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Abstract— We consider the problem of recursively identify-
ing the parameters of a switched ARX (SARX) model from
input/output data under the assumption that the number of
models, the model orders and the switching sequence are
unknown. Our approach exploits the fact that applying a
polynomial embedding to the input/output data leads to a lifted
ARX model whose dynamics are linear on the so-called hybrid
model parameters and independent of the switching sequence.
In principle, one can use a standard recursive algorithm to
identify such hybrid parameters. However, when the number
of models and the model orders are unknown the embedded
regressors may not be persistently exciting, hence the estimates
of the hybrid parameters may not converge exponentially to a
constant vector. Nevertheless, we show that these estimates still
converge to a vector that depends continuously on the initial
condition. By identifying the hybrid model parameters starting
from two different initial conditions, we show that one can build
two homogeneous polynomials whose derivatives at a regressor
give an estimate of the parameters of the ARX model generating
that regressor. After properly enforcing some of the entries
of the hybrid model parameters to be zero, such estimates
are shown to converge exponentially to the true ARX model
parameters under suitable persistence of excitation conditions
on the input/output data. Although our algorithm is designed
for the case of perfect input/output data, our experiments also
show its performance with noisy data.

I. INTRODUCTION

Consider a discrete-time Switched Auto Regressive eX-
ogenous (SARX) system whose dynamics are given by

yt =

na(λt)∑

j=1

aj(λt)yt−j +

nc(λt)∑

j=1

cj(λt)ut−j (1)

where ut ∈ R is the input, yt ∈ R is the output, and na(i),
{a`(i)}

na(i)
`=1 and {c`(i)}

nc(i)
`=1 are, respectively, the orders and

the model parameters of the ith ARX model for i = 1, . . . , n.
The discrete state or mode λt is assumed to be a deterministic
but unknown sequence that can take a finite number of
possible values: λ : Z→{1, 2, . . . , n}.

The purpose of this paper is to characterize sufficient
conditions on the input and switching sequences and develop
a recursive algorithm for solving the following problem:

Problem 1 (Identification of Switched ARX Systems):
Given input/output data {ut, yt}

∞
t=0 generated by an SARX

system such as (1), identify the number of ARX systems n,
the orders of each ARX system {na(i), nc(i)}

n
i=1, and the

system parameters {aj(i)}
na(i)
j=1 and {cj(i)}

nc(i)
j=1 .
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Our previous work [9] showed that when the orders of
the constituents ARX systems are equal and known and the
number of models is also known, Problem 1 can be solved by
applying a polynomial embedding to the input/output data.
This embedding leads to a new lifted dynamical model whose
dynamics are linear on the so-called hybrid model parameters
h and independent of the switching sequence. Therefore,
one can use a standard recursive identifier, which yields
an exponentially convergent estimate of h under suitable
persistence of excitation conditions on the input/output data.
The estimates of h are then used to build a polynomial whose
derivatives at a regressor give an estimate of the parameters
of the ARX model generating that regressor.

Paper contributions. In this paper, we show that when the
number of models and the model orders are unknown and
possibly different, the hybrid model parameters are no longer
uniquely defined, but rather live on a manifold H of possible
solutions. Although in principle this means that the recursive
algorithm may not converge, we demonstrate that under
suitable persistence of excitation conditions, the estimates of
h do converge to a point in H that depends continuously on
the initial condition. Given two such estimates obtained from
two different initial conditions, we compute two polynomials
whose derivatives at a regressor give an estimate of the
parameters of the ARX model generating that regressor.
After properly enforcing some of the entries of h to be
zero, we obtain a recursive algorithm which, under suitable
persistence of excitation conditions, gives an exponentially
convergent estimate of the model parameters of each ARX
model, without knowing the number of ARX models, the
orders of the ARX models or the switching sequence.

