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Abstract

We present a novel algorithm for optimally segmenting dy-
namic scenes containing multiple rigidly moving objects.
We cast the motion segmentation problem as a constrained
nonlinear least squares problem which minimizes the repro-
jection error subject to all multibody epipolar constraints.
By converting this constrained problem into an uncon-
strained one, we obtain an objective function that depends
on the motion parameters only (fundamental matrices), but
is independent on the segmentation of the image features.
Therefore, our algorithm does not iterate between feature
segmentation and single body motion estimation. Instead, it
uses standard nonlinear optimization techniques to simulta-
neously recover all the fundamental matrices, without prior
segmentation. We test our approach on a real sequence.

1. Introduction
Segmentation of dynamic scenes refers to the problem of
simultaneously estimating the motion of multiple rigidly
moving objects from the measurements collected by a static
or moving camera. This is a challenging problem in visual
motion analysis, because it requires the simultaneous esti-
mation of an unknown number of motion models, without
knowing which measurements correspond to which model.

Prior work on motion segmentation subdivides the prob-
lem in two stages: feature segmentation and single body
motion estimation. In the first stage, image measurements
corresponding to the same motion model are grouped to-
gether using various clustering algorithms, e.g., K-means.
In the second stage, a different motion model is estimated
from the measurements corresponding to each group.

This two-stage approach to motion segmentation is
clearly not optimal in the presence of noise. In order to
obtain an optimal segmentation, probabilistic approaches
model the scene as a mixture of motion models in which the
measurements are corrupted with noise, e.g., zero-mean and
Gaussian. The membership of the data is also modeled with
a probability distribution by using the so-called mixing pro-
portions. Unfortunately, the simultaneous maximum likeli-
hood estimation of both mixture and motion parameters is
in general a hard problem. Therefore, most of the existing
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methods solve the problem in two stages. One first com-
putes the expected value of the mixing proportions given a
prior on the motion parameters and then maximizes the like-
lihood of the motion parameters given a prior on the group-
ing of the data. This is usually done in an iterative manner
using the Expectation Maximization (EM) algorithm.

One of the main reasons for using either of these two-
stage approaches (iterative or not) is that the problem of es-
timating a single motion model from image measurements
is reasonably well understood, both from a geometric and
from an optimization point of view. For example, it is well
known that two views of a scene are related by the so-called
epipolar constraint and that multiple views are related by
the so-called multilinear constraints. These constraints can
be naturally used to estimate the motion parameters using
linear techniques, such as the eight-point algorithm and
its generalizations. In the presence of noise, many opti-
mal nonlinear algorithms for single body motion estimation
have been proposed. For example, see [8, 12, 14, 18] for the
discrete case and [10] for the differential case.

The two-view geometry of multiple moving objects is,
on the other hand, not as well understood. In fact, the first
generalizations of the eight-point algorithm to multiple mo-
tions were not known until very recently [20, 16]. The work
of [16] showed that it is possible to simultaneously recover
multiple motion models, without previously segmenting the
image measurements. The key is to use a geometric con-
straint that is satisfied by all the measurements, regardless
of the group to which they belong, the so-called multibody
epipolar constraint. The number of moving objects n can
be obtained from a rank constraint on the measurements,
and multiple fundamental matrices can be simultaneously
recovered using a novel polynomial factorization technique.
The solution can be computed in polynomial time, and is
closed form if and only if n ≤ 4. Similar techniques can be
used for direct motion segmentation from image intensities
by using the so-called multibody affine constraint [17].

Unfortunately, these algebraic geometric techniques are
more sensitive to noise than the eight-point algorithm, be-
cause in order to obtain a linear solution they use an over-
parameterized representation of the motion parameters via
the so-called multibody fundamental matrix. Although one
could use a minimal representation by minimizing the error
defined by the algebraic constraints, we will show in this
paper that this is not optimal in the presence of noise.



1.1. Contributions of this paper
In this paper, we present a novel approach to 3-D motion
segmentation that is optimal in the presence of noise and
does not iterate between feature segmentation and single
body motion estimation. In Section 3 we show that one
can eliminate the feature segmentation stage by using the
multibody epipolar constraint, which is by definition inde-
pendent on the segmentation of the image measurements.
In Section 4 we show that using this algebraic constraint
as the objective function is not optimal. Therefore, we cast
the motion segmentation problem as a constrained nonlin-
ear least squares problem which minimizes the reprojection
error subject to all multibody epipolar constraints. By con-
verting this constrained problem into an unconstrained one,
we obtain an objective function that depends on the motion
parameters only (fundamental matrices) and is independent
on the segmentation of the image data. We then use stan-
dard nonlinear optimization techniques to simultaneously
recover all the fundamental matrices, without prior feature
segmentation. In Section 5 we evaluate the performance of
the algorithm with respect to the number of motions and the
amount of noise. We also test the proposed approach by
segmenting a real sequence. Section 6 concludes the paper.

