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Abstract
We propose an algebraic geometric approach to the prob-
lem of estimating a mixture of linear subspaces from sample
data points, the so-called Generalized Principal Component
Analysis (GPCA) problem. In the absence of noise, we show
that GPCA is equivalent to factoring a homogeneous poly-
nomial whose degree is the number of subspaces and whose
factors (roots) represent normal vectors to each subspace.
We derive a formula for the number of subspaces n and pro-
vide an analytic solution to the factorization problem using
linear algebraic techniques. The solution is closed form if
and only if n ≤ 4. In the presence of noise, we cast GPCA
as a constrained nonlinear least squares problem and de-
rive an optimal function from which the subspaces can be
directly recovered using standard nonlinear optimization
techniques. We apply GPCA to the motion segmentation
problem in computer vision, i.e. the problem of estimating
a mixture of motion models from 2-D imagery.

1. Introduction
Principal Component Analysis (PCA) [4] refers to the prob-
lem of estimating a linear subspace S ⊂ RK of unknown
dimension k < K from N sample points {xj ∈ S}Nj=1.
This problem shows up in a variety of applications in many
fields, e.g., pattern recognition, data compression, image
analysis, regression, etc., and can be solved in a remarkably
simple way from the singular value decomposition (SVD)
of the data matrix [x1,x2, . . . ,xN ] ∈ RK×N .

Extensions of PCA include probabilistic PCA [9, 2],
where the subspace is estimated in Maximum Likelihood
sense using a probabilistic generative model, and nonlinear
PCA (NLPCA) [6], where the subspace is estimated after
applying a nonlinear embedding to the data. In this paper,
we consider an alternative generalization called Generalized
Principal Component Analysis (GPCA), in which the sam-
ple points {xj ∈ RK}Nj=1 are drawn from n k-dimensional
linear subspaces of RK , {Si}ni=1, as illustrated in Figure 1
for n = 3, k = 2, and K = 3. In this case, the problem
becomes one of identifying each subspace without knowing
which sample points belong to which subspace.1
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Figure 1: GPCA for n = 3, k = 2 and K = 3. Identi-
fying three 2-dimensional subspaces S1, S2, S3 in R3 from
sample points {x} drawn from these subspaces.

Geometric approaches to mixtures of principal compo-
nents have been proposed in the computer vision commu-
nity in the context of 3-D motion segmentation. The main
idea is to first segment the data associated with each sub-
space, and then apply standard PCA to each group. In [5]
(see also [1, 3]) it was shown that if the pairwise intersection
of the subspaces is trivial, which implies that K ≥ nk, one
can use the SVD of all the data to build a similarity matrix
from which the segmentation can be easily extracted. When
the subspaces do intersect, the segmentation of the data is
usually obtained in an ad-hoc fashion using various cluster-
ing algorithms, e.g., K-means. An alternative algebraic so-
lution for the case of two planes in R3 was proposed in [7]
in the context of 2-D segmentation of transparent motions.2

See also [14] for 3-D segmentation of two rigid motions.
Probabilistic approaches to mixtures of principal compo-

nents [8] assume that sample points within each subspace
are drawn from an unknown probability distribution. The
membership of the data points to each one of the subspaces
is modeled with a multinomial distribution whose parame-
ters are referred to as the mixing proportions. The param-
eters of this mixture model are estimated in a Maximum
Likelihood or Maximum a Posteriori framework as follows:
one first estimates the mixing proportions given a current
estimate for the subspaces, and then estimates the subspaces
given a current estimate of the mixing proportions. This
is usually done in an iterative manner using the Expecta-
tion Maximization (EM) algorithm. Unfortunately, EM is

1If the association between sample points and subspaces was known,
then the problem would reduce to standard PCA applied to each subspace.

2The authors thank Dr. David Fleet for pointing out this reference.



in general sensitive to initialization and may not converge to
the global optimum. Another disadvantage is that it is hard
to analyze some theoretical questions such as the existence
and uniqueness of a solution to the problem. Also there are
many cases in which it is hard to solve the grouping prob-
lem correctly, yet it is possible to obtain a precise estimate
of the subspaces. In such cases a direct estimation of the
subspaces (without grouping) seems more appropriate than
an estimation based on incorrectly segmented data.

1.1. Contributions of this paper
We propose a novel algebraic geometric approach to mix-
tures of principal components, the so-called Generalized
Principal Component Analysis (GPCA) problem.

In the absence of noise, we cast GPCA in an algebraic
geometric framework in which the number of subspaces be-
comes the degree of a certain polynomial and the normals
to each subspace become the factors (roots) of such a poly-
nomial. We show that the number of subspaces n can be ob-
tained from the rank of a certain matrix that depends on the
data. Given n, the estimation of the subspaces Si ⊂ RK is
essentially equivalent to a factorization problem in the space
of homogeneous polynomials of degree n in K variables.
We prove that the factorization problem has a unique solu-
tion which can be obtained from the roots of a polynomial
of degree n in one variable and from the solution of K − 2
linear systems in n variables. Hence, the solution is closed
form when n ≤ 4. Unlike previous work, GPCA allows for
arbitrary intersections among an arbitrary number of dif-
ferent subspaces and does not require previous knowledge
of the segmentation of the data or the number of subspaces.
In fact, the subspaces are estimated directly using segmen-
tation independent constraints that are satisfied by all the
points, regardless of the subspace to which they belong.