Related literature. Most existing hybrid system identifica-
tion methods have been designed for the class of piecewise
affine/ARX systems, i.e. models in which the regressor space
is partitioned into polyhedra with affine/ARX submodels for
each polyhedron. [4] combines clustering, regression and
classification techniques. [3] solves for the model parameters
and the partition of the state space using mixed-integer linear
and quadratic programming. [2] uses a greedy approach
for partitioning a set of infeasible inequalities into a min-
imum number of feasible subsystems. [6] iterates between
assigning data points to models and computing the model
parameters using a Bayesian approach. For the class of
SARX models with known and equal orders, [10], [8], [7]
show that the identification problem can be solved in closed
form by exploiting the properties of the so-called hybrid
decoupling polynomial, an equation on the input/output data



that does not depend on the switching sequence.
Unfortunately, most hybrid system identification algo-

rithms are batch, i.e. the model parameters and the switching
sequence are identified after all the input/output data have
been collected. This is a significant limitation, because the
computational complexity of batch algorithms depends on
the number of data points, hence they may not be suitable
for real time applications. To the best of our knowledge,
other than [9], there is no prior work addressing the recursive
identification of hybrid dynamical models in the case in
which the number of models, the model orders, the model
parameters, and the switching sequence are all unknown.

II. RECURSIVE IDENTIFICATION OF ARX SYSTEMS

Consider an ARX system with known orders na and nc

yt = a1yt−1 + · · · + ana
yt−na

+ c1ut−1 + · · · + cnc
ut−nc

.

If we let K = na + nc + 1,

θ
.
=

[
cnc

, . . . , c1, ana
, . . . , a1

]>
∈ R

K−1, and (2)

ψt
.
=

[
ut−nc

, . . . , ut−1, yt−na
, . . . yt−1

]>
∈ R

K−1, (3)

then we have that for all t ≥ max{na, nc} the vector of
regressors xt lives in the following hyperplane of R

K

b>xt = [θ> 1]

[
ψt

−yt

]
= 0, (4)

whose normal vector is the vector of model parameters b.
It is well known (see e.g. [1]) that if the ARX model is

minimal1 and the input/output data are persistently exciting,
i.e. there is an S ∈ N and ρ1, ρ2 > 0 such that for all j2

ρ1IK−1 ≺

j+S∑

t=j

ψtψ
>
t ≺ ρ2IK−1, (5)

then the recursive equation error identifier

b̂t+1 = (IK −
µΠ1xtx

>
t

1 + µ‖Π1xt‖2
)b̂t, (6)

where Π1 =
[

IK−1 0K−1

0
>

K−1 0

]
∈ R

K×K and µ > 0, produces an
exponentially convergent estimate of the model parameters
b ∈ R

K . That is, if et = b̂t − b, then
T∏

i=0

Fi =

t∏

i=0

(IK−
µΠ1xix

>
i Π1

1 + µ‖Π1xi‖2
) → 0K×K (7)

exponentially, so that for all e0 ∈ R
K , et → 0K , because

et+1 =(IK−
µΠ1xtx

>
t Π1

1 + µ‖Π1xt‖2
)et =Ftet =

t∏

i=0

Fie0. (8)

In practice, the model orders may be unknown, and only
upper bounds n̄a and n̄c may be available. In this case, the
model parameters and regressors are given by

b
.
=

[
0n̄c−nc

, cnc
, . . . , c1,0n̄a−na

, ana
, . . . , a1, 1

]>
, (9)

xt
.
=

[
ut−n̄c

, . . . , ut−1, yt−n̄a
, . . . , yt−1,−yt

]>
∈ R

K , (10)

1The numerator and denominator of the transfer function are coprime.
2A ≺ B means that (B − A) is positive definite.

where K = n̄a + n̄c +1. Notice that here the vector b is the
same as one in (2) with additional n̄a−na and n̄c−nc zeros
filled in before the terms ana

and cnc
, respectively. Notice

also that due to the redundant embedding (10), the vector b

is no longer the only vector orthogonal to all the regressors.
It is easy to verify that the following min(n̄a −na, n̄c −nc)
vectors are also orthogonal to xt for all t ≥ 0

b1=
[
0n̄c−nc−1, cnc

, ..., c1,01,0n̄a−na−1, ana
, ..., a1,−1,01

]>

b2=
[
0n̄c−nc−2, cnc

, ..., c1,02,0n̄a−na−2, ana
, ..., a1,−1,02

]>

...
... (11)

Therefore, if n̄a > na and n̄c > nc the regressor vectors
{xt} are no longer persistently exciting, because they span
a linear subspace S ⊂ R

K of dimension d = n̄a + n̄c −
min(n̄a −na, n̄c −nc) < K−1, thus violating the left hand
side of (5). As a consequence, the identifier (6) is no longer
guaranteed to converge to the true parameter vector b.