1.2. Previous work
Geometric approaches to 3-D motion estimation and seg-
mentation based on 2-D imagery include: multiple points
moving linearly with constant speed [4, 9] or in a pen-
cil of planes [11], multiple moving objects seen by an
orthographic camera [1, 6], self-calibration from multi-
ple motions [3, 5], reconstruction of multiple translating
planes [19], and segmentation of two rigid motions from
two perspective views [20].

Probabilistic approaches to 3-D motion segmentation
model the scene as a mixture of probabilistic models. The
number of models is estimated using model selection tech-
niques [13, 7], and the motion models are estimated using
an iterative process that alternates between segmentation
and motion estimates [13, 2] using, e.g., the EM algorithm.

2. Multibody Structure from Motion
We consider two images of a scene containing an unknown
number n of independently and rigidly moving objects. We
describe the motion of each object relative to the cam-
era between the two frames with the rank-2 fundamental
matrix Fi ∈ R3×3 associated with the motion of object
i = 1, . . . , n. We assume that the motions of the objects
are such that all the fundamental matrices are distinct and
different from zero, and hence the relative translation be-
tween the two image frames is non-zero.

The projection of a point qj ∈ R3 onto the image frame
Ik is denoted as xjk ∈ P2, for j = 1, . . . , N and k = 1, 2.

In order to avoid degenerate cases, we will assume that the
image points {xjk} correspond to 3-D points {qj} in general
configuration in R3, i.e. they do not all lie in any critical
surface, for example. We will drop the superscript when we
refer to a generic image pair (x1,x2). Also, we will always
use the homogeneous representation x = [x, y, z]T ∈ R3

to refer to an arbitrary image point in P2.
We define the multibody structure from motion problem

as follows:

Problem 1 (Multibody structure from motion problem)
Given a set of image pairs {(xj1,xj2)}Nj=1 corresponding
to an unknown number of independently and rigidly
moving objects that satisfy the assumptions above, estimate
the number of independent motions n, the fundamental
matrices {Fi}ni=1, and the segmentation of the image pairs,
i.e. the object to which each image pair belongs.

3. Multibody Epipolar Geometry
In this section, we describe the two-view geometry of mul-
tiple moving objects. We introduce the multibody epipolar
constraint and the multibody fundamental matrix, and show
how they can be used to estimate the number of independent
motions and the individual fundamental matrices in the ab-
sence of noise in the image measurements.

3.1. The multibody epipolar constraint
Let (x1,x2) be an arbitrary image pair corresponding to
any motion. Then, there exists a fundamental matrix Fi
such that the epipolar constraint xT2 Fix1 = 0 holds. Thus,
regardless of the object to which the image pair belongs,
the following constraint must be satisfied by the number of
independent motions n, the relative motions of the objects
{Fi}ni=1 and the image pair (x1,x2)

E(x1,x2)
.
=

n∏

i=1

(
xT2 Fix1

)
= 0. (1)

We call this constraint the multibody epipolar constraint,
since it is a natural generalization of the epipolar constraint
valid for n = 1 to the case of multiple motions.

3.2. The multibody fundamental matrix
The multibody epipolar constraint converts Problem 1 into
one of solving for the number of independent motions n and
the fundamental matrices {Fi}ni=1 from the nonlinear equa-
tion (1). This nonlinear constraint defines a homogeneous
polynomial of degree n in either x1 or x2. For example,
if we let x1 = [x1, y1, z1]T , then equation (1) viewed as a
function of x1 can be written as a linear combination of the



following monomials {xn1 , xn−1
1 y1, x

n−1
1 z1, . . . , z

n
1 }. It is

readily seen that there are a total of

Mn
.
= (n+ 1)(n+ 2)/2 (2)

different monomials. Thus, if we use the Veronese map of
degree n, νn : P2 → PMn−1, to map [x1, y1, z1]T to all
its monomials of degree n [xn1 , x

n−1
1 y1, x

n−1
1 z1, . . . , z

n
1 ]T ,

then we can rewrite the multibody epipolar constraint (1) in
bilinear form as (see [16] for the proof)

νn(x2)TFνn(x1) = 0, (3)

where F ∈ RMn×Mn is a matrix representation of the
symmetric tensor product of all the fundamental matrices
{Fi}ni=1. We call the matrix F the multibody fundamen-
tal matrix since it is a natural generalization of the funda-
mental matrix to the case of multiple moving objects. Since
equation (3) resembles the bilinear form of the epipolar con-
straint for a single rigid body motion, we will refer to both
equations (1) and (3) as the multibody epipolar constraint.