In the presence of noise, we cast GPCA as a constrained
nonlinear least squares problem that minimizes the error be-
tween the noisy points and their projections onto the sub-
spaces. By converting this constrained problem into an un-
constrained one, we obtain an optimal function from which
the subspaces can be directly recovered using standard non-
linear optimization techniques. We show that the optimal
objective function is just a normalized version of the alge-
braic error minimized by our analytic solution to GPCA. Al-
though this means that the analytic solution to GPCA may
be sub-optimal in the presence of noise, we can still use it as
a global initializer for our nonlinear algorithm or any other
iterative algorithm, such as K-means or EM.

Our solution to GPCA can be applied to various estima-
tion problems in which the data comes simultaneously from
multiple (approximately) linear models. In this paper, we
apply GPCA to the motion segmentation problem in com-
puter vision, i.e. the problem of estimating a mixture of
motion models from 2-D imagery. Applications to segmen-
tation of static and dynamic textures are forthcoming [10].

2 Problem formulation and analysis

In this paper, we consider the following generalization of
principal component analysis (PCA).

Problem 1 (Generalized Principal Component Analysis)
Given a set of sample points X = {xj ∈ RK}Nj=1 drawn
from n > 1 distinct linear subspaces {Si ⊆ RK}ni=1 of di-
mension k, 0 < k < K, identify each subspace Si without
knowing which sample points belong to which subspace.
By identifying the subspaces we mean the following:

1. Identify the number of subspaces and their dimension;

2. Identify a basis for each subspace Si (or for S⊥i );

3. Group or segment the givenN data points into the sub-
space(s) they belong to;

In our analysis of the GPCA problem, we will distin-
guish between the following two cases: The general case of
subspaces of unknown dimension k, where 0 < k < K− 1,
and the special case of hyperplanes of known dimension
k = K − 1. It turns out that the general case can always
be reduced to the special case, as long as all the subspaces
{Si}ni=1 have the same dimension k (see [10] for the proof).
This is because, from a geometric point of view, the seg-
mentation of a sample set X drawn from n k-dimensional
subspaces of a space of dimensionK > k is preserved after
projecting the sample set X onto a generic3 subspace P of
dimension k + 1 (≤ K). An example is shown in Figure 2,
where two lines L1 and L2 in R3 are projected onto a plane
P not orthogonal to the plane containing the lines.

In general, there are various technical details involved in
reducing the general case 0 < k < K to the special case
k = K − 1, e.g., how to determine the dimension of the
subspaces k and how to choose the (k + 1)-dimensional
subspace P . We refer the reader to [10] for all those details,
and concentrate on the special but important case k = K−1
from now on.

+

+

+

+ +

+

+

+

+ +
++ + + ++

PSfrag replacements

P

R3

L1 L2

l1
l2

o

Figure 2: Samples on two 1-dimensional subspaces L1, L2

in R3 projected onto a 2-dimensional plane P . The mem-
bership of each sample is preserved through the projection.

3By generic we mean except for a zero-measure set {P} of subspaces.



3. A solution to GPCA with k = K−1

In this section, we give the following constructive solution
to the GPCA problem in the case k = K − 1.

Theorem 1 (GPCA with k = K − 1) The GPCA problem
with k = K − 1 is algebraically equivalent to factoring a
homogeneous polynomial of degree n in K variables into
a product of n polynomials of degree 1. The factorization
problem can be solved from the roots of a polynomial of
degree n in one variable plus K − 2 linear systems in n
variables. Thus GPCA with k=K−1 has a unique solution,
which can be obtained in closed form if and only if n ≤ 4.

We establish the equivalence between GPCA and polyno-
mial factorization in Section 3.1. We show how to estimate
the number of subspaces in Section 3.2 and give an analytic
solution to the factorization problem in Section 3.3. We
summarize the overall algorithm in Section 3.4 and present
an optimal algorithm in the presence of noise in Section 3.5.

3.1. GPCA and polynomial factorization
We notice that every (K − 1)-dimensional space Si ⊂ RK

can be represented by a nonzero normal vector bi ∈ RK as

Si = {x ∈ RK : bTi x = bi1x1+bi2x2+. . .+biKxK = 0}.
Since the subspaces Si are all distinct from each other, the
normal vectors {bi}ni=1 are pairwise linearly independent.

