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Abstract— We consider the problem of distributed estimation
of the poses of N cameras in a camera sensor network
using image measurements only. The relative rotation and
translation (up to a scale factor) between pairs of neighboring
cameras can be estimated using standard computer vision
techniques. However, due to noise in the image measurements,
these estimates may not be globally consistent. We address
this problem by minimizing a cost function on SE(3)N in
a distributed fashion using a generalization of the classical
consensus algorithm for averaging Euclidean data. We also
derive a condition for convergence, which relates the step-size of
the consensus algorithm and the degree of the camera network
graph. While our methods are designed with the camera sensor
network application in mind, our results are applicable to other
localization problems in a more general setting. We also provide
synthetic simulations to test the validity of our approach.

I. INTRODUCTION

Consider a set of low-power sensor nodes, each equipped
with a camera, and assume that the nodes are able to
communicate through a wireless interface. Networks of this
kind could be used in a variety of applications, such as
3-D reconstruction of large environments or tracking of
mobile targets. In many of these applications, the nodes are
arbitrarily distributed in 3-D space, but they have to exchange
information about a common quantity (e.g., the position of
the target). Therefore, there is a need to accurately localize
the network, i.e., to find the cameras’ relative poses.

There is a large body of work on network localization.
Most of these works can be categorized according to the
assumptions made about the problem and the nature of the
solution: dimension of the ambient space (planar versus
tridimensional), type of algorithm (centralized versus dis-
tributed), type of measurements (distances, angles of arrival,
bearing measurements, coordinate transformations between
nodes; see [1] and reference therein), presence of beacons
or anchors (i.e., nodes with a known position, [2], [1]), and
special assumptions about the environment (e.g., dynamic
environment [3], environment with markers [4], etc.).

In this paper, we assume that each camera can extract a
set of 2-D points from each image, and that neighboring
cameras (i.e., cameras with intersecting field of view) can
match these 2-D points to estimate (with noise) their relative
rotation and their relative direction of translation. This can
be done using standard two-view computer vision techniques
[5]. These assumptions exclude most of the previous work
on distributed localization, in particular all the vast literature
that assumes distance measurements. We assume also that
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the scene is static (or that all the cameras are synchronized)
and that the communications between cameras are lossless.

Under these assumptions, we consider the problem of re-
covering the camera locations and orientations (up to a global
reference frame and scale factor) from image measurements
only. There are many challenges to solving this problem in a
distributed fashion. First, each node obtains its measurements
with respect to its own reference frame, which is initially not
known to any of the other nodes. Second, the measurements
are subject to noise and are generally not consistent with each
other (i.e., combining the relative transformations between
nodes arranged in a cycle does not necessarily give rise to
the identity transformation). Third, due to limited hardware
resources, even if the global network is connected as a whole,
each node can only interact with nearby nodes.

Distributed consensus algorithms are a natural candidate
for integrating noisy, local relative pose measurements into
a global, consistent camera network localization. Traditional
consensus algorithms were developed to work with low-
dimensional, Euclidean quantities and typically assume that
states and measurements coincide. Consensus algorithms
have also been studied and used in a variety of situations,
e.g., distributed averaging, formation control, synchroniza-
tion, rendez-vous in space, and with varying network topol-
ogy, communication delays, etc. (see [6] for a review).
Consensus-like algorithms have also been used for localiza-
tion with range measurements (see, for instance, [7] and [1]).

Paper contributions. In this paper, we generalize exist-
ing consensus algorithms for estimating the pose of each
node from noisy, inconsistent measurements. Specifically, we
propose consensus algorithms that operate on non-Euclidean
states (poses), which are different from the measurements
(relative transformations extracted from images). We show
how constraints that are global to the network (consistent lo-
calization, choice of a global reference frame and scale) can
be enforced in a distributed way. Finally, we also generalize
previous results on a distributed method for choosing the
consensus step-size (in the estimation of the translations).

Related work. A distributed method for camera localiza-
tion and calibration based on Belief Propagation (as opposed
to consensus) was proposed in [8]. However, no conditions
for a consistent solution were imposed and the non-Euclidean
structure of the rotations was not rigorously exploited. Our
approach is more closely related to [9], but with some
important differences. First, we consider the more general
3-D case instead of 2-D. Second, our algorithms require
communication among neighboring nodes only, as opposed
to all nodes in each cycle. Third, we propose an algorithm
to recover both the translations (up to a global scale) and



the rotations (as opposed to the rotations only in [9]). Our
approach is also related to averaging consensus on SE(3)
[10], except that we address the more challenging problem
of camera localization, rather than pose averaging.

II. REVIEW, NOTATION AND DEFINITIONS

In this section, we will introduce the basic tools needed
to develop our method. We will first review the geometry of
the groups of rotations and rigid body transformations. We
will then introduce some notions from graph theory and the
basics of the localization problem. Finally, we will review
the classical averaging consensus algorithm.

