-
ber of (unquantized) real numbers that one needs to as-
sign to X per sample point in order to specify the con-
figurations of the n subspaces and the relative locations
of the sample points in the subspaces.4 In the first term
of equation (1), ki(K − ki) is the total number of real
numbers needed to specify a ki-dimensional subspace
Si in R

K ;5 in the second term of (1), Niki is the total
number of real numbers needed to specify the ki coor-
dinates of the Ni sample points in the subspace Si. In
general ED(X, S) can be a rational number, instead of
an integer for a conventional “dimension.”

3For affine subspaces (which do not necessarily pass the origin),
we first make them subspaces using the homogeneous coordinates.

4We here choose real numbers as the basic “units” for measuring
complexity in a similar fashion to binary numbers, “bits,” traditionally
used in algorithmic complexity or coding theory.

5ki(K−ki) is the dimension of the Grassmannian manifold of ki-
dimensional subspaces in R

K . To specify a subspace, one can use the
so-called Grassmannian coordinates which need exactly ki(K − ki)
entries: starting with a K × ki matrix whose columns form a basis
for the subspace, perform column-reduction so that the first ki × ki

block is the identity matrix. Then, one only needs to give the rest
(K − ki) × ki entries to specify the subspace.
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Notice that in the above definition, the effective di-
mension of X depends on the subspaces S. This is be-
cause in general, there could be many subspace struc-
tures that can fit X . For example, we could interpret
the whole data set as lying in n = 1 K-dimensional
subspace and we would obtain an effective dimension
K. On the other hand, we could interpret every point in
X as lying in a one-dimensional subspace spanned by
itself. Then there will be N such one-dimensional sub-
spaces in total and the effective dimension, according
to the above formula, will also be K. In general, such
interpretations are obviously over-fitting. Therefore, we
define the effective dimension of a given sample set X
to be the minimum one among all possible subspace-
structures that can fit the data set:6

MED(X) .= min
S:X⊂S

ED(X, S). (2)

Example 1 (One plane and two lines) Fig. 1 shows
data points drawn from one plane and two lines in R

3. Obvi-
ously, the points in the two lines can also be viewed as lying in
the plane that is spanned by the two lines. However, that inter-
pretation would result in an increase of the effective dimension
since one would need two coordinates to specify a point in a
plane, as opposed to one in a line. For instance, suppose there
are fifteen points in each line; and thirty points in the plane.
When we use two planes to represent the data, the effective
dimension is: 1

60
(2×2×3−2×22 +60×2) = 2.07; when

we use one plane and two lines, the effective dimension is re-
duced to: 1

60
(2×2×3−22−2×1+30×1+30×2) = 1.6. In

general, if the number of points N is arbitrarily large (say ap-
proaching to infinity), depending on the distributions of points
on the lines or the plane, the effective dimension may ap-
proach arbitrarily close to either 1 or 2, which reveals the
true dimensions of the subspaces.

S1

S2 S3

o

R
3

Figure 1: Data points drawn from a mixture of one plane and
two lines (through the origin o) in R

3.

As suggested by this intuitive example, the subspace-
structure that leads to the minimum effective dimen-
sion normally corresponds to an “efficient” and hence
“natural” interpretation of the data in the sense that it
achieves the best compression (or dimension reduction)
among all permissible subspace-structures.

6All such subspace-structures topologically form a compact and
closed set, hence the minimum effective dimension is always achiev-
able and hence well-defined.

3. Minimum effective dimension
with error tolerance

In practice, real data are corrupted with noise, hence
one cannot perfectly fit any (multiple-)subspace model
except for the extreme cases – all points are viewed as
lying on one K-dimensional space, or every point is
viewed as lying on a one-dimensional subspace. The
conventional wisdom is to strike a good balance be-
tween the complexity of the chosen model and the data
fidelity (to the model). This is the same rationale that
has been adopted in the classic principal component
analysis (PCA) – finding a single lower-dimensional
subspace to approximate the data. If a set of sam-
ple points X = [X1,X2, . . . , XN ] ∈ R

K×N in-
deed fall close to a k-dimensional subspace S in a K-
dimensional ambient space, the ordered singular values
of the data matrix X versus the dimension k of the sub-
space will resemble the plot shown in Fig. 2. Notice that

singular values

knee point
dimension

k

K

τ σK

w1x + w2y

0

Figure 2: Dimension of the subspace versus singular values.