Imagine that we are given a point x ∈ RK lying on one
of the subspaces Si. Such a point must satisfy the formula:

(bT1 x = 0) ∨ (bT2 x = 0) ∨ · · · ∨ (bTnx = 0), (1)

which is equivalent to the following homogeneous polyno-
mial of degree n in x with real coefficients:

pn(x) =

n∏

i=1

(bTi x) = 0. (2)

The problem of identifying each subspace Si is then
equivalent to that of solving for the vectors {bi}n1=1 from
the nonlinear equation (2). A standard technique used in
algebra to render a nonlinear problem into a linear one is
to find an “embedding” that lifts the problem into a higher-
dimensional space. Let Rn(K) = Rn[x1, . . . , xK ] be the
set of all homogeneous polynomials of degree n in K vari-
ables. We notice that each Rn(K), can be made into a vec-
tor space under the usual addition and scalar multiplication.
Furthermore, Rn(K) is generated by the set of monomials
xn = xn1

1 xn2
2 · · ·xnKK , with 0 ≤ nj ≤ n, j = 1, . . . ,K,

and n1 + n2 + · · ·+ nK = n. Since there are a total of

Mn =

(
n+K − 1
K − 1

)
=

(
n+K − 1

n

)
(3)

different monomials, the dimension of Rn(K) as a vector
space is Mn. Therefore, we can define the following em-
bedding (or lifting) from RK into RMn .

Definition 1 (Veronese map) Given n and K, the
Veronese map of degree n, νn : RK → RMn , is defined as:

νn : [x1, . . . , xK ]T 7→ [. . . ,xn, . . .]T , (4)

where xn is a monomial of the form xn1
1 xn2

2 · · ·xnKK with n
chosen in the degree-lexicographic order.

With the so-defined Veronese map (also known as the
polynomial embedding), equation (2) becomes the follow-
ing linear expression in the vector of coefficients c ∈ RMn :

pn(x) = νn(x)T c =
∑

cn1,...,nKx
n1
1 · · ·xnKK = 0, (5)

where cn∈R represents the coefficient of the monomial xn.

Example 1 The case n = 2 andK = 2 corresponds to seg-
menting two lines in R2. These two lines are represented by
the polynomial p2(x) = (b11x1+b12x2)(b21x1+b22x2). In
this case the Veronese map is ν2(x) = [x2

1, x1x2, x
2
2]T and

the coefficients are c = [b11b21︸ ︷︷ ︸
c2,0

, b11b22 + b12b21︸ ︷︷ ︸
c1,1

, b12b22︸ ︷︷ ︸
c0,2

]T .

Given c, the slope of each line can be immediately computed
from the roots of the polynomial c2,0w

2 + c1,1w+ c0,2 = 0.

3.2. Estimation of the number of subspaces n
Applying equation (5) to a given collection ofN ≥Mn−1
sample points {xj}Nj=1 gives the following system of linear
equations on the vector of coefficients c

Ln c
.
=




νn(x1)T

νn(x2)T

...
νn(xN )T


 c = 0 ∈ RN . (6)

Since the above linear system (6) depends explicitly on the
number of subspaces n, we cannot estimate c directly with-
out knowing n in advance. It turns out that the estimation
of the number of subspaces n is very much related to the
conditions under which the solution for c is unique (up to a
scale factor), as stated by the following proposition.

Proposition 1 (Number of subspaces) Assume that a col-
lection of N ≥ Mn − 1 sample points {xj}Nj=1 on n dif-
ferent (K − 1)-dimensional subspaces of RK is given. Let
Li ∈ RN×Mi be the matrix defined in (6), but computed
with the Veronese map νi(x) of degree i. If the sample
points are in general position and at least K − 1 points
correspond to each subspace, then:

rank(Li)





> Mi − 1, i < n,
= Mi − 1, i = n,
< Mi − 1, i > n.

(7)

Therefore, the number n of subspaces is given by:

n = min{i : rank(Li) = Mi − 1}. (8)



The intuition behind Proposition 1 (see [10] for the
proof) is that there is no polynomial of degree i < n that
is satisfied by all the data, hence rank(Li) = Mi for i < n.
Conversely, there are multiple polynomials of degree i > n,
namely any multiple of pn(x), which are satisfied by all the
data, hence rank(Li) < Mi − 1 for i > n. Thus the case
i = n is the only one in which system (6) has a unique so-
lution, namely the coefficients c of the polynomial pn(x).

Remark 1 In the presence of noise, one cannot directly
estimate n from (8), because the matrix Li is always full
rank. In practice we declare the rank of Li to be r if
σr+1/(σ1 + · · · + σr) < ε, where σk is the k-th singular
value of Li and ε > 0 is a pre-specified threshold. We have
found this simple criterion to work well in our experiments.

Remark 2 In the case of n subspaces of arbitrary dimen-
sion k, where 0 < k < K, one can derive a rank condition
similar to (8) from which one can jointly estimate n and k.
Such a rank condition in GPCA is a natural generalization
of the rank condition k = rank(L1) in standard PCA [10].