We now show that although the regressors are not persis-
tently exciting, b̂t still converges to a point in the subspace
S⊥ = span{b, b1, b2, · · · } which depends linearly on the ini-
tial condition b̂0. To see this, assume that the regressors span
a d-dimensional subspace. Then there exists an orthogonal
matrix R ∈ SO(K − 1) such that ψt = R

[
zt

0K−d−1

]
for

some zt ∈ R
d. Therefore, from (8) we have

Ft =

[
R 0K−1

0
>
K−1 1

] (
IK −

µ

[
zt

0K−d

][
zt

0K−d

]>

1 + µ‖zt‖2

) [
R>

0K−1

0
>
K−1 1

]

=

[
R 0K−1

0
>
K−1 1

][
Id − µztz

>

t

1+µ‖zt‖2 0d×(K−d)

0(K−d)×d IK−d

][
R>

0K−1

0
>
K−1 1

]

hence
t∏

i=0

Fi →

[
R 0K−1

0
>
K−1 1

][
0d×d 0d×(K−d)

0(K−d)×d IK−d

][
R>

0K−1

0
>
K−1 1

]
,

where the last step follows from (7) under the assumption
that the vectors zt are persistently exciting. Therefore, if we
let R = [R1 R2], the error et =

∏t−1
i=0 Fie0 converges to

e∗ = b∗ − b = R2R
>
2 e0 = R2R

>
2 (b̂0 − b), (12)

where R2 ∈ R
(K−1)×(K−d−1) are the last K−d−1 columns

of R. The vector of parameters converges to

b∗ = b +R2R
>
2 (b̂0 − b). (13)

We have shown the following result.
Theorem 1: If the regressors formed with orders n̄a ≥

na and n̄c ≥ nc form a subspace of dimension d =
n̄a + n̄c − min{n̄a − na, n̄c − nc}, and their projections
onto this d-dimensional space are persistently exciting, then
the recursive error identifier b̂t converges exponentially to
a point in the orthogonal complement to the span of the
regressors that depends linearly on the initial condition. If in
addition n̄a = na or n̄c = nc, then b̂t → b exponentially.



The important point to notice is that Theorem 1 guarantees
convergence to a point for any n̄a ≥ na and n̄c ≥ nc. There-
fore, we may run two identifiers in parallel with different
initial conditions. If the two identifiers converge to different
parameter vectors, then we know that n̄a and n̄c are not
strict, hence we may reduce these upper bounds by one until
the two identifiers converge to the same parameter vector b.
Once b has been identified, na and nc can be obtained from
the number and location of its zero entries.

III. RECURSIVE IDENTIFICATION OF SARX SYSTEMS

This section presents a solution to Problem 1 under the
following assumption of minimality of the SARX model:

Definition 1: An SARX model is said to be minimal if
1) For all i = 1, . . . , n, the ith ARX model is minimal.
2) For all i 6= j = 1, . . . , n the transfer functions Hi(z)

and Hj(z) are such that Hi(z) 6= Hj(z) for all z ∈ C.

A. The hybrid model parameters
Let n̄a ≥ max{na(i)} and n̄c ≥ max{nc(i)} be given

upper bounds on the orders of the ARX models. Notice from
(1) that for all t ≥ max{n̄a, n̄c} there exists a discrete state
λt = i ∈ {1, . . . , n} such that b>

i xt = 0, where

bi
.
=

[
0
>
n̄c−nc

, cnc
(i), ..., c1(i),0

>
n̄a−na

, ana
(i), ..., a1(i), 1

]>
.