A. Geometry of SO(3) and SE(3)

Our methods will use optimization tools on the group of
rotations SO(3) = {R ∈ R3×3 : R>R = I, det(R) = +1}.
Hence, we will first review the computation of distances and
gradients in SO(3). Given any point R ∈ SO(3), the tangent
space at R, TRSO(3), is given by TR(SO(3)) = {Rv̂ : v̂ ∈
so(3)}, where so(3) = {v̂ ∈ R3×3 : v̂ = −v̂>} is the space
of skew-symmetric matrices and v̂ is the matrix generating
the cross product by v, i.e., v̂u = v × u, for all u ∈ R3.

A Riemannian metric is a continuous collection of inner
products in the tangent space at each point. In SO(3), the
Riemannian metric is denoted as 〈∆1,∆2〉 = trace{∆>1 ∆2},
∆1,∆2 ∈ TRSO(3). This metric can be used to measure the
length of curves between two given points on the manifold.
Curves with minimum length are called geodesics and their
length defines the geodesic distance between the two points:

d2
SO(3)(R,S) = −1

2
trace

(
log(R>S)2

)
, R, S∈SO(3), (1)

where log is the matrix logarithm.
The exponential map at a point R ∈ SO(3), expR(∆) :

TR(SO(3))→ SO(3) is a diffeomorphism that associates to
each point ∆ in a neighborhood of the origin of TR(SO(3))
a point S on the (unique) geodesic passing through R in
the direction ∆. The logarithm map logR(S) : SO(3) →
TR(SO(3)) is the inverse of the exponential map. The
exponential and logarithm map at any point in SO(3) can be
related to the same maps at the identity by parallel transport:

expR(∆) = R exp(R>∆), (2)

logR(S) = R log(R>S), (3)

where exp is the matrix exponential.
Given a smooth function f : SO(3)→ R, the Riemannian

gradient gradR f is given in [11] as

gradR f = fR −Rf>RR, (4)

where fR = ∂f
∂R is the Euclidean derivative of f with respect

to the matrix R. In particular, we will make use of the
gradient of the squared distance function

gradR d
2
SO(3)(R,S) = −R log(R>S) ∈ TRSO(3). (5)

Gradient descent iterations on SO(3) take the form

R(l + 1) = R(l) expR(l)(−ε gradR f), (6)

where ε > 0 is the step-size.
We will also perform optimization of functions on the

group of rigid body transformations SE(3) = {g = (R, T ) :
R ∈ SO(3) and T ∈ R3}. Unfortunately, unlike SO(3),
SE(3) does not have a “natural” (bi-invariant) Riemannian
metric. While one could use a left-invariant or right-invariant
metric, for the sake of simplicity we will use the double
geodesic distance (see [12]). In this case, the group structure
is discarded and SE(3) is considered as the product SO(3)×
R3. The distance between two transformation g1 = (R1, T1)
and g2 = (R2, T2) is then given by:

d2
g(g1, g2) = d2

SO(3)(R1, R2) + ‖T1 − T2‖2. (7)

The gradient on SO(3)×R3 can then be computed by con-
sidering separately the rotation and translation components.

B. Graph Theory and Localization

We represent a network of N nodes as a directed, strongly
connected graph G = (V,E). The set V = {1, . . . , N}
represents the set of vertices in the graph and each i ∈ V
corresponds to one of the nodes. The set E ⊆ V × V
represents the set of edges in the graph. An edge (i, j)
belongs to E if node j can communicate with node i and
measure their relative position (in the terminology of [8], G
represents the vision graph). We assume that if an edge (i, j)
belongs to E, then its reverse (j, i) is also in E (in other
words, the adjacency matrix of the graph is symmetric).

Given a graph G, we define its incidence matrix C ∈
R|E|×|V |. Each row ce of C corresponds to a different edge
e ∈ E. The vector ce is zero except in the i-th entry (where
it has a 1) and in the j-th entry (where it has a −1). We
also define the degree of a node i, deg(i), as the number
of outgoing edges, which by our assumptions is the same as
the number of incoming edges. The maximum degree of G
is denoted as ∆G = maxi deg(i).