3.3. Estimating the number of motions n and
the multibody fundamental matrix F

Since the multibody epipolar constraint (3) is linear in F ,
we can rewrite it as (νn(x2)⊗ νn(x1))Tf = 0, where f ∈
RM2

n is the stack of the columns of F and ⊗ represents the
Kronecker product. Therefore, given a collection of image
pairs {(xj1,xj2)}Nj=1, the vector f satisfies

Lnf = 0, (4)

where the jth row of Ln ∈ RN×M2
n equals (νn(xj2) ⊗

νn(xj1))T , for j = 1, . . . , N . In order to determine f
uniquely (up to a scale factor) from (4), we must have that

rank(Ln) = M2
n − 1. (5)

This rank constraint on Ln provides an effective criterion
to determine the number of independent motions n from
the given image pairs. Let Li ∈ RN×M

2
i be the matrix

in (4), but computed with the Veronese map νi of degree
i ≥ 1. We showed in [16] that if N ≥ M 2

n − 1 points in
general configuration in 3-D are given and at least 8 points
correspond to each motion, then rank(Li) = Mi if i < n,
rank(Li) = Mi − 1 if i = n and rank(Li) < Mi − 1 if
i > n. Therefore, the number of independent motions n is
given by

n
.
= min{i : rank(Li) = M2

i − 1}. (6)

Given n, we can linearly solve for the multibody funda-
mental matrixF from (4). Notice that the minimum number
of image pairs needed is N ≥ M 2

n − 1, which grows in the
order of O(n4) for large n. However, there are only O(n)
unknowns in the n fundamental matrices {Fi}ni=1.

3.4. Estimating the fundamental matrices
Given the multibody fundamental matrix F and the number
of independent motions n, the rest of the problem is to re-
cover the motion parameters (or fundamental matrices) and
the segmentation of the image points. Mathematically, this
is equivalent to factoring the multibody epipolar constraint
into the product of n bilinear forms, i.e.

νn(x2)TFνn(x1) =

n∏

i=1

(xT2 Fix1). (7)

In [16] we showed how to solve this problem from
the epipoles of each fundamental matrix and the epipolar
lines associated with each image point. The estimation of
epipoles and epipolar lines is based on the factorization of a
given homogeneous polynomial of degree n in 3 variables
with real coefficients into n distinct polynomials of degree
1 also with real coefficients. We showed that such a prob-
lem can be solved in polynomial time using linear algebraic
techniques. Once the epipoles and the epipolar lines have
been estimated, the estimation of individual fundamental
matrices becomes a simple linear problem from which the
segmentation of the image points is automatically obtained.

Since this algorithm naturally generalizes the well-
known eight-point algorithm to multiple moving objects,
we will refer to it as the multibody linear algorithm.

Remark 1 (Pure translation case) When all the objects
undergo a purely translational motion, one can directly re-
cover the translation of each object relative to the camera
by applying the same polynomial factorization algorithm to
the known epipolar lines, as described in [15].

Remark 2 (Segmenting translational and affine motions)
A similar factorization technique can be used for segment-
ing a dynamic scene directly from image intensities rather
than from feature points. The case of translational motions
is equivalent to factoring the multibody constant brightness
constraint [15] and the case of affine motions is equivalent
to factoring the multibody affine constraint [17].

4. Optimal 3-D Motion Segmentation
The multibody linear algorithm provides an algebraic ge-
ometric solution to the problem of estimating a collec-
tion of fundamental matrices {Fi}ni=1 from image pairs
{(xj1,xj2)}Nj=1. In essence, the algorithm solves the set of

nonlinear equations
∏n
i=1(xjT2 Fix

j
1) = 0, j = 1, . . . , N ,

in a “linear” fashion by embedding the image pairs into a
higher-dimensional space via the Veronese map.