Therefore, the following hybrid decoupling polynomial must
be satisfied by the model parameters and the input/output
data for any possible value of the discrete state

n∏

i=1

(b>
i xt) = 0. (14)

The hybrid decoupling polynomial is simply a homoge-
neous polynomial of degree n in K variables

pn(z)
.
=

n∏

i=1

(b>
i z) = h>νn(z) = 0, (15)

that can be written as a linear combination of the Mn(K) =(
n+K−1

K−1

)
=

(
n+K−1

n

)
monomials zn1

1 zn2
2 · · · znK

K with 0 ≤
nj ≤ n for j = 1, . . . ,K, and n1 + n2 + · · · + nK = n. In
(15) νn : R

K → R
Mn(K) is the stack of all such monomials:

νn : [z1, . . . , zK ]> 7→ [. . . , zn1
1 · · · znK

K , . . .]>, (16)

with n1, . . . , nK chosen in the degree-lexicographic order.
νn is also known as Veronese map of degree n [5]. The
coefficients are written as a vector h ∈ R

Mn(K) and are
referred to as the hybrid model parameters.

B. Recursive identification of the hybrid model parameters
We now show how to generalize the recursive identifier

in (6) and its convergence properties to the case of SARX
models such as (1). It was shown in [9] that thanks to the
hybrid decoupling polynomial, one can derive a recursive
identification algorithm that operates on the hybrid model
parameters h rather than on the ARX model parameters
{bi}

n
i=1. Given an estimate for h, one can easily identify

the ARX model parameters {bi}
n
i=1, as we will show later.

The advantage of identifying h first is that the hybrid model
parameters do not depend on the value of the discrete state or
the switching mechanism. Therefore, one can use a standard
recursive identifier to identify h, as we show now.

In order to derive a recursive identifier for SARX models,
let Πn =

[
IMn(K)−1 0Mn(K)−1

0
>
Mn(K)−1 0

]
∈ R

Mn(K)×Mn(K).

Then the equation h>νn(xt) = 0 defines an ARX model
in a lifted space with output

zt = (−1)nyn
t = (Πnh)>(Πnνn(xt)) =

Mn(K)−2∑

j=0

hjvt−j (17)

and input [vt−1, . . . , vt−Mn(K)+1]
> = Πnνn(xt). After

applying the results of Section II to the model (17), we obtain
the following hybrid equation error identifier for SARX
systems [9]:

ĥt+1 =

(
IMn(K) − µ

Πnνn(xt)νn(xt)
>

1 + µ‖Πnνn(xt)‖2

)
ĥt. (18)

In the following subsections we characterize the exponen-
tial convergence of the hybrid equation error identifier (18) in
terms of the regressors {xt} generated by the SARX model.
For ease of exposition, we consider the following three cases
of increasing complexity: 1) known number of models and
known and equal orders; 2) unknown number of models and
known and equal orders; 3) unknown number of models and
unknown and possibly different orders.

1) Known number of models and known and equal orders:
The case in which the number of models n is known and the
model orders are known and equal, i.e. na = na(1) = · · · =
na(n) and nc = nc(1) = · · · = nc(n), has been studied in
our previous work [9]. We have shown that in this case both
the hybrid model parameters and the ARX model parameters
converge exponentially to their true values as stated in the
following theorem.

Theorem 2: Consider a minimal SARX system of the
form (1) and assume that the following recursive identifi-
cation scheme is used

ĥt+1 =

(
IMn(K) − µ

Πnνn(xt)νn(xt)
>

1 + µ‖Πnνn(xt)‖2

)
ĥt (19)

b̂t =
Dν>n (xt)ĥt

e>KDν
>
n (xt)ĥt

(20)

where eK = [0, · · · , 0, 1]> ∈ R
K and Dνn(xt) is the

Jacobian of νn at xt. If there exist ρ1, ρ2 > 0 and an integer
S such that for all j ≥ max{na, nc}

ρ1IMn(K)−1≺

j+S∑

t=j

Πnνn(xt)ν
>
n (xt)Π

>
n ≺ρ2IMn(K)−1, (21)

then ĥt − h → 0 and b̂t − bλt
→ 0 exponentially.