We represent the pose of each node i as gi = (Ri, Ti) ∈
SE(3). Given two rigid body transformation g1 = (R1, T1)
and g2 = (R2, T2), the group multiplicative operation is
the composition defined as g1 ◦ g2 = (R1R2, R1T2 + T1).
For each edge (i, j) ∈ E, we define the relative change of
coordinates gij = (Rij , Tij) ∈ SE(3) which are given by
gij = g−1

i ◦ gj or, more explicitly,

Rij = R>i Rj ,

Tij = R>i (Tj − Ti).
(8)

We can obtain the pose of one camera from the pose of an-
other as gj = gi◦gij . Note that these relative transformations
are invariant to the choice of a global reference frame. We
define also the relative translation direction tij =

Tij

‖Tij‖ .
A path ` from node i to node j in G is defined as a

sequence of nodes starting with i and ending in j such
that there exist an edge in E between consecutive nodes.
Formally ` = {w1, . . . , wn}, wm ∈ V , w1 = i, wn = j,
(wm, wm+1) ∈ E, m ∈ {1, . . . , n − 1}. A cycle is a path
from node i to itself without repeated nodes (except for the
initial and the final). Given a path `, we define the relative
change of coordinates along ` as g` = gwnwn−1 ◦ . . .◦gw2w1 .



We now give a formal definition of a localized network.
Definition 1 (Localized network): A network is said to

be localized if there is a set of relative transformations
{(Rij , Tij)} such that, when the reference frame of the first
node is fixed to (R1, T1), the other absolute poses (Ri, Ti)
are uniquely determined. That is, for any path ` from node
1 to node i, we have gi = g` ◦ g1, regardless of the chosen
path.

C. Consensus Algorithms

We will now briefly review the derivation of the classical
Euclidean consensus algorithm. We associate with each node
i in the network a scalar state xi ∈ R. We say that the nodes
are in a consensus configuration if xi = α, for all i ∈ V ,
where α is called the collective decision of the network.

A distributed consensus algorithm is a protocol that each
node has to follow to update its state so that all the nodes
reach a consensus. Moreover, the protocol must require
communication with neighboring nodes only. A popular
discrete time protocol for iteratively computing the mean of
the states x̄ = 1

N

∑N
i=1 xi is given by

xi(l+ 1) = xi(l) + ε
∑
i j

(xj(l)− xi(l)), xi(0) = xi, (9)

where xi(l) is the state of the i-th node at the l-th iteration,
ε > 0 is the step-size and i j implies that the sum is taken
only on the terms i, j ∈ V , (i, j) ∈ E. It can be shown that if
ε < 1

∆G
and the graph is connected, then the nodes converge

to the mean x̄, i.e., liml→∞ xi(l) = x̄ [6].
Notice also that equation (9) is a gradient descent step to

minimize the cost function

ϕ(x1, x2, . . . , xN ) =
1

2

∑
i j

(xi − xj)2, (10)

and that the minimum of this cost function is attained when
all states are in a consensus configuration. Since, in addition,
the mean of the states is preserved at each iteration, i.e.,

N∑
i=1

xi(l) =

N∑
i=1

xi(l + 1) = x̄, (11)

the minimizer is given by the mean of the initial states x̄.

III. DISTRIBUTED IMAGE-BASED 3-D
LOCALIZATION

This section presents the main contribution of our work.
We propose to solve the problem of finding a consistent
localization for the network by definining a suitable cost
function and showing how it can be minimized on SE(3)N

in a distributed way.
As stated in Section I, we use feature points extracted from

the images of cameras i and j to obtain a noisy estimate
(R̃ij , t̃ij) of their relative pose (Rij , Tij). Specifically, we
assume that each camera can extract Pi feature points x(pi)

i ,
pi = 1, . . . , Pi. These points are written in homogeneous
coordinates, i.e., they are points in P2, and correspond to the
projections of points in 3-D space. We also assume that for

each edge (i, j) ∈ E the correspondences between points in
images i and j can be established. Therefore, corresponding
points x(pi)

i and x(pj)
j are related by

µi,pix
(pi)
i = µj,pjRijx

(pj)
j + Tij , (12)

where the µi,pi is the depth of the 3-D point pi with respect to
the i-th camera. It is a well known fact from computer vision
that the corresponding images satisfy the epipolar constraint

x
(pi)
i

>
T̂ijRijx

(pj)
j = 0. (13)

Given enough point correspondences, it is possible to use
(13) to estimate the essential matrix T̂ijRij from which one
can extract tij = Tij/‖Tij‖ and Rij (see [13] for details).

Notice that (13) is a homogeneous equation in Tij , thus
the scale of the translation cannot be recovered. Intuitively,
this corresponds to the fact that the global scale of a 3-
D scene cannot be recovered from 2-D images alone due
to perspective projection. In practice, due to noise, we will
obtain t̃ij = T̃ij/‖T̃ij‖ and R̃ij , which are approximated ver-
sions of the true quantities. Moreover, due to communication
constraints, the two cameras could perform their estimation
from different sets of point correspondences, hence g̃ij could
be different from g̃−1

ji .
Our goal is to find a set of relative transformations gij

that satisfy the consistency constraints given in Definition
1 and that, at the same time, are “as close as possible”
to the relative measurements g̃ij . An intuitive criterion is
least squares, i.e., the sum of square distances. Since we
are dealing with non-Euclidean quantities, we will use the
distance dg in SO(3)× R3

ϕ=
1

2

∑
i j

d2
g(gij , g̃ij)=

1

2

∑
i j

d2
SO(3)(Rij , R̃ij)+‖Tij−T̃ij‖

2.