3.3. Estimation of the subspaces {Si}ni=1

Proposition 1 and the linear system in equation (6) allow
us to determine the number of subspaces n and the vector
of coefficients c, respectively, from sample points {xj}Ni=1.
The rest of the problem becomes now how to recover the
normal vectors {bi}ni=1 from c. From (2) and (5) we have

pn(x) =
∑

cnx
n =

n∏

i=1




K∑

j=1

bijxj


 .

Therefore, recovering {bi}ni=1 from c is equivalent to fac-
toring a given homogeneous polynomial pn(x) ∈ Rn(K),
into n distinct polynomials in R1(K).4

We now present a polynomial factorization algorithm
that recovers the bi’s from c. For simplicity, we will first
present an example with the case of two planes in R3, i.e.
n = 2 and K = 3, because it gives most of the intuition
about our general algorithm for arbitrary n and K.

Example 2 Consider the case n = 2 and K = 3. Then

p2(x) = (b11x1 + b12x2 + b13x3)(b21x1 + b22x2 + b23x3)

= (bT1 x)(bT2 x) = [x2
1, x1x2, x1x3, x

2
2, x2x3, x

2
3]c =

(b11b21︸ ︷︷ ︸
c2,0,0

)x2
1+(b11b22+b12b21︸ ︷︷ ︸

c1,1,0

)x1x2+(b11b23+b13b21︸ ︷︷ ︸
c1,0,1

)x1x3

+ (b12b22︸ ︷︷ ︸
c0,2,0

)x2
2 + (b12b23+b13b22︸ ︷︷ ︸

c0,1,1

)x2x3 + (b13b23︸ ︷︷ ︸
c0,0,2

)x2
3.

4One can interpret c as a vector representation of the symmetric part of
the tensor b1⊗· · ·⊗bn. In this case estimating {bi}ni=1 from c is equiv-
alent to factoring such a symmetric tensor. The factorization algorithm we
are about to present can be thought of as a SVD for symmetric tensors.

We notice that the last three terms c0,2,0x
2
2 + c0,1,1x2x3 +

c0,0,2x
2
3 correspond to a polynomial in x2 and x3 only,

which is equal to the product of the last two terms of the
original factors, i.e. (b12x2 + b13x3)(b22x2 + b23x3). After
dividing by x2

3 and letting w = x2/x3 we obtain q2(w)
.
=

c0,2,0w
2 + c0,1,1w + c0,0,2 = (b12w + b13)(b22w + b23).

Since c ∈ R6 is known, so is the second order polynomial
q2(w). Thus we can obtain b13

b12
and b23

b22
from the roots w1

andw2 of q2(w). Since b1 and b2 are only computable up to
a scale factor, we can actually divide c by c0,2,0 (if nonzero)
and set the last two entries of b1 and b2 to be

b12 = 1, b13 = −w1, b22 = 1, and b23 = −w2.

We are left with the computation of the first entry of b1 and
b2. We notice that the coefficients c1,1,0 and c1,0,1 are lin-
ear functions of the unknowns b11 and b21. Therefore, if
b22b13 − b23b12 6= 0, i.e. if w1 6= w2, then we can obtain
b11 and b21 from the linear system

[
b22 b12

b23 b13

] [
b11

b21

]
=

[
c1,1,0
c1,0,1

]
. (9)

We conclude from the Example 2 that, except for the
degenerate cases c0,2,0 = b12b22 = 0 or b22b13 − b23b12 =
0, the factorization of a homogeneous polynomial of degree
n = 2 in K = 3 variables can be done as follows.

1. Solve for the last two entries of {bi}ni=1 from the roots
of a polynomial qn(w) associated with the last n + 1
coefficients of pn(x).

2. Solve for the first K − 2 entries of {bi}ni=1 by solving
K − 2 linear systems in n variables.

We now show in Sections 3.3.1 and 3.3.2 how the above
example can be generalized to arbitrary n andK, except for
some degenerate cases. We analyze such degenerate cases
in Section 3.3.3 and briefly outline how to handle them. We
summarize the overall algorithm in Section 3.4.

3.3.1 Solving for the last 2 entries of each bi

Consider the last n+ 1 coefficients of pn(x):

[c0,...,0,n,0 , c0,...,0,n−1,1 , . . . , c0,...,0,0,n]T ∈ Rn+1,

which define the following homogeneous polynomial of de-
gree n in the two variables xK−1 and xK :

∑
c0,...,0,nK−1,nKx

nK−1

K−1 x
nK
K =

n∏

i=1

(biK−1xK−1+biKxK).

Letting w = xK−1/xK , we obtain

n∏

i=1

(biK−1xK−1 + biKxK)=0⇔
n∏

i=1

(biK−1w + biK)=0.