Furthermore,

bλt
=

Dν>n (xt)h

e>KDν
>
n (xt)h

. (22)



2) Unknown number of models and known and equal
orders: In practice the number of models n may be un-
known, and only an upper bound n̄ ≥ n may be available.
In this case, the embedded regressors νn̄(xt) are no longer
persistently exciting in the sense of (21), because they live in
a linear subspace of R

Mn̄ of dimension Mn̄(K)−Mn̄−n(K)
which is strictly less than Mn̄(K)− 1 if n̄ > n, as stated by
the following lemma.

Lemma 1: Let {Si ⊂ R
K}n

i=1 be a collection of n linear
subspaces of R

K of dimension K−1. The dimension of the
span of νn̄(∪n

i=1Si) is Mn̄(K) −Mn̄−n(K) for n̄ ≥ n.
Proof. Let pn̄(x) = c>νn̄(x) be any homogeneous polynomial
of degree n̄ that vanishes on νn̄(∪n

i=1Si). Then, pn̄ must have
pn(x) = (b>

1 x) · · · (b>
n x) as a factor, i.e. pn̄ = pnqn̄−n, where

qn̄−n is any polynomial of degree n̄ − n. There are Mn̄−n(K)
such linearly independent polynomials, and so there are Mn̄−n(K)
vectors c in the orthogonal complement to the span of νn̄(∪n

i=1Si).
Therefore, the dimension of the span of νn̄(∪n

i=1Si) is Mn̄(K) −
Mn̄−n(K) for n̄ ≥ n as claimed.

Fortunately, thanks to Theorem 1 we know that even
though the vectors νn(xt) may not be persistently exciting,
the hybrid recursive identifier still converges to a point h∗

in the orthogonal complement to the span of {νn(xt)}, i.e.
h∗ is such that pn̄(xt) = νn̄(xt)

>h∗ = 0 for all t ≥ 0.
However, we do not yet know what polynomial the vector
h∗ corresponds to, and hence we do not know whether the
derivatives of pn̄ would still converge to the true {bi}

n
i=1.

The following theorem shows that b̂t − bλt
still converges

to 0K exponentially for almost all initial conditions h0.
Theorem 3: Consider a minimal SARX system of the

form (1) and assume that the following recursive identifi-
cation scheme with n̄ > n modes is used

ĥt+1 =

(
IMn̄(K) − µ

Πn̄νn̄(xt)νn̄(xt)
>

1 + µ‖Πn̄νn̄(xt)‖2

)
ĥt (23)

b̂t =
Dν>n̄ (xt)ĥt

e>KDν
>
n̄ (xt)ĥt

. (24)

If there exist ρ1, ρ2 > 0 and an integer S such that for all
j ≥ max{na, nc}

ρ1Id ≺

j+S∑

t=j

Γdνn̄(xt)ν
>
n̄ (xt)Γ

>
d ≺ ρ2Id, (25)

where d = Mn̄(K) − Mn̄−n(K) and Γd ∈ R
d×Mn̄(K)

is a projection matrix onto the subspace spanned by the
embedded regressors, then b̂t − bλt

→ 0 exponentially for
an open and dense set of initial conditions h0.
Proof. Let h∗ be the vector of hybrid model parameters to
which the hybrid recursive identifier converges. We know that the
polynomial pn̄(z) = νn̄(z)>h∗ is such that pn̄(xt) = 0 for
all t ≥ 0. In addition, we know that the vectors Γdνn(xt) are
persistently exciting. Therefore, since the vectors xt live in a union
of n hyperplanes, the polynomial pn̄(z) must vanish in the entire
set ∪n

i=1Zi, where Zi is the set of all points z such b>

i z = 0. Note
also that since the SARX system is minimal, the vectors b1, . . . , bn

are different, hence any polynomial that vanishes on the set ∪n
i=1Zi

must have pn(z) = (b>
1 z) · · · (b>

n z) as a factor. Therefore, the

polynomial pn̄ must be of the form

pn̄(z) = pn(z)qn̄−n(z) (26)

for some polynomial qn̄−n(z) of degree n̄ − n. Therefore, the
derivative of pn̄ is

Dpn̄(z) = Dpn(z)qn̄−n(z) + pn(z)Dqn̄−n(z). (27)