(14)
In principle, we wish to minimize ϕ subject to the constraints
in the definition of localized network. Unfortunately, these
constraints involve the entire network and are not distributed.
In [9] the authors propose a cycle-distributed solution where
the constraints are enforced by sharing information between
each node and all the cycles it belongs to.

In this paper, we propose to reparametrize each relative
transformation gij with the absolute transformations gi and
gj . In this way the consistency constraints will be automat-
ically satisfied and each node will communicate with its
neighboring nodes only. The following proposition shows the
equivalence between Definition 1, the constraints considered
in [9] and our parametrization of the solution.

Proposition 1: The following are equivalent:
1) The network is localized.
2) For any cycle ` = {w1, . . . , wn, w1}, wm ∈ V , n > 1,

the transformation along the cycle is g` = (I, 0).
3) There exist a set of absolute poses gi = (Ri, Ti) such

that gij = g−1
i ◦ gj .

A simple proof is given in [14]. Intuitively, given the absolute
poses gi, one can compute consistent relative transformations



gij . Conversely, if the relative transformations are given,
there exist a set of gi such that each gij factorizes as g−1

i ◦gj .
A downside of our formulation is that we have to give

up the uniqueness of the solution: for any arbitrary global
transformation g′i = g ◦ gi, the value of the cost function
ϕ will be the same. Nonetheless, Proposition 1 tells us also
that, no matter what solution for the absolute poses gi we
compute, the relative transformations gij (which is what we
are really interested in) will be uniquely determined.

Another challenge with the proposed formulation is that
the translations can be estimated only up to a scale factor.
Therefore, we need to add the unknown scales as new
variables λij , i.e. T̃ij = λij t̃ij . After these considerations,
we can rewrite (14) as

ϕ({Ri}, {Ti}, {λij}) =
1

2

∑
i j

d2
g(g
−1
i gj , g̃ij)

=
1

2

∑
i j

(
d2
SO(3)(R

>
i Rj , R̃ij) + ‖R>i (Tj − Ti)− λij t̃ij‖2

)
= ϕR({Ri}) + ϕT ({Ri}, {Ti}, {λij}). (15)

Therefore, the cost ϕ is the sum of two terms: ϕR involving
only the rotations and ϕT involving all the variables.

At this point, we observe that the unknown scales {λij}
produce an undesired side-effect. If we substitute the trivial
solution Ti = Tj , i, j ∈ V and λij = 0, (i, j) ∈ E in (15),
we achieve the global minimum ϕT = 0 regardless of the
value of the rotations. Therefore, if we try to minimize (15)
without any constraint on Ti or λij , we could find solutions
for the localization that are not meaningful (e.g., all the
translations collapsed to the same point). Moreover, we have
to enforce the fact that the scales {λij} must be positive. One
could think of different ways of adding constraints in order
to settle both questions. In our case we propose to constraint
the minimum scale, i.e., λij ≥ 1 ∀(i, j) ∈ E. This is a global
constraint because it involves all the nodes in the network.
However, we will show in Section III-B that each node can
enforce it separately, hence making it distributed.

In summary, we propose to find an optimal localization (in
the least-squares sense) by solving the non-linear program

min
{Ri},{Ti},{λij}

ϕ({Ri}, {Ti}, {λij})

subject to λij ≥ 1 (i, j) ∈ E
(16)

in a distributed fashion. To that end, in the following sub-
sections we present the solution to two simpler problems.
First, we ignore the translational part and find an initial set
of rotations by optimizing ϕR only. Next, we assume that
the rotations are fixed and find an initial set of translations
and scales by optimizing ϕT only. Finally, we optimize ϕ
over all the variables.

There are a number of reasons for this multi-step solution.
First, the simpler problems can actually correspond to real
localization problems (with relaxed assumptions with respect
to what we assume here) and therefore are interesting in
their own right (see Section V for a couple of examples).
Second, by breaking our analysis into two parts, we can gain

a better understanding of what the issues are in the solutions:
specifically, how to choose a good initialization and what
the relationships are between the network topology and the
uniqueness of the solution. Third, we empirically noticed that
the complete cost function ϕ has multiple local minima and is
difficult to minimize if we start from a random configuration.
On the other hand, minimizing the functions ϕR and ϕT is
easier and gives a way to obtain a good initialization for the
minimization of ϕ.