there is a significant drop in the singular value right af-
ter the “correct” dimension k, which is called the “knee
point” of the plot. The remaining singular values indi-
cate the residual sum of squares error of the data

‖X−X̂‖2 .=
N∑

i=1

‖Xi−X̂i‖2, X̂i
.= arg min

X∈S
‖X−Xi‖2,

after it has been approximated by the k-dimensional
subspace S. If we view the dimension of the subspace
as the model complexity and ‖X − X̂‖2 as the fidelity
of the data, then the knee point of the plot has a special
property: for w1, w2 > 0 in some proper range of val-
ues, it minimizes a class of objective functions of the
following form:

JPCA(S) .= w1 · ‖X − X̂‖2 + w2 · dim(S). (3)

3.1 Information-theoretic model selection
criteria

It turns out that the above objective function (3) is not
an isolated incidence – almost all model selection crite-
ria result in a similar form only with probably different
balancing weights w1, w2 between the data fidelity and
the model complexity (often dim(S) is replaced with
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a more principled complexity measure of the model).
For example, using the Grassmannian coordinates, the
dimension of the parameter space for a k-dimensional
subspace in R

K should be Kk − k2 (see footnote 6).
Therefore, for the class of parametric models of dimen-
sion k with a Gaussian noise of variance σ2, the MDL
criterion (equivalent to BIC in this case) [8, 6] mini-
mizes

MDL = BIC
.=

1
2σ2

‖X − X̂‖2 +
(Kk − k2)

2
log N.

More recently, Kanatani proposed the geometric AIC
[7] which minimizes

G-AIC
.=

1
2σ2

‖X − X̂‖2 + (Kk − k2 + Nk),

where the extra term Nk accounts for the complexity in
representing the data with respect to the chosen model.

We will refer to the above criteria loosely as
information-theoretic model selection criteria, in the
sense that most of these objectives can be interpreted
as variations to minimizing the optimal code length for
both the model and the data given a distribution and a
coding scheme [6].7

3.2 Robust model selection and minimum
effective dimension

Since the models that we consider in this paper for the
data can be mixtures of an unknown number of sub-
spaces with unknown and possibly different dimensions,
the above criteria need to be modified accordingly. For
instance, given a data set X and a multiple-subspace
model S, the geometric Akaike information criterion
can be generalized to

G-AIC(X, S) .=
1

2σ2
‖X−X̂‖2+

n∑
i

(kiK−k2
i +Niki).

Notice that the second term is the effective dimension
ED(X, S) (multiplied by N ) defined in the previous
section. By minimizing the G-AIC criterion among
all possible S, in principle we can find the “optimal”
multiple-subspace model S∗ for the data X .

However, there are several difficulties that prevent
us from directly adopting such generalized information-
theoretic criteria to the GPCA problem:
• Unknown model distribution: Although we restrict

our models to the class of multiple-subspace mod-
els, we typically do not know the number or the di-
mensions of the subspaces a priori. Furthermore, it
is extremely difficult to introduce any a priori dis-
tribution to a class of models of this kind.8

7Even if one chooses to compare models by their algorithmic com-
plexity, such as the minimum message length (MML) criterion [16]
(an extension of the Kolmogrov complexity to model selection), a
strong connection with the above information-theoretic criteria, such
as MDL, can be readily established via Shannon’s optimal coding the-
ory.

8This class of models, although seemingly simple, is not one of
those regular families that can be easily dealt with in the MDL frame-
work [8]. For instance, the space of parameters that describe such
models is not even of the same dimension.

• Unknown data distribution: In the context of
GPCA, we are mostly interested in extracting the
subspace structure from the data. Hence we do
not necessarily want to impose a specific proba-
bility distribution of the sample points inside the
subspaces.9

• Lack of robustness: Even if some statistical
nature of the models and the data, say the
noise variance σ2, is somehow known, all the
information-theoretic criteria minimize the “aver-
age” residue of the data while the maximum error
maxX∈X ‖X−X̂‖ might be very large, especially
when there are outliers in the data.

How should we modify the information-theoretical cri-
teria, say the G-AIC, so as to improve the robustness of
the selected model? The key is to observe that, when
the data is noisy, the effective dimension should in fact
be a notion that depends the maximum allowable error
residue, which we denote as error tolerance τ . Even for
the one-subspace PCA model, if we lower the error tol-
erance to the left of the singular value at the knee point,
we will be forced to increase the dimension of the sub-
space in order to reduce the error residue to meet the
tolerance.