If z = xt, then pn(xt) = 0, hence Dpn̄(xt) ∼ Dpn(xt) whenever
qn̄−n(xt) 6= 0. The latter follows from the fact that for an open
and dense set of initial conditions the polynomial qn̄−n(z) has no
common factor with pn. Combining (27) with (22) we have

bλt
=

Dpn(xt)

e>KDpn(xt)
=

Dν>
n̄ (xt)h

∗

e>KDν>
n̄ (xt)h

∗
. (28)

Now, from the exponential convergence of ĥt there exist κ, λ >
0 such that ‖ĥt −h∗‖ < κλ−t. In addition, the vectors b1, . . . , bn

are different, because the SARX model is minimal, hence the poly-
nomial h∗T νn̄(z) has no repeated factor. Therefore, there is a δ > 0
and a T > 0 such that for all t > T we have ‖Dνn̄(xt)

>h∗‖ ≥ δ
and ‖Dνn̄(xt)

>ĥt‖ ≥ δ (see proof of Theorem 3 in [9] for the
latter claim). In addition, note that ‖νn̄(xt)‖

2 = ‖Γdνn̄(xt)‖
2 +

Pd

i=1

`

e>Mn̄(K)−iνn̄(xt)
´2

= ‖Γdνn̄(xt)‖
2
`

1 +
Pd

i=1 ‖gi‖
2
´

,
because the last d entries of νn̄(xt) are linear combinations of
Γdνn̄(xt) with coefficients gi, i = 1, . . . , d. Combining this with
(24) and (28) yields

‖bλt
− b̂λt

‖ =

‖
e>KDν>

n̄(xt)ĥtDν>
n̄(xt)h

∗ − e>KDν>
n̄(xt)h

∗Dν>
n̄(xt)ĥt

|e>KDν>
n̄(xt)ĥt||e>KDν>

n̄(xt)h
∗|

‖ =

‖
e>K(Dν>n̄(xt)(̂ht−h∗)Dν>n̄(xt)h

∗−Dν>n̄(xt)h
∗Dν>n̄(xt)(̂ht−h∗))

|e>KDν>
n̄ (xt)ĥt||e>KDν>

n̄ (xt)h
∗|

‖

≤ 2
‖Dν>

n̄(xt)(ĥt − h∗)‖‖Dν>
n̄(xt)h

∗‖

|e>KDν>
n̄(xt)ĥt||e>KDν>

n̄(xt)h
∗|

≤ 2
α2

n̄E2
n̄‖h

∗‖κλ−t

δ2
.

In the last step we have used the fact that for all z ∈ R
K

there is a constant matrix of exponents Ejn̄ ∈ R
Mn̄(K)×Mn̄−1(K)

such that ∂νn̄(z)/∂zj = Ejn̄νn̄−1(z). Therefore, ‖Dνn̄(z)‖ ≤
En̄‖νn̄−1(z)‖ = En̄

n̄

n̄−1

p

‖νn̄(z)‖ ≤ αn̄En̄, where En̄ =

maxj=1,...,K(‖Ejn̄‖) and αn̄ =
n̄

2(n̄−1)

q

ρ2(1 +
Pd

i=1 ‖gi‖
2).

In summary, we have shown that even if the number of
models is overestimated, under suitable persistence of exci-
tation conditions the recursive identifier always converges to
the coefficients of a polynomial that has pn(z) as a factor.
Hence the derivatives of this polynomial always give an
exponentially convergent estimate of the parameter vectors
of each one of the ARX models.

Notice also that the theorem allows us to identify the
number of modes. We can run two recursive identifiers ĥ

1

t

and ĥ
2

t starting from two different initial conditions. If the
two identifiers converge to different parameter vectors, but
their corresponding estimates of the ARX model parameters
are such that b̂

1

t − b̂
2

t → 0, then we know that the number of
models has been overestimated. Therefore, we may reduce
the upper bound on the number of models by one until the
two identifiers converge to the same solution, which only
happens when n̄ = n.



3) Unknown number of models and unknown and possibly
different orders: Let us now consider the most challenging
case in which both the number of models and the model
orders are unknown, but we are given upper bounds n̄ ≥ n,
n̄a ≥ max{na(i)} and n̄c ≥ max{nc(i)}.