However, the multibody linear algorithm provides a lin-
ear solution at the cost of neglecting the internal nonlin-
ear structure of the multibody fundamental matrix F . For
example, the algorithm solves for M 2

n − 1 unknowns in
F ∈ RMn×Mn from equation (4), even though there are



only 8n unknowns in the fundamental matrices {Fi}ni=1

(5n in the calibrated case). In practice, solving for an over-
parameterized representation of the multibody fundamental
matrix can be very sensitive in the presence of noise.

One way of resolving this problem is to replace the
multibody linear algorithm by the nonlinear least squares
problem

min
F1,...,Fn

N∑

j=1

(νn(xj2)TFνn(xj1))2 =
N∑

j=1

n∏

i=1

(xjT2 F
T
i x

j
1)2. (8)

Minimizing this algebraic error in fact provides a more ro-
bust estimate of the fundamental matrices, because it uses a
minimal representation of the unknowns. However, the so-
lution to this optimization problem is not optimal, because
the algebraic error in (8) does not coincide with the negative
log-likelihood of the data given the parameters.

In this section, we derive an optimal algorithm for esti-
mating the fundamental matrices when the image pairs are
corrupted with i.i.d. zero-mean Gaussian noise. We show
that the optimal solution can be obtained by minimizing a
function similar to the algebraic error in (8), but properly
normalized. We cast the motion segmentation problem as
a constrained nonlinear least squares problem which min-
imizes the reprojection error subject to all the multibody
epipolar constraints. Since the multibody epipolar con-
straint is satisfied by all image pairs, irrespective of the seg-
mentation, we do not need to model the membership of the
image pairs with a probability distribution. Hence, we do
not need to iterate between feature segmentation and single
body motion estimation, as in EM-like techniques. In fact,
the segmentation (E step) is algebraically eliminated by the
multibody epipolar constraint, which leads to an objective
function that depends only on the motion parameters.

Let {(xj1,xj2)}Nj=1 be the given collection of noisy im-
age pairs. We would like to find a collection of fundamental
matrices {Fi}ni=1 such that the corresponding noise free im-
age pairs {(x̃j1, x̃j2)}Nj=1 satisfy the multibody epipolar con-

straint νn(x̃j2)TFνn(x̃j1) = 0. Since for the Gaussian noise
model the negative log-likelihood is equal to the reprojec-
tion error, we obtain the constrained optimization problem1

min
∑N
j=1 ‖x̃

j
1 − xj1‖2 + ‖x̃j2 − xj2‖2

subject to νn(x̃j2)TFνn(x̃j1) = 0 j = 1, . . . , N.
(9)

By using Lagrange multipliers λj ∈ R for each constraint,
the above optimization problem is equivalent to minimizing

N∑

j=1

‖x̃j1−xj1‖2 + ‖x̃j2−xj2‖2 + λjνn(x̃j2)TFνn(x̃j1). (10)

1Notice that the optimization problem (9) does not include as an ad-
ditional constraint the fact that the third entry of each image point x =
[x, y, 1]T ∈ R3 is equal to one. We implicitly eliminate such constraints
and their associated Lagrange multipliers by left-multiplying the partial
derivatives of the Lagrangian (10) by the projection matrix Λ in (11).

Let

Λ =




1 0 0
0 1 0
0 0 0


 = [e3]T×[e3]×, (11)

with e3 = [0, 0, 1]T ∈R3, be the projection matrix eliminat-
ing the third entry of any image point x = [x, y, 1]T ∈R3.
Since Λ(x̃ − x) = (x̃ − x), after multiplying the partial
derivatives of the Lagrangian (10) with respect to x̃j1 and
x̃j2 by the projection matrix Λ we obtain

2(x̃j1 − xj1) + λjΛ
(
Dνn(x̃j1)

)T
FT νn(x̃j2) = 0, (12)

2(x̃j2 − xj2) + λjΛ
(
Dνn(x̃j2)

)T
Fνn(x̃j1) = 0, (13)

where Dνn(x) ∈ RMn×3 is the Jacobian of νn.
For ease of notation, let us also define

gj1 = (Dνn(x̃j1))TFT νn(x̃j2), gj2 = (Dνn(x̃j2))TFνn(x̃j1).

Then, since ΛTΛ = Λ2 = Λ, after left-multiplying (12) and
(13) by gjT1 Λ and gjT2 Λ, respectively, we obtain

2gjT1 Λ(x̃j1 − xj1) + λj‖[e3]×g
j
1‖2 = 0, (14)

2gjT2 Λ(x̃j2 − xj2) + λj‖[e3]×g
j
2‖2 = 0. (15)

Since Λ(x̃ − x) = (x̃ − x), Dνn(x̃)x̃ = nνn(x̃) and
νn(x̃2)Fνn(x̃1) = 0, we obtain gjT1 x̃

j
1 = gjT2 x̃

j
2 = 0.

