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Abstract—We propose a recursive identification algorithm
for a class of discrete-time linear hybrid systems known as
Switched ARX models. The key to our approach is to view
the identification of multiple ARX models as the identification
of a single, though more complex, lifted dynamical model
in a higher dimensional space. Since the dynamics of this
lifted model do not depend on the value of the discrete state
or the switching mechanism, we propose to use a standard
recursive identifier in the lifted space. We derive persistence of
excitation conditions on the input/output data that guarantee
the exponential convergence of the recursive identifier. Such
conditions are a natural generalization of the well known
result for ARX models. We then use the estimates of the lifted
model parameters to build a homogeneous polynomial whose
derivatives at a regressor give an estimate of the parameters
of the ARX model generating that regressor. Although our
algorithm is designed for the case of perfect input/output data,
our experiments also show its performance with noisy data.
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Our recent work [19], [15] demonstrated that for the class
of switched ARX models one can derive an equation on the
input/output data called thbybrid decoupling polynomial
that does not depend on the mode sequence or the switching
mechanism. We also showed that one can identify the
number of modes from a rank constraint on the input/output
data and the model parameters from the derivatives of the
hybrid decoupling polynomial at a data point.

Unfortunately, all the aforementioned hybrid identifica-
tion algorithms operate in a batch modes. the model
parameters and the hybrid state are identified after all the
input/output data has been collected. This is a significant
limitation, because the computational complexity of batch
algorithms depends on the number of data points, hence
they may not be suitable for real time applications. To the
best of our knowledge, there is no prior work addressing
the recursiveidentification of hybrid dynamical models in

Given input/output data generated by a hybrid lineathe case in which the model parameters, the hybrid state
dynamical model,.e. a system that switches among anand the switching mechanism are unknown.
unknown number of linear dynamical models, we are inter- In this paper we propose a recursive algorithm for
ested in simultaneously identifying the number of modelddentifying the model parameters of switched ARX models

the model parameters, the mode sequemnee the model

whose mode sequence and switching mechanism are un-

generating the data at each time) and the switching mecknown. Rather than defining a recursive identifier of the
anism generating the transitions among the linear modelparameters of each ARX model, we propose to identify
When the model parameters and the switching meché#ie hybrid model parametersf a lifted model in a higher
nism areknown the above problem reduces to the desigaimensional space. A similar idea was used in [10] for the
of observers for the hybrid state [1], [5], [11], [14], togetheridentification of ARX models with structured parameters.

with the study of observability conditions under whichSince the dynamics of the lifted model are linear on the
hybrid observers operate correctly [4], [6], [9], [16], [17]. hybrid model parameters, one can define convergence in the
When the model parameters and the switching mechéfted space and derive persistence of excitation conditions
nism areunknown there is an apparent coupling betweeron the input/output data that guarantee the exponential
the tasks of identifying the model parameters and estimatirgpnvergence of the hybrid model parameter estimates. Our
the discrete state, which makes the identification problewonditions are a natural generalization of those for a single
significantly more challenging. Due to this coupling, mosARX model. However, they also impose some restrictions
of the existing hybrid identification algorithms alternateon the mode sequence. For instance, they require each
between parameter identification and state estimation. Forode to be visited a minimum number of times. Given
instance, [12] assumes that the number of models is knowan exponentially convergent estimate of the hybrid model
and proposes an identification algorithm that combines cluparameters, we build a homogeneous polynomial whose
tering, regression and classification techniques; [7] usesderivatives give an exponentially convergent estimate of the
greedy approach for initialization and then iterates betwegrarameters of the ARX models. Although our identification
assigning data points to models and computing the modalgorithm is derived for the case of perfect input/output data,
parameters; [8] uses mixed-integer quadratic programmingur experiments also show its performance with noisy data.