Hence the n roots of the polynomial

qn(w) = c0,...,0,n,0w
n+c0,...,0,n−1,1w

n−1+· · ·+c0,...,0,0,n
are exactly wi = −biK/biK−1, for all i = 1, . . . , n. There-
fore, after dividing c by c0,...,0,n,0, we obtain the last two
entries of each bi as:

(biK−1 , biK) = (1 , −wi). (10)

If biK−1 = 0 for some i, then some of the leading coef-
ficients of qn(w) are zero and we cannot proceed as before,
because qn(w) has less than n roots. More specifically, as-
sume that the first ` ≤ n coefficients of qn(w) are zero and
divide c by the (` + 1)-st coefficient. In this case, we can
choose (biK−1, biK) = (0, 1), for i = 1, . . . , `, and obtain
{(biK−1, biK)}ni=n−`+1 from the n − ` roots of qn(w) us-
ing equation (10). Finally, if all the coefficients of qn(w)
are zero, we set (biK−1, biK) = (0, 0), for all i = 1, . . . , n.

3.3.2 Solving for the first K − 2 entries of each bi
We have demonstrated how to obtain the last two entries of
each bi from the roots of a polynomial of degree n in one
variable. We are now left with the computation of the first
K−2 entries of each bi. We assume that we have computed
{bij}ni=1, j = J + 1, . . .K for some J , starting with J =
K − 2, and show how to linearly solve for {biJ}ni=1. As in
Example 2, the key is to consider the coefficients of pn(x)
which are linear in xJ . These coefficients are of the form
c0,...,0,1,nJ+1,...,nK and are linear in biJ . To see this, notice
that the polynomial

∑
c0,...,0,1,nJ+1,...,nKx

nJ+1

J+1 · · ·xnKK is
equal to the partial derivative of pn(x) with respect to xJ
evaluated at x1 = x2 = · · · = xJ = 0. Since

∂

∂xJ

(
n∏

i=1

(bTi x)

)
=

n∑

i=1

biJ

(
i−1∏

`=1

(bTi x)
n∏

`=i+1

(bTi x)

)
,

after evaluating at x1 = x2 = · · · = xJ = 0 we obtain

∑
c0,...,0,1,nJ+1,...,nKx

nJ+1

J+1 · · ·xnKK =
n∑

i=1

biJg
J
i (x), (11)

where

gJi (x) =

i−1∏

`=1




K∑

j=J+1

b`jxj




n∏

`=i+1




K∑

j=J+1

b`jxj


 (12)

is a homogeneous polynomial of degree n − 1 in the last
K − J variables in x. Let VJi be the vector of coefficients
of the polynomial gJi (x). Notice that the vectors {VJi }ni=1

are known, because they are functions of the known bij’s,
for j ≥ J + 1. Therefore we can use equation (11) to solve
for the unknowns {biJ}ni=1 from the linear system

[
VJ1 VJ2 · · · VJn

]




b1J
b2J

...
bnJ


 =




c0,...,0,1,n−1,0,...,0

c0,...,0,1,n−2,1,...,0

...
c0,...,0,1,0,0,...,n−1


 . (13)

3.3.3 Degenerate cases

In order for the linear system in (13) to have a unique so-
lution, the column vectors {VJi }ni=1 (in the matrix on the
left hand side) must be linearly independent. We showed
in [10] that this is indeed the case if and only if for all
r 6= s, 1 ≤ r, s ≤ n, the vectors (brJ+1, brJ+2, . . . , brK)
and (bsJ+1, bsJ+2, . . . , bsK) are pairwise linearly indepen-
dent. This latter condition is always satisfied, except for
some degenerate cases described in Remark 3 below. In
those degenerate cases, as long as the original polynomial
pn(x) has n distinct factors, one can always perform an in-
vertible linear transformation on the data points

x 7→ x′ = Tx, T ∈ RK×K (14)

that induces a linear transformation on the vector of coef-
ficients c 7→ c′ = T̃c, T̃ ∈ RMn×Mn , such that the new
vectors (b′rJ+1, b

′
rJ+2, . . . , b

′
rK) are pairwise linearly inde-

pendent. We refer the reader to [10] for further details on
the solution of these degenerate cases.

Remark 3 (Degenerate cases) There are essentially three
cases in which the vectors (brJ+1, brJ+2, . . . , brK) are not
pairwise linearly independent:

1. The original polynomial pn(x) is such that the poly-
nomial qn(w) has repeated roots, e.g.,
p3(x) = (x1+x2+x3)(x1+2x2+2x3)(x1+2x2+x3).

2. The polynomial qn(w) associated with some fac-
torable pn(x), e.g., pn(x) = (x1 + x3)x3, has more
than one zero leading coefficients. In this case we have
(bi2, bi3) = (0, 1) for more than one i.

3. The original polynomial pn(x) is not factorable. This
happens, for example, when the vector of coefficients
c is corrupted with noise. In this case the polyno-
mial qn(w) may have complex roots, e.g., pn(x) =
x2

1 + x2
2 + x2x3 + x2

3, and one could “project” these
complex roots onto their real parts. This typically in-
troduces repeated real roots in the resulting polyno-
mial, e.g., after “projection” the above polynomial
pn(x) becomes x2

1 + x2
2 + x2x3 + 1

4x
2
3.