Therefore for noisy data, the resulting “effec-
tive dimension” of the optimal model in general de-
pends on the given error tolerance. In the extreme,
if the error tolerance is arbitrarily large, the “optimal”
subspace-model for any data set can simply be the zero-
dimensional origin; if the error tolerance is zero instead,
for data with random noise, most sample points need to
be treated either as one-dimensional subspaces in R

K or
as points in the ambient space R

K directly. Both ways
bring the effective dimension up close to K. Therefore,
we need to modify the definition (2) of minimum effec-
tive dimension to allow the chosen model to tolerance
certain error τ . We therefore define the minimum effec-
tive dimension with error tolerance as:

MED(X, τ) .= min
S: ‖X−X̂‖∞≤τ

ED(X̂, S), (4)

where X̂ is the projection of X onto the subspaces S,10

and the error norm ‖ ·‖∞ indicates the maximum norm:
‖X − X̂‖∞ = maxX∈X ‖X − X̂‖. The aim of ro-
bust GPCA model selection is then to find a multiple-
subspace model which leads to the lowest effective di-
mension for a given error tolerance, hence the minimum
effective dimension (MED) criterion.

Comment 1 (MED and Robust AIC) In the work of
[11], the AIC criterion is modified in order to improve its ro-
bustness via the robust AIC criterion:11

9Although, in principle, knowing this distribution can further re-
duce the code length according to Shannon’s optimal coding theory,
in practice, e.g., in MDL and MML, such knowledge is typically ig-
nored in the two-part coding for the model and the data.

10That is, each data point X in X is projected to the closest point
X̂ in one of the subspaces of S.

11A similar version can be defined for the G-AIC criterion [11].
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AICR
.
=

1

2σ2
‖X − X̂‖ρ + (Kk − k2),

where the norm ‖ · ‖ρ is defined by the so-called Huber func-
tion ρ(·) which behaves like the 2-norm , i.e. ρ(X − X̂) =

‖X − X̂‖2, for data X with low residuals and a constant
penalty, typically ρ(X−X̂) = λ(K−k) (a scaled version of
the codimension of the model), for data X with high residuals
(outliers), see [11]. However, such a penalty for the outliers
is difficult to generalize to or justify for the case of mixtures of
multiple subspaces: there is no longer a well-defined notion
of “codimension” because the union of all the subspaces of-
ten span the entire ambient space. Hence we are left with the
option to either fit the outliers by additional subspaces with
the same error bound τ or to completely reject the outliers
from the rest of the model as long as the fitting error is large
enough. As one will soon see, both options will be exploited
when we show how to implement the MED criterion with the
algebraic GPCA algorithm in the next section.

Another reason why we choose the maximum norm ‖·‖∞
instead of ‖ · ‖ρ is because we can use it to reject or accept a
model directly without comparing to all the other models. As
we will soon see, this allows us to easily combine the MED
criterion with the non-iterative algebraic GPCA scheme to se-
lect the optimal GPCA model, whereas AICR and all the other
information-theoretic criteria typically require iterative opti-
mization.

Notice that, given an error tolerance τ , in PCA-type
model selection, the dimension of the resulting single-
subspace model is always discrete; but in GPCA-type
model selection, the effective dimension of the resulting
multiple-subspace model can be any rational number
since S is in general a mixture of subspaces of different
dimensions. The plot of MED versus error tolerance
will then be a continuous curve across all values be-
tween 0 and K when the error tolerance ranges from the
diameter of the data set τmax to zero, as shown in Fig.
3. Then, as in the case of PCA, a “good” GPCA model

error tolerance

knee point
effective
dimension

τ∗ τmax τ

K

MED∗

w1x + w2y

0

Figure 3: Minimum effective dimension versus error toler-
ance.

takes place at the “knee point” of the plot, (τ∗, MED∗),
right before which we see a sharp drop of the MED, and
after which the MED stabilizes when further increasing
the error tolerance. Similarly to the PCA case, this knee
point has a special property: for w1, w2 > 0 in some
proper range of values, it minimizes a class of objective
functions of the following form:

JGPCA(S) .=w1 ·‖X−X̂‖∞ + w2 ·MED(X, S), (5)

which is obviously a natural generalization of the ob-
jective JPCA given in (3).