Il. PROBLEM STATEMENT A. The hybrid decoupling polynomial
In this paper we consider a class of discrete-time linear Notice from equation (1) that if we lek” = n, +n.+ 1,

hybrid systems known as Switched Auto Regressive eXoge- T K
i Ty = (Ut e oo s Uty Ytmmr s e v ey Y1y — € R* and
nous (SARX) models. The temporal evolution of a SARX " ' e ' =t Yrone b1 yTt] X
model is described as b = [cn. (1), ..., c1(i), an, (1), ... a1(@), 1]7 € RT,
a e fori =1,...,n, then we have that for all > max{n,, n.}
v =Y a;(Mye—j + > ci(A)uij, (1) there exists a discrete statg =i € {1,...,n} such that
o - bz, = 0. )

wherewu, € R is theinput, y; € R is the output,\; €
{1,2,...,n} is thediscrete staten, andn.. are the orders Therefore, the followinghybrid decoupling polynomial
of each ARX model, anda,(i)};<, and {c,(i)}}<,, for ~must be satisfied by the model parameters and the in-
i =1,...,n, are their model parameters. We assume th&@ut/output data for any possible value of the discrete state
Ne > 0 and that all the ARX models are of known andand for any possible switching mechanism generating the
equal ordersi.e. for all i = 1,...,n eithera,, (i) # 0 or evolution of the discrete state (SARX, JMLS, or PWARX)
cn. (1) # 0. However, it should be possible to extend our n
approach to ARX models of unknown and different orders [1®fz) =o. 3)
by combining our results with the batch algorithm of [15]. i=1

The discrete stata;, also called thenodeof the system, B. The hybrid model parameters
can evolve due to a variety of mechanisms. In the least The hybrid decoupling polynomial eliminates the discrete
restrictive case{\,} is a deterministic but unknown se- state by taking the product of the equations defining each
guence that can take a finite number of possible valuesne of the ARX models. While taking the product is not
which we can assume to coincide with a collection othe only way of algebraically eliminating the discrete state,
integers:\ : Z — {1,...,n}. One can further restrict the this leads to an algebraic equation with a very nice alge-
set of mode sequences by assuming thais a realization braic structure. Indeed, the hybrid decoupling polynomial
of an irreducible Markov chain, governed by transitionis simply is a homogeneous polynomial of degreén K
probabilities 7(i,5) = P(Ay1 = jlA: = 4). In this variables

case, the model (1) is often called a “Jump-Markov Linear RN

System” (JMLS). Finally, one can assume that is a pn(z) = [ 2) =0, (4)
piecewise constant function of the evolution of the model . i=1

(D), \e(Ye,Ye—1,---,Yi—n,). In this case, the model (1) is Which can be written as

often called a “PieceWise ARX” (PWARX) model. Z L - KT, (2) =0, (5)

In this paper we will consider the first scenario, so that
our results also apply to other switching mechanisms there h; eR represents the coefficient of the monomial

that information becomes available. The following problem" = 2" 2y% 2 With 0 < nj < 1n< for JA; (11() K

summarizes the goals of this paper: andn; + ng + - + nig =n; v, : RY — RY (%) s the
Problem 1: Let {u;,7,}%_, be input/output data gen- Veronese majpf degreen which is defined as [13]:

erated by the SARX model (1), with known number of Un o1, zk) T = [ 2T (6)

discrete states and ordersy, andn.. Identify the model
parameters{a,(i)},—; " and {e(i)},y 7", and esti-

sNg

mate the discrete stafe, }7_ max {ng mo M, (K) = <n + K — 1) _ (n + K — 1> @)
The next sections present a solution to Problem 1 under K -1 n

the following assumption of minimality of the SARX model.is the total number of independent monomials.
Definition 1: A SARX model is said to beninimal if One can show (see [13]) that the vectore RMn(K)
1) Foralli =1,...,n, theith ARX model is minimal. is simply a vector representation of the symmetric tensor
That is, the numerator and denominator of the transfgroduct of the ARX model parametef$;}’_,, i.e.
function H;(z) of the ith ARX model are coprime
polynomials, hence there is no zero/pole cancelation. ; bo(1) @ bo(2) @ -+ @ bo(n), (8)