A. Estimation of the Rotations

In this section we will derive a distributed algorithm for
estimating the rotational part Ri of the absolute pose gi. The
basic idea is to use the framework of consensus algorithms,
but with a Riemannian gradient descent on the space of ro-
tations as opposed to the simple Euclidean gradient descent.
At a high level, each node k will first compute the gradient
of ϕR with respect to its rotation Rk. This, in turn, will give
a vector in the tangent space of Rk defining the geodesic
along which node k will need to update its rotation. All the
nodes will then compute the gradients and the updates at
the same time and independently. Finally, the algorithm will
iterate between these two steps until convergence.

More specifically, the gradient of ϕR with respect to one
of the rotations Rk, can be computed as

gradRk
ϕR=−Rk

∑
k i

log(R>kRiR̃
>
ki)+log(R>kRiR̃ik). (17)

Notice that the computation of gradRk
ϕR involves a sum

over nodes i which are neighbors of node k only, thus the
gradient can be computed in a distributed fashion.

Now, let Rk(l) denote the estimate of Rk at the l-
th iteration. Then, Rk(l) is updated by moving along the
geodesic in the direction − gradRk(l) with a step-size of ε,
i.e.,

Rk(l + 1) = expRk(l)

(
−ε gradRk(l)

)
. (18)

Initialization of the rotations. As with all non-linear
optimization algorithms, we need a starting point, i.e., some
values for the Ri(0)’s. Since initially the localization of
the network is unknown, we have to start with an arbitrary
initialization. By following the gradient for minimizing the
cost function we will reach a local minimum. The problem
here is that ϕR has multiple local minima that do not
correspond to the correct localization, even when the relative
measurements are without noise (this can be easily verified
empirically). The basic idea is then to find an initial set of
rotations {Ri} that are close enough to an optimal solution.
We propose two options for this task:

1) Choose any node as a reference (say, node 1) and find
a spanning tree that provides paths `1i from node 1 to
any other node i. Set R1(0) = I and set Ri(0) =
g̃`1iR1(0) (i.e., propagate the noisy transformations
along the branches of the spanning tree).

2) Modify the cost function ϕR by using an alternative
distance in SO(3) such that the optimal solution can be
easily found by gradient descent. Then, find the Ri(0)
by minimizing this new cost function.



Notice that the first approach is faster, but it is not fully
distributed. First, a reference node needs to be chosen in a
distributed fashion. Second, the chosen reference node could
fail. On the other hand, the second approach is completely
distributed and there is no need of choosing a reference. In
the following, we explore this second option in more detail.

We propose to first substitute the geodesic distance in
SO(3) by the Frobenius norm. This gives us the new cost
function:

ϕ′R =
1

2

∑
i j

‖Rj −RiR̃ij‖2F . (19)

We can then try to find a localization by minimizing ϕ′R
using Riemannian gradient descent as before. The gradient
for the update equations for the rotation at a node k can be
computed using (4) with the Euclidean gradient as

∂ϕ′R
∂Rk

=
∑
k i

(Rk −RiR̃>ki) +
∑
i k

(Rk −RiR̃ik). (20)

It is easy to check that, in the case of perfect data, the
global minimum of ϕ′R corresponds to the correct value of
the rotations. Note that the global minimum is not unique:
there is an entire family of optimal solutions that can be
obtained by multiplying from the left with the same rotation
each Ri (since rotations are unitary matrices, the value of
ϕ′R does not change under this kind of transformations). This
behavior is expected and it corresponds to the ambiguity in
the choice of a global reference frame for the rotations.

We experimentally found that the function ϕ′R is easier
to minimize than ϕR. In all the cases we tried, the gradient
descent algorithm found a solution extremely close to the
ground truth. From this and from the fact that ϕ′R is convex in
R3×3 we conjecture that ϕ′R does not have local minima. In
our future research we aim to formally prove this conjecture.

The final strategy we propose is to use the algorithm with
the linearized cost function in (19) to initialize the non-linear
optimization. In this way, we have a fully distributed method
for obtaining an initial estimate of the absolute rotations Ri
given the noisy measurements R̃ij .

B. Estimation of the Translations
For the estimation of the absolute translations Ti, we

propose to use an approach similar to what we did for the
rotations. The main idea is to solve the program

min ϕT

subject to λij ≥ 1 (i, j) ∈ E
(21)

using projected gradient descent. For this purpose, we need
to compute the gradient with respect to both Tk (for each
node) and λlk (for each edge), as

∂ϕT
∂Tk

=
∑
k i

2(Tk − Ti) + λkiRk t̃ki − λikRit̃ik, (22)

∂ϕT
∂λlk

= λlk − (Tl − Tk)>Rk t̃kl. (23)

We can then update the {Ti} and λij using gradient descent,
except that we need to enforce the constraint on the scales
λij ≥ 1.