3.4. GPCA algorithm for k = K − 1

Algorithm 1 (GPCA algorithm for the case k = K − 1)
Given sample points {xj}Nj=1, find the number of subspaces
n and their normals {bi ∈ RK}ni=1 as follows:

1. Apply the Veronese map of degree i, for i = 1, 2, . . ., to
the vectors {xj}Nj=1 and form the matrix Li ∈ RN×Mi

as in (6). Stop when rank(Li) = Mi − 1 and set the
number of subspaces n to be the current i. Then solve
for the vector of coefficients c ∈ RMn from the linear
system Lnc = 0 and normalize so that ‖c‖ = 1.



2. (a) Divide c by the first nonzero coefficient of qn(w).

(b) If the first `, 0 ≤ ` ≤ n, coefficients of qn(w)
are equal to zero, set (biK−1, biK) = (0, 1) for
i = 1, . . . , `. Compute {(biK−1, biK)}ni=n−`+1

from the n− ` roots of qn(w) using (10).

(c) If all the coefficients of qn(w) are zero, set
(biK−1, biK) = (0, 0), for i = 1, . . . , n.

(d) If (brK−1, brK) is parallel to (bsK−1, bsK) for
some r 6= s, apply the transformation x 7→ x′

in (14) and repeat 2(a), 2(b) and 2(c) for the new
polynomial p′n(x′) to obtain {(b′iK−1, b

′
iK)}ni=1.

3. Given (biK−1, biK), i = 1, . . . , n, solve for {biJ}ni=1

from (13) for J = K − 2, . . . , 1. If a transformation
T ∈ RK×K was used in 2(d), then set bi = T−T b′i.

3.5. Optimal GPCA in the presence of noise
In the previous section, we proposed a “linear” algorithm
for estimating a collection of subspaces from sample data
points {xj}Nj=1 lying on those subspaces. In essence, Algo-
rithm 1 solves for the normal vectors {bi}ni=1 from the set
of nonlinear equations

∏n
i=1(bTi x

j) = 0, j = 1, . . . , N .
From an optimization point of view, Algorithm 1 gives a
“linear” solution to the nonlinear least squares problem

min
b1,...,bn∈SK−1

N∑

j=1

(
n∏

i=1

(bTi x
j)

)2

(15)

where SK−1 is the unit sphere in RK .
In this section, we derive an optimal algorithm for re-

constructing the subspaces when the sample data points are
corrupted with i.i.d. zero-mean Gaussian noise. We show
that the optimal solution can be obtained by minimizing a
function similar to the algebraic error in (15), but properly
normalized. Since our derivation is based on segmentation
independent constraints, we do not need to model the mem-
bership of each data point with a probability distribution.
Therefore, we do not need to iterate between model estima-
tion and data segmentation, as most iterative techniques do,
e.g., K-means and EM. Instead, our approach eliminates the
data segmentation step algebraically and solves the GPCA
problem by directly optimizing over the normals to each
subspace.

Let {xj}Nj=1 be the given collection of noisy data points.
We would like to find a collection of subspaces {Si}ni=1

such that the corresponding noise free data points {x̃j}Nj=1

lie on those subspaces. That is, we would like to solve the
constrained nonlinear least squares optimization problem

min
∑N
j=1 ‖x̃j − xj‖2

subject to
∏n
i=1(bTi x̃

j) = 0 j = 1, . . . , N.
(16)

By using Lagrange multipliers λj for each constraint, the
above optimization problem is equivalent to minimizing the

Lagrangian function

N∑

j=1

(
‖x̃j − xj‖2 + λj

n∏

i=1

(bTi x̃
j)

)
. (17)

After taking partial derivatives w.r.t. x̃j we obtain

2(x̃j − xj) + λj
n∑

i=1

bi
∏

`6=i
(bT` x̃

j) = 0, (18)

from which we can solve for λj/2 as
∑n
i=1b

T
i (x

j−x̃j)∏ 6̀=i(b
T
` x̃

j)

‖∑n
i=1 bi

∏
6̀=i(b

T
` x̃

j)‖2 =

∑n
i=1(b

T
ix

j)
∏
6̀=i(b

T
` x̃

j)

‖∑n
i=1bi

∏
` 6=i(b

T
` x̃

j)‖2 . (19)

Similarly, after premultiplying (18) by (x̃j − xj)T we get

‖x̃j − xj‖2 =
λj

2

n∑

i=1

(bTi x
j)
∏

6̀=i
(bT` x̃

j). (20)

Replacing (19) and (20) on the objective function (16) gives

Ẽn({x̃j}, {bi})=

N∑

j=1

(∑n
i=1(bTi x

j)
∏
`6=i(b

T
` x̃

j)
)2

∥∥∥
∑n
i=1 bi

∏
6̀=i(b

T
` x̃

j)
∥∥∥

2 . (21)