2) For alli # j =1,...,n the transfer functiong7;(z) ) ]
andH, (=) are such thatl; (=) # H,(z) forall z € C. where &, is the permutation group of elements. There-
fore, since the vectoh € RM~(K) encodes the parameters

lIl. THE HYBRID DECOUPLINGPOLYNOMIAL AND THE  of gl the ARX models, we will refer to it as thhybrid
HYBRID MODEL PARAMETERS model parameterérom now on. Notice that the last entry

In this section we review the derivation of the hybridof h is always one, because the last entry of eaghs
decoupling polynomial and its associated vector of hybridlso one. Thereforeh is uniquely defined and there is a

model parameters. We refer the reader to [19] for furthewsne-to-one correspondence betwédeand the ARX model
details. parametergbd; }7_, modulo a permutation of the latter ones.

with I chosen in the degree-lexicographic order; and



IV. RECURSIVEIDENTIFICATION OF THEHYBRID Theorem 1 (Persistence of excitation for SARX models):
MODEL PARAMETERS Consider a minimal SARX system of the form (1) and
In this section we propose a recursive algorithm for iden@Ssume that the recursive identification scheme (13) is
tifying the hybrid model parameters and derive a persistenésed- |_f there exispy, p2 > 0 and an integeS such that
of excitation condition that guarantees the exponential cofer all j > max{nq, n.}

vergence of the estimates of the hybrid model parameters. J+S
Recall from [2] that in the case of a single minimal ARX p1 Tuy, ()—1 < v (@)v,k ()11} < paIar, (50)-1,(14)
model,i.e. if n = 1, the recursiveequation error identifier t=j
e (§e—yt)

. . thenh — ﬁt converges exponentially to zero.
brpr = by — pu [ 1He(S)0 w2 4200, w2 ) ) Proof: The proof of this result for ARX models, can
0 be found.e.g.in Theorem 2.8, page 77 of [2]. Applying (11)

to the ARX modek; = (—1)"y? = (I, h)T (IL,,v,(x;)) =
Zjﬂi”o(K)_Q hjwy—; gives the result for SARX models.m

Theorem 1 establishes a condition on the input/output
wherell; = [Ix_; 0] € RFE~D>*K andy > 0, produces an data under which our recursive identification scheme con-
exponentially convergent estimate of the model parameteggrges. Notice that this condition is a natural generaliza-

b € R¥ if the input/output data ipersistently excitingi.e. tion of the persistence of excitation condition (11) for

~ AT na ~ nc ~
Ut = b, HlTl'Ilwt = Z GjtYt—j + Z ¢jrur—j,  (10)
j=1 j=1

if there is anS € N and p1, p2 > 0 such that for allj a single ARX model. However, it is important to notice
j+s that, although the recursive identification scheme does not
pil_1 < ZletthﬂlT < polK_1, (11) take into account the evolution of the discrete state, the
t=j condition for convergence (14) does impose constraints on

whereA < B if (B— A) is positive definite. It is shown in the mode sequence. For instance,slet- 1, and assume
[3] that the above condition for exponential convergence ighat the SARX model (1) always stays in one of the discrete
satisfied if the input sequencepersistently excitingi.e.if ~ states. Then it is easy to see that (14) is violated, because

there is anS € N and ps, p, > 0 such that for allj SIS vy (a4 ) () TTIL s not full rank for any S.
J+S—na+t1 Indeed, since the rank of z;x! is bounded above by
p3lr_1 < Z weu? < palg_1, (12) K-1, the rank of>_ v, (&, )v, ()T is bounded above by

M,(K —1) < M,(K) —1, forn > 1, as stated by the
following basic fact from algebraic geometry.

Lemma 1:Let V be a subspace @& of dimensionk.
hen the dimension of the subspacerdf~(X) spanned by

t=j

Whereut = [ut—ncv ey ut—&-na—l]T € RKil.