Notice that the global (unconstrained) optima of ϕT (so-
lutions with λij = 0, (i, j) ∈ E) are not in the feasible set
of (21). Therefore, at least one of the constraints needs to
be active at the optimal solution, hence the optimal λij’s are
such that min(i,j)∈E λij = 1. Notice also that the inequalities
in (21) define a convex set S (the intersection of half-spaces).
It can be shown that the projection step of the gradient update
on S can be computed separately for each edge, resulting in
the new update equation

λlk(l + 1) = max{1, λlk(l)− ε∂ϕT
∂λlk

}. (24)

Since the function ϕT is convex and so is the feasible set
S, we are guaranteed to obtain a global minimum with any
initialization and an appropriate choice of step-size ε.

Choice of the step-size ε. In any algorithm based on gra-
dient descent the choice of the step-size is important. In this
section we will show that the step-size for minimizing ϕT
can be chosen by considering the degree of the nodes alone.
Moreover, this step-size can be computed in a distributed
way.

Let us begin by considering the minimization of a
quadratic form ϕ = 1

2‖My‖2, where M ∈ Rq×p is an arbi-
trary real valued matrix and y ∈ Rp is a vector of variables.
A quadratic cost function restricted to a line (in the direction
of the gradient) is a parabola and, intuitively, the maximum
allowed step-size is determined by the maximum possible
curvature of the parabola. This maximum curvature (and
consequently the maximum step-size) is related to the the
maximum eigenvalue of the matrix M>M . Unfortunately,
eigenvalues are global quantities that are hard to estimate
in a distributed way. For this reason we use the Geršgorin
Discs and the Geršgorin Theorem (summarized below) to
show that the maximum eigenvalue can be substituted with
the maximum of the absolute row sum of M>M . Moreover,
we will show that for our particular cost function ϕT , each
row sum of M>M can be computed independently at a
different node. This will allow us to compute the step-size
in a distributed way and in a small number of iterations. In
addition, our results will generalize the upper bound for the
step-size in the case of classical consensus, where it is known
that ε ∈ (0, 1

∆G
). We will now summarize the Geršgorin

theorem and formally state our result.
Definition 2 (Geršgorin discs): Given a matrix A ∈

Rp×p, the Geršgorin discs Si, i = 1, . . . , p are defined as

Si = {y ∈ C : |y − (A)i,i| ≤
p∑

j=1,j 6=i

|(A)i,j |}, (25)

where (A)i,j represents the i, j-th entry of the matrix A.
Theorem 1 (Geršgorin theorem): The eigenvalues of A∈

Rp×p are contained in the union of its Geršgorin discs.
Theorem 2: Let ϕ = 1

2‖My‖2, then ∇yϕ = M>My.
The gradient descent iteration y(l + 1) = y(l) − ε∇yϕ
converges for ε ∈

(
0,mini 2

(∑
j

∣∣(M>M)i,j
∣∣)−1

)
The proof of this Theorem can be found in [14]. The

basic idea is to first use the eigenvalue decomposition of



M>M and show that the cost function decreases at each step
only if ε < 2

σmax(M>M)
, where σmax(M>M) represents the

maximum eigenvalue of M>M . Using Geršgorin’s Theorem
we can bound the region where the eigenvalues of M>M
must lie, and hence find for which values of ε the algorithm
converges.

In order to apply Theorem 2 to our algorithm for mini-
mizing ϕT , we have to generalize it to the case where we
add the projection step on the feasible set S. This is done in
Lemma 1 of [14], which shows that the same bounds apply.
The proof of the lemma breaks the projected gradient step
in two parts: one in the interior of the feasible set S, the
other along its boundary. Then it can be shown that the cost
function will decrease after each part of each step.

For our particular function ϕT , M and y are defined as

M =

 diag{(Ritij)1}
I ⊗ C diag{(Ritij)2}

diag{(Ritij)3}

 ∈ R3|E|×(3|V |+|E|), (26)

y =
[
(T1)1(T2)1 · · · (T|V |−1)3(T|V |)3 · · ·λij · · ·

]>
, (27)

where the notation (v)i indicates the i-th component of the
vector v, “⊗” is the Kronecker product and C is the incidence
matrix of the graph G. If we explicitly write down the
matrix M>M , the sum of each one of its rows involves
quantities that can be locally computed by a single node.
More formally, we have the following result.

Theorem 3: Define

ρi,d = 2 deg(i) + 2
∑
i j

∣∣(Ritij)d∣∣ (28)

for all i, j ∈ V , d ∈ {1, 2, 3} and

ρij =

3∑
d=1

(Ritij)
2
d + 2

3∑
d=1

∣∣(Ritij)d∣∣ (29)

for all (i, j) ∈ E. From these, define also

εi =
2

maxj,d {{ρi,d}, {ρij}}
∀i ∈ V (30)

Then the projected gradient descent algorithm for minimizing
ϕT is guaranteed to converge if ε ∈ (0,mini εi).