Therefore, we have

−2gjT1 x
j
1 + λj‖[e3]×g

j
1‖2 = 0, (16)

−2gjT2 x
j
2 + λj‖[e3]×g

j
2‖2 = 0, (17)

from which we can solve for λj as

λj

2
=

gjT1 x
j
1 + gjT2 x

j
2

‖[e3]×g
j
1‖2 + ‖[e3]×g

j
2‖2

. (18)

Similarly, after left-multiplying (12) by (x̃j1 − xj1)T and
(13) by (x̃j2 − xj2)T we get

2‖x̃j1 − xj1‖2 − λjgjT1 xj1 = 0, (19)

2‖x̃j2 − xj2‖2 − λjgjT2 xj2 = 0, (20)

from which the reprojection error for point j is given by

‖x̃j1 − xj1‖2 + ‖x̃j2 − xj2‖2 =
λj

2
(gjT1 x

j
1 + gjT2 x

j
2). (21)

After replacing (18) in the previous equation, we obtain
the following expression for the total reprojection error

Ẽn({Fi}ni=1, {(x̃j1, x̃
j
2)}Nj=1)

.
=

N∑

j=1

(gjT1 xj1 + gjT2 xj2)2

‖[e3]×g
j
1‖2 + ‖[e3]×g

j
2‖2

=

N∑

j=1

(xjT1 (Dνn(x̃j1))TFT νn(x̃j2) + xjT2 (Dνn(x̃j2))TFνn(x̃j1))2

‖[e3]×(Dνn(x̃j1))TFTνn(x̃j2)‖2+‖[e3]×(Dνn(x̃j2))TFνn(x̃j1)‖2
.



Since ν1(x) = x and Dν1(x) = I , by letting n = 1 in
the above expression we notice that Ẽn is a natural general-
ization of the well-known optimal function for estimating a
single fundamental matrix F ∈ R3×3, which is given by [8]

Ẽ1(F, {(x̃j1, x̃j2)}Nj=1)=
N∑

j=1

(xjT1 FT x̃j2 + xjT2 F x̃j1)2

‖[e3]×FT x̃
j
2‖2+‖[e3]×F x̃

j
1‖2

.

(22)

Remark 3 Notice that the optimal error Ẽn has a very in-
tuitive interpretation. If point j belongs to group i, then
x̃jT2 Fix̃

j
1 = 0. This implies that

gjT1 =νn(x̃j2)TFDνn(x̃j1) =
∂

∂x̃j1

(
νn(x̃j2)TFνn(x̃j1)

)

=
∂

∂x̃j1

(
n∏

i=1

x̃jT2 Fix̃
j
1

)
=

n∑

i=1




n∏

6̀=i
x̃jT2 F`x̃

j
1


(x̃jT2 Fi)

=
( n∏

6̀=i
x̃jT2 F`x̃

j
1

)
(x̃jT2 Fi),

gjT2 =
( n∏

6̀=i
x̃jT2 F`x̃

j
1

)
(x̃jT1 FTi ).

Therefore, the factor
∏n
6̀=i(x̃

jT
2 F`x̃

j
1) is in both the numer-

ator and the denominator of Ẽn. Hence the contribution of
point j to the error Ẽn reduces to

(x̃jT2 Fix
j
1 + xjT2 Fix̃

j
1)2

‖[e3]×FTi x̃
j
2‖2 + ‖[e3]×Fix̃

j
1‖2

, (23)

which is the same as the contribution of point j to the op-
timal function for a single fundamental matrix Fi in (22).
Therefore, the objective function Ẽn is just a clever alge-
braic way of simultaneously writing a mixture of optimal
objective functions for individual fundamental matrices into
a single objective function for all the fundamental matrices.

We now derive an objective function that depends on the
motion parameters only. As in the case of a single funda-
mental matrix [8], this can be done by considering the first
order statistics of νn(xj2)TFνn(xj1). It turns out that this is
equivalent to setting x̃j = xj in the above expression for
Ẽn. Since Dνn(x)x = nνn(x) we obtain the following
function of the fundamental matrices En(F1, . . . , Fn)

.
=

N∑

j=1

4n2(νn(xj2)TFνn(xj1))2

‖[e3]×(Dνn(x̃j1))TFTνn(x̃j2)‖2+‖[e3]×(Dνn(x̃j2))TFνn(x̃j1)‖2
.