The question is now how to generalize the recursivel\.
identifier in (9)-(10) and its convergence properties to th V() v € VY is M (k)
case of SARX models such as (1). In principle, we could™™ Préof' Without |Té)SS .of generality, we can Writé as
try using the same recursive identifier (9)-(10). HoweverV — v e.RK g = = v = 0}’ Then. the entries
characterizing its exponential convergence is not as straig tf-y (v) are reduc+ed to ther,, (k) monbmials&”l R
forward, because its dynamics are now hybrid and ea he7;8n1—|—-~-+nk —n Whigh form a basis fér the gpélce
discrete state may only be visited a finite amount of timemc homogeneous polyn(')mials of degreén k variables.m

Thanks to the hybrid de_cou_plmg_ _pol_ynomlal, We Can \ye are therefore interested in understanding what restric-
now propose a new recursive identification algorithm th%on condition (11) imposes on the mode sequehae}
ope:ﬁteisgl( the dmllb”d mo?el Egc?me'gﬁr]sratréer t?an The following theorem gives necessary conditions on the
on the _mode parame.er{; ifizy. The advantage ode sequence for the persistence of excitation condition
of doing so is that the hybrid model parameters do nrg

For SARX Is (14) to hold.
depend on the value of the discrete state or the switchingr-l-ﬁeoremmg.dlzeofZ.( :) {0 O(:L let o; {1 n} be

mechanism. Therefore, we can directly propose a recursi\é% ; . :
. A ) . choice ofi < n integers from the sefl,...,n}, and
identifier h; for the hybrid model parametefs. Given an Ty: (te{j jz+_1n ji Sy A =i} bZ{ the se?}of time

. n
estimate fork, the ARX model parametergh; }{, can be instances that modas visited in the interva{j, ..., j+S}.

easily identified, as we will show in Section V.
Toythis end, Iefll,, = (147, (1)1 0] € ROV (K)=1) M () If (14) holds for someS € N and pi,p2 > 0, then for
o o M f) =1 B =T ali=1,... there exist such that for all
and consider the recursive identification scheme v R Xistps, pa > 0 su
J > max{ng,ne}

) . T v () (hy v (1))
hiy1=hy—pu l 1+MHH',L(1)/"(ast)|\2 ] (13) p3Ing, (r)—1 =< Z Hiui(il:t)l/i(:l:t)THZT-<p4I]y[i(K),1.(l5)
tEUkEaiIZ’k

Notice that (13) reduces to (9) it = 1. The following Furthermore, the mode sequenkesatisfies
theorem gives a sufficient condition for the exponential

convergence of thaaybrid equation error identifie(13) in Vi=1...,n 7= |T|>M(K)-1. (16)
terms of the regressofs; } generated by the SARX model. keo;




Proof: It is clear that (15) implies (16), because the Definition 2 (Persistently exciting mode sequencds):

matrix T'; € RIM:(K)=1)x7: ‘whose columns arél;v;(x;)

mode sequencé),} is calledpersistently excitingf there

for t € Ukeo, i, must be full rank. Therefore, it is enoughis an S € N such that for allj > max{n,,n.} (16) holds.

to prove (15), which we do by contradiction.

Assume first that there is drsuch thaf’; is not full rank.
Then there is a nonzero vectere RM:(5) whose last entry
is zero such that! v;(z,) = 0 for all ¢ € Uge,, 7%. Since
in addition the regressorSe: }ieu,.,, 7, live in a union of
i hyperplanes oR”, they must also satisf, v;(x,) =
[Tico, (bia:) = 0, where the last entry ok; € RM:(X)
is equal to one, so thatk; # c;. Therefore, there are
two vectorsh # ¢ € RM»(¥) defined byh’v,(z) =
[T, (b7 2) and ¢"v(2) = (¢]vi(2)) [11gs, (b 2) SUch
that h” v, () = ¢Tv,(x;) =0 forall t € {j,...,j +S}.
This implies that the matrix",, must be rank deficient,
which is in contradiction with the left hand side of (14).