Notice that the quantity εi can be computed locally at
node i and the operation mini εi can be computed with a
consensus-like algorithm in a finite number of iterations.
Hence we have a method that the nodes can use to automat-
ically choose ε. The detailed steps for the proof of Theorem
3 can be found in [14].

As a final remark, the quantities ρi,d and ρij depend on
the rotations Ri. By noticing that |Ritij | ≤ 1, we can also
give a bound that is slightly less sharp, but depends only on
the degrees of the nodes, as stated in Corollary 1. The proof
of the corollary is straightforward by substitution.

Corollary 1: . The projected gradient descent algorithm
converges if ε ∈ (0, 2(max{9, 4∆G})−1)

Translation ambiguity. From the analysis above, we can
guarantee that the projected gradient descent algorithm will

converge to a global minimum. However, we can have prob-
lems with the uniqueness of the solution. By the definition
of the incidence matrix, we have that C1 = 0. Hence, the
matrix M in (26) has a null space of dimension at least three,
which is spanned by

v1 =


1|V |
0|V |
0|V |
0|E|

 , v2 =


0|V |
1|V |
0|V |
0|E|

 v3 =


0|V |
0|V |
1|V |
0|E|

 ∈ R3|V |+E .

(31)

Here 0D and 1D are vectors in RD with all the entries set
to zero or one, respectively. The three vectors correspond
to translations by the same amount of all the nodes along
the three axes x, y and z. Note that these three vectors are
orthogonal to the constraints on the λij . This means that if ŷ
is a solution to the constrained minimization problem, then
any linear combination of ŷ, v1, v2 and v3 will also be a
valid solution. Again, this behavior is expected, because it
corresponds to the choice of a global reference frame for the
translations. The question is how the translational ambiguity
can be fixed by the distributed algorithm. It is not hard to
check that, similarly to classical consensus, the average of
the translations is preserved between iterations, i.e.,

N∑
i=1

Ti(l) =

N∑
i=1

Ti(l + 1). (32)

This means that the translational ambiguity can be resolved
by choosing the initial average of the translations to be zero,
e.g., by setting Ti = 0 ∀i ∈ V .

In general, we assume that the null space of M is of
dimension at most four, which guarantees that solving (21)
will recover the desired solution. More details can be found
in [14].

C. Complete Estimation

The final algorithm for minimizing ϕ in (10) is a straight-
forward combination of the methods presented in Sections
III-A and III-B. Specifically, we proceed as follows:

1) Find consistent initial rotations by minimizing the
linearized cost ϕ′R and/or ϕR.

2) Find consistent initial translations and scales by mini-
mizing ϕT while keeping the rotations fixed.

3) Refine all the estimates by minimizing ϕ.
Notice that in step 3) the gradient of ϕ with respect to Rk
contains an additional term coming from ϕT , i.e.,

gradRk
ϕ = gradRk

ϕR

+
∑
k i

λkj
(
(Ti − Tk)t̃>kj −Rk t̃kj(Ti − Tk)>Rk

)
. (33)

The updates then follow the gradient as before.

IV. EXPERIMENTS

In this section we will present some synthetic experiments
to illustrate the behavior of our algorithms. We use a non-
planar network with N = 7 camera nodes connected in



−5

0

5

−5

0

5

−4

−2

0

2

4

 x

 y

 x

 z
 y

 x

 z

x

 x

 z

 y

 z

 y

 z

 x

 z

 yCamera 1

 y
 x

 z

y

 y x

z

(a) The synthetic camera network setup
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(b) Solution found by minimizing ϕR
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(c) Solution found by minimizing ϕ′R

Fig. 1: Pictorial comparison between the ground truth and the solutions found by minimizing the different cost functions
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(a) Value of ϕR during the minimization of ϕR
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(b) Value of ϕ′R and ϕR during the minimization of ϕ′R

Fig. 2: Experiment illustrating a situation where a local
minimum is encountered while optimizing ϕR

a 4-regular graph, as pictorially represented in Figure 1a.
All the cameras have a focal length of f = 1, are roughly
distributed in a circle of radius 8f around the origin, and
are facing toward the center of the scene. The 3-D structure
is represented by 30 points randomly distributed in a cube
with side 4.5f . With these proportions, the projected points
occupy about 75% of the normalized image frame in each
camera. The projected points are corrupted with zero-mean
Gaussian noise with standard deviation of 0, 1, 2, and
3 pixels on an image of 1000 × 1000 pixels. Given the
point correspondeces, we use the eight-point algorithm (see
[13] for details) to get an estimate of relative rotation and
translation (up to scale).