We can obtain an objective function on the normal vec-
tors only by considering first order statistics of cT νn(xj).
Since this is equivalent to setting x̃j = xj in (21), we obtain
the simplified objective function

En(b1, . . . , bn) =
N∑

j=1

(
n
∏n
i=1(bTi x

j)
)2

∥∥∥
∑n
i=1 bi

∏
`6=i(b

T
` x

j)
∥∥∥

2 , (22)

which is essentially the same as the algebraic error (15), but
properly normalized according to the chosen noise model.
By construction, the error function in (22) does not depend
on the segmentation of the data, hence it can be used to di-
rectly recover the subspace normals {bi}ni=1 from a set of
N ≥ n(K − 1) data points {xj}Nj=1. One can use Algo-
rithm 1 to obtain an initial estimate for n and {bi}ni=1 and
then use standard nonlinear optimization techniques to min-
imize (22). However, Algorithm 1 requires a much larger
number of points N ≥ Mn − 1, because it uses an overpa-
rameterized representation c ∈ RMn of the normal vectors.

Remark 4 The optimal error in (21) has a very intuitive
interpretation. If point j belongs to group i, then bTi x̃

j = 0.
Thus the contribution of point j to Ẽn reduces to

(
bTi x

j∏
6̀=i(b

T
` x

j)
)2

(∏
6̀=i(b

T
` xj)

)2 = (bTi x
j)2, (23)

which is the optimal function to minimize for subspace i.
Therefore, the optimal error Ẽn is just a clever algebraic
way of writing a mixture of optimal functions for each sub-
space into a single objective function for all the subspaces.



4. Applications of GPCA
In this section, we test GPCA on synthetic data and present
various applications on 2-D and 3-D motion segmentation
from 2-D imagery.

4.1. Experiments on synthetic data
We first test GPCA (Algorithm 1) and optimal GPCA (see
Section 3.5) on synthetically generated data. We randomly
pick n = 2, 3, 4 collections of N = 600 points on k = 2
dimensional subspaces of R3. Zero-mean Gaussian noise
with standard deviation from 0% to 5% is added to the sam-
ple points. We run 1000 trials for each noise level. For each
trial the error between the true (unit) normals {bi}ni=1 and
the estimates {b̂i}ni=1 is computed as

error =
1

n

n∑

i=1

acos
(
bTi b̂i

)
(degrees). (24)

Figure 3 plots the mean error as a function of the noise
level. In all the trials, the number of subspaces was cor-
rectly estimated from equation (8) as n = 2, 3, 4.5 No-
tice that the estimates of the algebraic algorithm (left) are
within 3.8◦, 8.5◦ and 13.3◦ of the ground truth for n = 2,
n = 3 and n = 4, respectively, while the estimates of the
optimal algorithm (right) are within 3.1◦, 6.4◦ and 9.7◦ of
the ground truth for n = 2, 3 and 4, respectively. This is
expected, because the algebraic algorithm uses an overpa-
rameterized representation c ∈ RMn of the normal vectors
[b1, ..., bn] ∈ RK×n. Notice also that, as expected, the per-
formance of both algorithms deteriorates as n increases.

4.2. Segmentation of 2D translational motions
Consider an image sequence whose 2-D motion field can be
modeled as a mixture of purely translational motion models.
That is, we assume that the optical flow u = [u, v, 1]T ∈ P2

in a window around every pixel can take one out of n pos-
sible values {ui}ni=1, where the number of models n is un-
known. Under the Lambertian model, the optical flow u
at pixel x = [x1, x2, 1]T ∈ P2 is related to the partials
of the image intensity y = [Ix1

, Ix2
, It]

T ∈ R3 at x by the
well-known brightness constancy constraint (BCC) yTu =
Ix1

u+Ix2
v+It = 0. Thus the estimation of multiple trans-

lational motion models can be casted as a GPCA problem
with k = 2 and K = 3, i.e. the segmentation of planes in
R3. The optical flows {ui}ni=1 correspond to the normals
to the planes, and the image partial derivatives {yj}Nj=1 are
the data points. Furthermore, we interpret the polynomial
pn(y) =

∏n
i=1(uTi y) = ũT νn(y) = 0 as the multibody

brightness constancy constraint (MBCC) and the vector of
coefficients ũ ∈ RMn , where Mn = (n + 1)(n + 2)/2, as
the multibody optical flow.

5We used a threshold of ε = 3× 10−3 to compute the rank of Ln.
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Figure 3: Error in the estimation of the subspaces as a func-
tion of noise for GPCA (left) and optimal GPCA (right).
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Figure 4: Frames from the flower garden sequence (left) and
the image partials projected onto the Ix1

-It plane (right).

(a) Tree (b) Houses (c) Grass

Figure 5: Segmentation of two frames from the flower gar-
den sequence using a mixture of three translational models.