We are now interested in determining whether this per-
sistence of excitation condition on the mode sequence
together with the persistence of excitation condition on the
input/output data generated by each ARX model (11) are
sufficient to guarantee the convergence of our recursive
identification algorithm. More specifically, is it true that
if the output {y;} is bounded, the mode sequentg;}
is persistently exciting, and there exists &he N and
p1, p2 > 0 such that for allj e Nand foralli =1,...,n

pilk—1 < Z e, ] < polx_1, (19)
teT;

where7, = {t € {j,j +1,---,j+ S} : A = i}, then

A . _ 1 ?
Assume now that for some there is a nonzero vector i — bt converges exponentially to zero?

c; € RM:(K) whose last entry is zero such that for all

ps > 0 and S € N there is aj > max{n,, n.} such
that p4/c;||* < Zteukegﬁk(cfyi(mt))? Since in addition
(cFvi(x4))? < |lei|?||vi(z)||?, we have that for alpy > 0

and S € N there is aj > max{n,, n.} such that

pa< Y e 17)
t€Ukeo, Th
Notice also that for all € N we have
K 4
= () = B et
k=1 b1+l L=~
f) ( 14 > 2, 25
= .« .. "L‘ ... x .
> 0 )
Lyl =] ! K
Since Py, .. ¢ > 1, if we let¢ =i and? = n in the above

equation we obtair|v;(x)||*" < ||z||*" < P¢|lva(x)]*,
where Pp=maxy, . ¢, Pr,... 0. Replacing in (17) yields

n/i
pz/l < Z ||1/7(wt)||2 < Z \ ||Vi(xt)H2n
t€Ukeo; Tk t€Ukeo; T
S Z PnHVn(xf>H2
t€Ukeo, Tk

then for anyc € RM»(X) we have
S

pallel? <Y (Mva(@e))?,

t=j

If we let p; = pZ/"P—1

n

(18)

Unfortunately, the answer is no. To see this, consider a
second order SARX model

yr = c1(Ap)ue—1 + ca(Ap)up—o
with a periodic mode sequence defined for 2
A =1{1,1,1,1]2,2,2,2]1,1,1,1|2,2,2,2| - - - }
and a periodic (fot > 1) input sequence defined for> 0
we ={1/1,1,1,1] = 1,1,-1,11,1,1,1| — 1,1, —1,1] --- }.

Sincen = 2 and K = 3 we haveM;(K) = 3 and
M,(K) = 6. Therefore, the mode sequence is persistently
exciting with § = 5, because each mode is visited al least
2 times and both modes are visited at least 5 times in any
moving window of size at leadt. The input/output data is
also persistently exciting witl§ = 4, because fot > 2 the
sequence ofM;(K) — 1 = 2)-dimensional regressors

11117 1-1 1-1j111%---
1111j-1 1-1 1111%4---

is of rank 2 for any moving time window of size at
least5. However, the sequence of embedded regressors of
dimensionM»(K) — 1 = 5 defined fort > 2 as

1111 1 1 1 1j11193---
111 -1-1-1-1j111793---
rrrmn s s s s|rrrim---
1111 1 1 1 1j11193---
rTrrT —s—s—s—s|rrrrm---

Hloct = |:

Iovo () =

wherer = ¢;(1) 4+ c2(2) ands = ¢1(1) — ¢2(2), is of rank

which is in contradiction with the right hand side of (14).at most 2 for any moving window of any size. This is be-

m cause the input/output data, although persistently exciting,

Loosely speaking, condition (16) of Theorem 2 statesatisfiese.g.the polynomial of degree two? | —u?_, = 0.