4 A Robust recursive GPCA algo-
rithm

Notice that MED, as any other model selection tech-
nique, is designed only to best “compress” the repre-
sentation of the data among the class of models consid-
ered. But in doing so, it will not favor any particular
model which may capture better the global algebraic or
geometric structure in the data.12 Therefore, in order
to design an effective algorithm for fitting a mixture of
subspaces to data, we also need to consider the alge-
braic and geometric properties of the mixture model.

In this section, we show how to combine the MED
criterion with the algebraic GPCA scheme to develop
a robust algorithm that automatically finds a mixture
of subspaces for given data within a maximum error
bound. We begin by summarizing the main results
about the algebraic GPCA algorithm proposed in [14],
which provides a closed-form solution to the problem of
finding a basis for each one of the subspaces when the
number of subspaces is known and the data is perfect.
Theorem 1 (Algebraic GPCA) A collection of n sub-
spaces can be described as the set of points satisfying a
set of homogeneous polynomials of degree n

f(X) =
n∏

j=1

(bT
j X) = bT νn(X) = 0, ∀X ∈ X, (6)

where bj ∈ R
K is a normal vector to the jth subspace

Sj and νn(X) ∈ R
Mn , where Mn =

(
n + K − 1

n

)

and νn(X) is the vector of all monomials of degree n
in the entries of X , also known as the Veronese em-
bedding of degree n. When n is known, one can es-
timate the coefficients b of all such polynomials from
the null-space of the embedded data matrix Ln =
[νn(X1) . . . νn(XN )]T , and the normal vectors bj to
the jth subspace from the derivative of the polynomi-
als Df(X) at a point X = Yj in the jth subspace. A
basis for the complement of Sj can be obtained from
spanfDf(Yj), hence the dimension of Sj is given by
kj = K − rank(spanfDf(Yj)).

Let us now consider the case in which n is un-
known. In this case, the main difficulty of directly
applying Theorem 1 (maybe for multiple values of n)
is that when the subspaces have different dimensions,
there are polynomials of degree d < n that also fit the

12For example, if N samples are scattered more or less uniformly
within an area of unit length and width in the plane, one can show that
MED will always partition the plane into 1

2τ
(parallel) lines given

that the tolerance τ ≥ 3
2N

. This is a phenomenon that we often
observe in any algorithm that tries to aggressively reduce the effective
dimension, and we call it the “stripping effect.”
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n = 1, ED = 3 n = 2, ED = 2.07 n = 3, ED = 1.6

Figure 4: Recursive segmentation of the data points on one
plane and two lines.

data. In Example 1, for instance, the interpretation of
two planes instead of a plane and two lines leads to a
polynomial of degree 2 < 3. Therefore, we need to
test if the data points on the two planes can be further
segmented into lines. In other words, we can use a re-
cursive scheme to search over all possible collections
of subspaces that both respect the algebraic properties
of the subspace structure, as stated by Theorem 1, and
minimize the effective dimension. Fig. 4 demonstrates
the process for the data set in Example 1.

Specifically, in the absence of noise, the recursive
searching scheme is to start with n = 1 and increase
n until there is at least one polynomial of degree n fit-
ting all the data, i.e. until the matrix Ln drops rank
(Mn ≤ N imposes a constraint on the maximum possi-
ble number of groups nmax). For such an n, we can use
Theorem 1 to separate the data into n subspaces. Then
we can further separate each one of these n groups of
points using the same procedure. Hence the process will
reduce the effective dimension until there are no lower-
dimensional subspaces in each group (or the total num-
ber of groups n has reached the maximum nmax). One
can rigorously show that if sufficient sample points are
drawn from each subspace, the proposed scheme guar-
antees to find the correct mixture of subspaces [12].

However, the above scheme is purely algebraic and
only works when the samples are noise free. When the
samples are noisy, as we have contended in the previ-
ous sections, we need to adopt a robust approach in our
algorithm, i.e. we fit the data to n (subject to search)
subspaces within a given error tolerance τ . For a fixed
n, we identify the n subspaces one at a time. We first
identify one subspace and then assign points to with
an error less than τ to that subspace. We repeat this
process by fitting the remaining subspaces to remaining
data points. To identify a subspace, as in [14], we first
find a point on that subspace from the data points that
have not been assigned to any previously identified sub-
spaces and then determine the orthogonal complement
of the subspace based on this point and the null space of
the matrix Ln. To determine the null space of Ln with
noisy data, we essentially need to perform PCA on the
Veronese embedded data. As we have discussed in Sec-
tion 3, the choice of τ determines whether the rank of
the corresponding matrix Ln can be correctly identified.
We need to consider the following two scenarios:

1. If the rank of Ln is under-estimated, then the set
of normal vectors for each subspace will be over-

estimated and the resulting subspaces will not be
able to cover all the samples, within the given error
tolerance. We call this situation over-estimating
(the null space of Ln).