Since the MBCC incorporates multiple motion models,
one can use a larger window in the computation of optical
flow without having the problem of integrating image data
across motion boundaries. Figures 4 and 5 show the ex-
treme situation in which the whole image is used to estimate
three translational models for the flower garden sequence.
Figure 4 shows two frames of the sequence and the image
partials for one frame projected onto the Ix1

-It plane to fa-
cilitate visualization. We observe that the image partials lie
approximately on three planes through the origin, although
the data is noisy and contains many outliers. We estimated
three motion models by applying Algorithm 1 to the im-
age data, followed by the nonlinear algorithm described in
Section 3.5. Figure 5 shows the segmentation of the image
pixels for two frames of the flower garden sequence accord-
ing to the estimated motion models. Although we used a
simple mixture of three translational motions to model the
2-D motion field of the sequence, a good segmentation of
the tree, the houses and the grass is obtained. We did not
cluster pixels with low texture (y ≈ 0), e.g., pixels in the
sky, since they can be assigned to either of the three models.



Remark 5 (Affine motion segmentation) GPCA can also
be applied to the estimation of a mixture of affine motion
models {Ai ∈ R3×3}ni=1 from image data {(xj ,yj)}Nj=1.
In this case the optical flow is modeled with the affine model
u = Aix, thus the BCC becomes yTAix = 0. Affine mo-
tion segmentation is then equivalent to estimating {Ai}ni=1

from the multibody affine constraint
∏n
i=1(yTAix) = 0.

This can be done by factoring this product of bilinear forms.
This problem can be reduced to a collection of GPCA prob-
lems with k = K − 1 = 2 as demonstrated in [11].

4.3. Segmentation of linearly moving objects
Consider the problem of segmenting the 3-D motion of mul-
tiple objects undergoing a linear motion. That is, we assume
that the scene can be modeled as a mixture of purely trans-
lational motion models, {ei ∈ R3}ni=1, where ei represents
the epipole (translation) of object i relative to the camera
between two consecutive frames. Therefore, given the im-
ages x1 ∈ P2 and x2 ∈ P2 of a point in object i in the
first and second frame, respectively, the rays x1, x2 and ei
must satisfy the well-known epipolar constraint for linear
motions xT2 (ei × x1) = 0. Since the epipolar constraint
can be conveniently rewritten as eTi (x2 × x1) = 0, the
segmentation of linear motions is a GPCA problem with
K = 3 and k = 2 where the data points are the epipolar
lines ` = x2 × x1 ∈ R3 and the normal vectors are the
epipoles {ei}ni=1. Furthermore, we interpret the polyno-
mial pn(`) =

∏n
i=1(eTi `) = ẽT νn(`) = 0 as the multibody

epipolar constraint and the vector of coefficients ẽ ∈ RMn

as the multibody epipole. We tested GPCA on a sequence
with n = 2 linearly moving objects. Figure 6(a) shows the
first frame with N = 92 tracked features: 44 for the truck
and 48 for the car. Figure 6(b) plots the segmentation of the
features. There are no mismatches. The estimation error for
the epipoles was 3.3◦ for the truck and 1.2◦ for the car.

22 44 68 92

car

truck

(a) First frame (b) Feature segmentation

Figure 6: Segmentation of n = 2 linearly moving objects.

Remark 6 (Multibody structure from motion (MSFM))
GPCA can also be applied to the problem of estimating
a mixture of fundamental matrices {Fi ∈ R3×3}ni=1 from
image pairs {(xj1,xj2)}Nj=1. In this case the epipolar
constraint reads xT2 Fix1 = 0 and the multibody epipolar
constraint reads

∏n
i=1(xT2 Fix1) = 0. The MSFM problem

is then equivalent to factoring this product of bilinear
forms. Such a problem can be reduced to a collection of
GPCA problems with k = K − 1 = 2 as shown in [13, 12].

5. Discussion and open issues
We have proposed a novel geometric approach to the iden-
tification of mixtures of subspaces (GPCA). We derived a
formula for estimating the number of subspaces and showed
that GPCA is equivalent to estimating and factoring homo-
geneous polynomials. In the absence of noise, we presented
an analytic solution to the factorization problem based on
linear algebraic techniques. In the presence of noise, we
presented nonlinear algorithm that minimizes the optimal
error. We tested GPCA on synthetic data and presented var-
ious applications on 2-D and 3-D motion segmentation.

Open issues include an analysis of the robustness of the
polynomial factorization algorithm in the presence of noise.
At present the algorithm works well when the number and
dimension of the subspaces is small, but the performance
deteriorates as the number of subspaces increases. This is
because the algorithm uses an overparameterized represen-
tation of the normal vectors that needs at leastN ≥Mn−1
points, as opposed to the n(K − 1) points needed by the
nonlinear algorithm. Whether it is possible to avoid work-
ing in a space of dimension Mn by using something similar
to the kernel trick in NLPCA [6], remains an open question.
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