From our analysis in Section II, we know that the hy-
brid recursive identifier will converge to a point h∗ in the
orthogonal complement of the embedded regressors νn̄(xt).
Furthermore, it follows from the proof of Theorem 3 that
if the orders are known and equal, then the polynomial
identified by the recursive algorithm pn̄(z) = νn̄(z)>h∗

always contains pn(z) = (b>
1 z) · · · (b>

n z) as a factor.
Therefore, pn̄ produces the same derivatives (up to scale) as
those of pn, thus correctly identifying the parameter vectors
b1, · · · , bn. When the orders are unknown and possibly
different, by following the same arguments as in the proof of
Theorem 3, the polynomial pn̄ must still factor as a product
of two polynomials pn and pn̄−n of degrees n and n̄ − n,
where pn(xt) = 0 for all t ≥ 0. However, because the
orders are unknown and possibly different, the polynomial
(b>

1 z) · · · (b>
n z) is no longer the only polynomial that van-

ishes on the entire set of regressors {xt}.3 Therefore pn̄ is
not guaranteed to have (b>

1 z) · · · (b>
n z) as a factor.

We show now that it is still possible to recover a poly-
nomial in the orthogonal complement of {νn̄(xt)} that has
(b>

1 z) · · · (b>
n z) as a factor by restricting some of the entries

of ĥt to be zero. When two ARX models are of different
orders, one of the models must be such that one or more of
the leading entries of its vector of model parameters b are
zero. Therefore, one or more of the leading entries of h must
be zero. More generally, one can show that (see [7] for the
proof)

1) The embedded regressors {νn̄(xt)} live in a subspace
of dimension Mn̄(K) − d − 1, where d depends in a
nontrivial way on n̄, n̄a, n̄c, {na(i)}, {nc(i)}.

2) The last Mn̄(K) − d entries of the embed-
ded regressors, i.e. {Γdνn̄(xt)} where Γd =[
0(Mn̄(K)−d)×d IMn̄(K)−d

]
, live in a subspace of

dimension Mn̄(K) − d− 1.
As a consequence of these two statements, we know that

there exists a d ≥ 0 such that the vectors {Γdνn̄(xt)} have
a unique vector h∗ ∈ R

Mn(K)−d in its orthogonal comple-
ment. Such a vector can be computed as the equilibrium
point of the recursion

ĥt+1 =

(
IMn̄(K)−d − µ

ΓdΠn̄νn̄(xt)νn̄(xt)
>Γ>

d

1 + µ‖ΓdΠn̄νn̄(xt)‖2

)
ĥt (29)

b̂t =
Dν>n̄ (xt)Γ

>
d ĥt

e>KDν
>
n̄ (xt)Γ>

d ĥt

. (30)

The vector h
∗ can be used to define a polynomial of degree

n̄ in z, pn̄(z) = νn̄(z)>Γ>
d h∗, that vanishes at xt for all

t ≥ 0. Therefore, if there exist ρ1, ρ2 > 0 such that for all

3This is because there could be more than one normal vector bi which
is orthogonal to all regressors xt associated with the ith mode.

j ≥ max{n̄a, n̄c} we have that

ρ1IMn(K)−d≺

j+S∑

t=j

ΓdΠn̄νn̄(xt)ν
>
n̄(xt)Π

>
n̄Γ>d ≺ρ2IMn(K)−d,

then pn̄(z) must factor as a product of (b>
1 z) · · · (b>

n z) with
some polynomial qn̄−n(z) of degree n̄− n.

As before, except for a zero-measure set of initial condi-
tions, the factorizability of pn̄ guarantees that its derivatives
give the desired parameter vectors. The only problem is that
the value of d is not known beforehand, and so we must
search for d in an automatic fashion. One possible way of
doing this is as follows

1) Set d = 0.
2) Run two identifiers (ĥ

1

t , b̂
1

t ) and (ĥ
2

t , b̂
2

t ) as in (29)-
(30) for the current value of d starting at two different
initial conditions ĥ

1

0 6= ĥ
2

0, and wait until the two
identifiers converge.