2. If the rank of Ln is over-estimated, then the set of
normal vectors for each subspace will be under-
estimated and the dimension of each subspace will
become too large. As a result, we may have al-
ready assigned all the data points to some sub-
spaces before we can identify all the n subspaces.
We call this situation under-estimating (the null
space of Ln).

Therefore, by determining if the null space of Ln is
over- or under-estimated within a range of possible
rank values (e.g., between rmin and rmax), we should
modify our estimate of the rank. If none of the choice
leads to a segmentation of the data into n subspaces
while satisfying the given error tolerance τ , the number
of subspaces n should be increased. The search for the
correct rank and the number of subspaces will certainly
increase the amount of computation, in exchange
for improved robustness of the resulting solution.
We hence obtain the Robust-GPCA function below.

function Robust-GPCA(X , τ )
n = 1; success = false;
repeat

set Ln(X)
.
= [νn(X1), . . . , νn(XN )]T ∈ R

Mn×N ;
rmax =Mn−1, rmin =arg mini

{
σi(Ln)∑ i−1

j=1 σj(Ln)
≤0.02

}
;

while (rmin ≤ rmax) AND (NOT success) do
over-estimate = false; under-estimate = false;
r = �(rmin + rmax)/2�;
compute the last Mn − r eigenvectors {bi} of Ln;
obtain polynomials {fi(X)

.
= bT

i νn(X)};
find n points Xj at which the subspaces spanned by

the derivatives {Dfi(Xj)} have subspace angle larger
than 2τ , and if fail, under-estimate = true;
if under-estimate then

rmax ← r − 1;
else

assign each point in X to its closest subspace
within the error tolerance τ and obtain the n groups
Xj , and if fail, over-estimate = true;
if over-estimate then

rmin ← r + 1;
else

success = true;
end if

end if
end while
if success then

for j = 1 : n do
Robust-GPCA(Xj , τ );

end for
else

n← n + 1;
end if

until (success) OR (n ≥ nmax).
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Comment 2 (Outliers) To further improve the robustness
of the algorithm, we can also assign a permissible percentage
of outliers that may not be fit by the subspace-models with the
given error tolerance τ . Setting aside the outliers will allow
the GPCA search process to identify the dominant subspace-
structure that the majority of the sample points admit, without
being “side-tracked” by a few very bad data points. This is
important especially when the permissible error tolerance has
to be small in some problems. We typically allow about 10%

of outliers in our experiments.

5. Experiments and applications
We now demonstrate the performance of the proposed
robust GPCA algorithm via a wide spectrum of numer-
ical simulations and applications to feature segmenta-
tion, image segmentation, motion segmentation, and
video segmentation. However, it is not our intention
to convince the reader that the proposed GPCA algo-
rithm offers an optimal solution to each of these prob-
lems.13 We merely wish to point out that many data
sets dealt with in these classic problems indeed exhibit
multiple-subspace structures; if so, the proposed GPCA
algorithm is an effective tool that can automatically de-
tect such structures in a non-iterative fashion.
Simulation results on clustering points. Fig. 5
demonstrates the robust GPCA algorithm on segment-
ing a set of synthetic data drawn from two lines and
one plane in R

3 corrupted with 5% uniform noise (Fig.
5 top-left). The algorithm stops after two levels of re-
cursion (Fig. 5 top-right). Note that the pink line or
the group 4 (Fig. 5 bottom-left) is a “ghost” line at the
virtual intersection of the original plane and the plane
spanned by the two lines.14 Fig. 5 bottom-right is
the plot of MED versus different error tolerance for the
same data set, as anticipated from Fig. 3.
Motion segmentation via feature point clustering.
[13] has shown that all types of motion segmentation
problems can be solved by GPCA. Fig. 6 demonstrates
applying the robust GPCA algorithm to segment fea-
ture points on two independently moving objects from
two images – the board has only a translation relative
to the camera; the cube has both rotation and transla-
tion. Each pair of corresponding features x1,x2 ∈ R

3

satisfy the epipolar constraint xT
2 Fx1 = 0 where F

is the fundamental matrix corresponds to the motion for
that point. x1 and x2 can be embedded in R

9 as a single
point via the Kronecker product x1⊗x2, and it satisfies
(x1 ⊗x2)T F s = 0, where F s is the vector obtained by
stacking the columns of F . Therefore, the so-obtained
nine-dimensional points reside on different subspaces
for different motions. At the first level of recursion, the
GPCA algorithm segments the features into two groups

13In fact, one can easily obtain better segmentation results by using
algorithms/systems specially designed for these tasks.