In our first experiment, we show that approximating ϕR
with ϕ′R gives a better initialization of the rotations. We
consider an ideal situation where the relative transformations
(Rij , Tij) are noise free and, thus, we would expect to have
a perfect recovery of the rotations. We randomly intialize
the rotations Ri at each node and then we use the non-

Rotation errors (degrees, zero is the minimum)
Noise 0px 1px 2px 3px
Initial 0.000 (0.000) 2.776 (0.584) 3.926 (1.166) 4.809 (1.747)
Final 0.000 (0.000) 0.131 (0.004) 0.262 (0.015) 0.393 (0.035)

Normalized translation errors (degrees, zero is the minimum)
Noise 0px 1px 2px 3px
Initial 0.000 (0.000) 0.110 (0.006) 0.221 (0.025) 0.331 (0.057)
Final 0.000 (0.000) 0.097 (0.004) 0.194 (0.017) 0.291 (0.039)

Scale errors (geometric variance, one is the minimum)
Noise 0px 1px 2px 3px
Final 1.000 1.002 1.003 1.005

TABLE I: Average and variance (in parenthesis) of errors
for all the edges starting from point correspondences and
comparing with the ground truth.

linear optimization algorithm given by (18). As we can see
in Figures 1b and 2a the result is far from optimal and
the function ϕR converges to a local minimum. Note that,
for the sake of comparison, the global rotation ambiguity
in the figure has been fixed by aligning the first camera
with the ground-truth. On the other hand, the minimization
of ϕ′R avoids this problem and gives a good (typically
close to optimal) solution, as we can see in Figures 1c and
2b. In Figure 2b we also plot the value of ϕR after each
iteration of the gradient descent minimization of ϕ′R. It is
interesting to see that, though we are minimizing ϕ′R, the
value ϕR also decreases. Experimentally, we noticed that
refining the solution from ϕ′R by minimizing ϕR gives only
marginal improvements. In other words, our conclusion is
that minimizing ϕ′R already gives a good initialization for
the next step (initialization of translations and scales).

We now evaluate the performance of our algorithm as a
function of noise. We optimize over the rotations with the
Frobenius distance (600 iterations), then over the translations
and scales (3000 iterations) and finally we optimize ϕ
over all the variables (100 iterations). As we said before,
optimizing the rotations using the Riemannian distance does
not give significant benefits for the task of just finding a
consistent initialization.

We repeated the experiment 100 times for each level of
noise. For each trial and for each edge in the network, we
collected the angle between the estimated and ground-truth
rotations, the angle between the estimated and ground-truth



translations and the geometric variance between estimated
and ground-truth scales. For the scales, the idea is that all the
ratios between the estimated and the ground-truth scale for
each edge should be the same. To quantitatively determine
how far these ratios are from being all equal to each other,
the geometric variance (as opposed to arithmetic variance)
is the most natural choice. The average and variance of
the errors on rotation, translation and scales over all the
edges before and after the optimization is reported in Table
I. By looking at the results, we can notice that exploiting
the network topology improves the estimates of the relative
transformation at each edge (both in terms of the mean and
the variance). Moreover, in the process we also recover the
relative scales between the edges (which were unknown from
the measurements only) and a localization consistent with
Definition 1.

V. CONCLUSIONS AND FUTURE WORK

We presented distributed algorithms to optimally solve
the localization problem for camera networks. Starting from
image point correspondences, we used techniques from
computer vision to get an initial estimate of the relative
rotation and translation (up to scale) between cameras with
intersecting fields of view. By minimizing a global cost
function we derived a distributed algorithm to recover a
better, consistent estimate of the relative poses. We were
able to recover also the relative scales between the edges
and to fix the global ambiguities inherent to the problem.
We also analyzed the behavior and potential pitfalls of our
approach (for instance, how to initialize the estimation of the
rotations). In addition, we proposed an automatic, distributed
method for choosing the step-size ε (in the estimation of the
translations).

We developed our algorithms by considering the specific
case of localization for camera networks, but their application
could be broader. First, our results carry over to the 2-D case
with the only modification that we need to consider rotations
in SO(2) and rigid body transformations in SE(2) instead
of the 3-D counterparts. Then, the problem of recovering
only the rotations or only the translations corresponds to
other practical instances of localization in sensor networks.
For instance, if one has only bearing measurements, they
can be converted to rotations and then our algorithm for
optimizing over the rotations could be applied. Finally, one
can easily incorporate additional information such as the
presence of beacons (nodes with a known pose) and distance
measurements. In this case some of the quantities (e.g., the
Ri, Ti of the beacons) are fixed and we would need to
optimize only on the remaining unknowns. All these options,
however, are out of the scope of this paper.

In future work, we plan to first analyze rigorously our
initialization method (by finding the critical points of ϕ′R)
and the choice of the step-size for the optimization over the
rotations. Then, we plan to extend our method to the problem
of distributed bundle adjustment (i.e., the minimization of
the error between the noisy projected point images and the
corrected images obtained from the estimated poses).
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