Notice that En is just a normalized version of the alge-
braic error (8). Furthermore, when n = 1, En reduces to
the well-known objective function for estimating a single
fundamental matrix F [8]

E1(F ) =

N∑

j=1

4(xjT2 Fxj1)2

‖[e3]×FTx
j
2‖2 + ‖[e3]×Fx

j
1‖2

. (24)

Notice that (24) can also be obtained by setting x̃ = x
in (22). Therefore, the objective function En(F1, . . . , Fn)
is a natural generalization of well-known objective function
E1(F ) in single body structure from motion.

In summary, we have derived an objective function from
which one can simultaneously estimate all the fundamental
matrices {Fi}ni=1 using all the image pairs {(xj1,xj2)}Nj=1,
without prior segmentation of the image measurements.
The fundamental matrices can be obtained by minimizing
En using standard nonlinear optimization techniques. One
can use the multibody linear algorithm in Section 3 to ini-
tialize the number of motions and the fundamental matrices.

Remark 4 (Pure translation and calibrated cases) The
case of linearly moving objects (Remark 1) or calibrated
cameras can be easily handled by properly parameterizing
the fundamental matrices and then minimizing over fewer
parameters.

5. Experimental Results
In this section, we evaluate the performance of the proposed
algorithm with respect to the number of motions n and the
amount of noise in the image measurements. We also test
our approach by segmenting a real image sequence.

We first test the algorithm on synthetic data. We ran-
domly pick n = 1, 2, 3, 4 collections of N = 50n feature
points and apply a different (randomly chosen) rigid body
motion (Ri, Ti), withRi ∈ SO(3) the rotation and Ti ∈ R3

the translation. Zero-mean Gaussian noise with standard
deviation (std) from 0 to 2.5 pixels is added to the first two
entries of x1 and x2, assuming an image size of 500×500
pixels. We run 1000 trials for each noise level. For each
trial the error between the true motions {(Ri, Ti)}ni=1 and
the estimates {(R̂i, T̂i)}ni=1 is computed as

Rot. error =
1

n

n∑

i=1

acos
( trace(RiR̂

T
i )− 1

2

)
(degrees).

Trans. error =
1

n

n∑

i=1

acos
( TTi T̂i

‖Ti‖‖T̂i‖

)
(degrees).

Figure 1 plots the mean error in rotation and translation
as a function of noise. In all trials the number of motions
was correctly estimated from equation (6) as n = 1, 2, 3, 41.
The algorithm gives an error of less than 3◦ for rotation
and less than 10◦ for translation. As expected, the perfor-
mance deteriorates as the number of motions n increases,
especially for the rotation estimates.

We also tested the proposed approach by segmenting a
real image sequence with n = 3 moving objects: a truck, a
car and a box. Figure 2(a) shows the first frame of the se-
quence with the tracked features superimposed. We tracked
a total of N = 173 point features: 44 “◦” for the truck,
48 “2” for the car and 81 “4” for the box. We estimated
the number of motions from (6) as n = 3 and minimized
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Figure 1: Error in the estimation of the rotation and transla-
tion as a function of noise in the image points (std in pixels).
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Figure 2: 3-D segmentation of three independent motions.

E3(F1, F2, F3) to obtain (R̂i, T̂i). For comparison pur-
poses, we estimated the ground truth motion (Ri, Ti) of
each object by manually segmenting the feature points and
then minimizing the standard error for single body structure
from motion E1(Fi) in (24). The error in rotation was 1.5◦,
1.9◦ and 0.1◦ and the error in translation was 1.7◦, 1.8◦ and
0.4◦ for the truck, car and box, respectively.

In order to obtain the segmentation of the feature pairs,
we computed the three reprojection errors E1(F̂i) for each
feature pair as shown in Figures 2(c)-(e). Each feature pair
was assigned to the motion i = 1, 2, 3 with the minimum er-
ror. Figure 2(b) plots the segmentation of the image points.
There are no mismatches for motions 1 and 3. However 5
features corresponding to motion 2 are assigned to motion
1 and 6 features corresponding to motion 2 are assigned to
motion 3. This is because the motion of the car was smaller
and hence its reprojection error is small for all F̂i’s.

6. Conclusions
We presented a novel algorithm for optimally segmenting
dynamic scenes containing multiple rigidly moving objects.
Instead of iterating between feature segmentation and single
body motion estimation, our approach eliminates the seg-
mentation and directly optimizes over the motion parame-
ters. We tested our approach on synthetic and real images.
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