14This is exactly what we would have expected since the GPCA
first segments the data into two planes. The points on the ghost line
can be merged with the plane by some simple post-processing.
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Figure 5: Simulation results. Top-left: sample points drawn
from two lines and a plane in R

3 with 5% uniform noise; Top-
right: the process of recursive segmentation by the GPCA al-
gorithm at the error tolerance τ = 0.05; Bottom-left: group
assignment for the points; Bottom-right: plot of MED versus
error tolerance.

(blue and red in Fig. 6 middle) corresponding to a 3-D
motion and a planar motion (homography); and at the
second level, it further segments the features on the two
faces of the cube (blue and green in Fig. 6 right) since
they correspond to different planar motions (homogra-
phies). Only one feature point is miss-grouped in this
way.
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Figure 6: Feature points clustering by different 3-D motions.
Left: An image showing two objects with different motions.
Middle: Results for the first level of recursion for the GPCA
algorithm. Feature points corresponding to the same motion
are marked as the same group. Right: Results for the second
level of recursion.

Image segmentation via pixel clustering. Fig. 7
shows the results of applying the GPCA algorithm to
the segmentation of some images from the Berkeley im-
age database. Classic image representation techniques
such as Karhunen-Leove transformation usually model
the imagery signals (e.g. blocks of pixels) using a sin-
gle linear model [5]. However, for images with different
color and texture components, multiple linear models
can be more realistic and GPCA algorithm is designed
for such a task. By associating a 16 × 16 window to
every pixel, we can use GPCA to segment the pixels
based on the local color and texture information around
them. In the experiments, PCA is first applied to all
the windows (which are 16 × 16 × 3 = 768 dimen-
sional data points), and the first twelve eigenvectors are
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chosen as the coordinates for the set of new data points
that are segmented by the GPCA algorithm. The pix-
els are then grouped according to the segmentation of
the above twelve-dimensional data sets. In these ex-
periments, the GPCA algorithm is set to run only for
one level of recursion. Different choices in the error
tolerance, window size, and color space (HSV or RGB)
may affect the segmentation results. We adopt that RGB
color space for these images.

Figure 7: Image segmentation results obtained from the ro-
bust GPCA algorithm.

Video segmentation via frame clustering. Fig. 9
shows the results of applying our GPCA algorithm on
a traffic sequence (Fig. 8) of 200 frames sampled at
3Hz. The images are first down-sampled to 64 × 48

Figure 8: Key frames 3, 24, 83, 113, 157 detected in a video
sequence by the GPCA algorithm, which correspond to ap-
pearing or disappearing of cars in the scene.
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Figure 9: Segmentation of a video sequence of 200 frames.
Left: The projection of the image frames to 3-D space. Each
color is for a different segment as shown in Right. Right: The
segmentation of the sequence of frames into three groups over
time (the x-axis).

and converted to grayscale. Each image is then treated
as a point in the 64×48 = 3072 dimensional space. We
first apply PCA to these points in R

3072 and only the
first few components are used for GPCA. For this video
sequence, experiments show that four components are
sufficient. The 3-D projection of these components
shows that the data display a nice piece-wise smooth
structure (Fig. 9 left). The GPCA algorithm segments
the sequence at frames: 3, 17, 24, 83, 87, 113, 121, 124,
157 (Fig. 9 right). Interestingly, all these frames are re-
lated to car coming in or out of the scene, as shown in
Fig. 8. In fact, all but one of the incoming/outgoing-car
events in this video sequence are correctly detected.

6. Conclusions
We have presented the notion of minimum effective di-
mension (MED) as a new model selection criteria for
mixtures of subspaces. MED is a robust measure of
the complexity of the mixture model that does not de-
pend on the probabilistic model generating the data. We
combined MED with Generalized PCA to propose a ro-
bust GPCA algorithm that fits an unknown number of
subspaces of unknown dimensions to sample data. We
presented various applications of the algorithm in mo-
tion/image segmentation, and video segmentation.
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