3) If the two identifiers converge to the same value, i.e. if
ĥ

1

t − ĥ
2

t → 0, then return either of the identified ARX
model parameters, e.g. return b̂

1

t .
4) If the two identifiers converge to two different values,

but b̂
1

t − b̂
2

t → 0, then set n̄ = n̄− 1 and go to 2).
5) If b̂

1

t − b̂
1

t 6→ 0, then set d = d+ 1 and go to 2).
Note that, in practice, determining when a vector has

converged, or when a vector has converged to zero requires
the user to specify some thresholds.

IV. EXPERIMENTS

In this section, we present four experiments evaluating the
performance of the proposed algorithm for different values
of the number of models and the model orders, as shown in
Table I. We perform our experiments on an SARX model

yt = a(λt)yt−1 + b(λt)ut−1 + wt−1 (31)

with a periodic switching sequence λt ∈ {1, 2} of period
20 seconds, input ut ∼ N (0, 1), noise wt ∼ N (0, σ2), and
parameters a(1) = −0.9, a(2) = 0.7, c(1) = 0.8 and c(2) =
−1, so that h = [−0.8, 1.46,−0.2,−0.63,−0.2, 1]> ∈ R

6.
We set the parameter of the recursive identifier to µ = 1.

We first perform our experiments in the absence of noise.
In experiment 1, both the number of modes and the model
orders are correct. The hybrid model parameters and the
ARX model parameters converge to their true values in only
100 seconds, as shown by the top three plots of Figure 1.

In experiment 2, the number of modes is over estimated
as n̄ = 4 > 2, but the model orders are correct. From the
last five plots of Figure 1, note that after approximately 60

TABLE I
EXPERIMENTAL PARAMETERS

Experiment n na nc n na nc

1 2 1 1 2 1 1
2 2 1 1 4 1 1
3 2 1 1 2 2 2
4 2 1 1 3 2 2
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Fig. 1. Evolution and convergence of system parameters without noise for
Experiments 1 (first three plots) and Experiment 2 (last five plots).

seconds the number of modes is reduced to 3. Afterwards,
the hybrid model parameters converge faster than the ARX
model parameters, causing the algorithm to increase the
number of zeros. Once the ARX parameters of the two
identifiers converge to the same value, the number of models
is reduced to n̄ = 2, which is the correct value. Overall, the
parameters converge after approximately 420 seconds.

In experiment 3, the number of modes is correct, but the
model orders are overestimated. Notice from the top five
plots of Figure 2 that after approximately 300 seconds the

algorithm starts increasing the number of zeros to d = 3.
Since in this case any number of zeros 1 ≤ d ≤ 5 guar-
antees convergence, after approximately 550 seconds, both
the hybrid and the ARX model parameters have converged.
Notice also how a2(λt) and c2(λt) converge to zero, showing
the correct estimation of the model orders.

In experiment 4, both the number of models and the model
orders are overestimated. As shown by the last five plots of
Figure 2, the hybrid model parameters converge faster than
the ARX model parameters, hence after only 300 seconds
the algorithm starts increasing the number of zeros. Once
the ARX model parameters of the two identifiers converge
to the same value (approximately at t = 1, 015 seconds),
the algorithm reduces the number of modes to n̄ = 2, the
correct value. Around t = 1, 250 seconds, all ARX model
parameters converge to their true values. The system orders
are also correctly estimated.

Figure 3 shows the evolution of the model parameters for
experiments 3 and 4, this time with a noise level of σ = 0.01.
The algorithm works in the presence of noise; however, as
expected, its performance deteriorates.

V. CONCLUSIONS AND FUTURE WORK

We have presented a recursive algorithm for identifying the
parameters of switched ARX models with unknown number
of modes and unknown and possibly different orders and
derived persistence of excitation conditions on the embedded
input/output data that guarantee the exponential convergence
of the identifier. It remains open to determine persistence of
excitation conditions on the input and switching sequences
only, and to extend this approach to multivariate systems in
state space representation.
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Fig. 2. Evolution and convergence of system parameters without noise for
Experiment 3 (first five plots) and Experiment 4 (last five plots).
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Fig. 3. Evolution and convergence of system parameters with σ = 0.01
for Experiment 3 (first five plots) and Experiment 4 (last five plots).