that if the persistence of excitation condition for SARX The above example suggests that the main difficulty that
models (14) holds, then the mode sequence should vigitevents us from decoupling the persistence of excitation
any subset of the set of modes a minimum number condition on the input/output data generated by an SARX
of times in any moving time window. This motivates themodel (14) inton persistence of excitation conditions on
following definition of persistence of excitation for thethe mode sequence and the input/output data generated by
mode sequence. the individual ARX models is that the input/output data



can potentially satisfy a homogeneous polynomial of degree  Proof: By assumption, the SARX model is minimal.
n other than the ponnomiahTz/n(z) defining the SARX Therefore, there is & such that for allt > T there is
model. Although we could impose as a condition on th@ unique: such thatbith = 0. This implies that the
input/output data that no polynomial of degre@ther than polynomial h” v, (z) has no repeated factor, hence there
h™v,(z) fits the data, such a condition would essentiallys a § > 0 such that||Dv,, (x;)"h| > 6. From Theorem
be the same as assuming that (14) holds. 1 we have thath, — h converges to zero exponentially,
It remains an open issue whether it is possible to achieve. there arex, A > 0 such that||h; — h|| < kA"
exponential convergence by imposing persistence of excitﬁherefore,||Dun(xt)Tﬁt|| > 0, else there is a sequence
tion conditions on the input and mode sequences only, thas times ¢, < ¢, < --- such thatd < ||Dv,(x,)"h|| =
generalizing the persistence of excitation condition on thgDu,, (z;,)” (h — ﬁtj + i,tj)” < ||Enl|pakA~ + 6, where
input sequence (12) from ARX to SARX models. E,, € RMn(K)xMn_1(K) j5 g constant matrix containing the
exponents of the Veronese map of degtieend is such that
Dv,(xy) = E,vp—1(x:). Therefore,
o L . . lba, — bx, Il =
The recursive |dent!f|cat|on algc.)rlthAm proposed in the T DT () e DuT (@0)h — &L DuT ()R Dy (e e
previous section provides an estimatg of the hybrid ||-X n K n " | =
. . . |eE DvT (xt)hi|leL DVT (x:)h)
model parameters given the data up to timénder suitable - K e K i - .
conditions, such an estimate converges exponentially to H@KDVn(wt)(ht—h)Dvn (z)h—eLDvI(x)hDv(x:)(hi—h)

V. RECURSIVEIDENTIFICATION OF THE PARAMETERS
OF THEINDIVIDUAL ARX MODELS

ast — oo. The rest of the problem is to obtain an estimate ek DvI(@e)hellef DT ()b

by, of the model parameterh,}”_, at timet from h. < oIV (@) (he — W[|Dviy (@Ol _ o, P31l Eal [Pl
To this end, recall from [15], [18], [19] that givelh one ~ ~  |ek DvE () hellel, DvT ()R]~ 52

may recover the model parameters generating the regressor [ ]

vectorx; by looking at the partial derivative of the hybrid VI. EXPERIMENTS

1 1 P— T — . . - .
decoupling polynomiap,,(2) = h" v, (2) atz = In this section we present experiments evaluating the

Opn () n . performance of the proposed algorithm as a function of the
Dpn(®e) = =5 = = > TI®bfz)bi.  (20)  mode sequence and the level of noise. We consider a first
¢ i=1t#i order SARX model

This is. because if the current mea_suremems generateq Y = a(A)ye—1 4+ b(Ae)ug—1 + wy_y (24)
by theit® ARX model, all the terms in the above summation , )
vanish, except for théth, and sob; ~ Dp,(x;). Since in with m2ode Ar € {0,1}, input u; ~ N(0,1), noisew; ~
addition theK*" entry of b; is equal to one, we obtain N(0,07), and parameters(1) = —0.9, a(2)=0.7, CT(l):l

andc(2)=-1, so thath=[-1,1.6,0,—0.63,0.2, 1]T € RS.

L Dpyn () 1) We set the parameter of the recursive identifiepte: 1.
! el Dp,(x¢)’ Figure 1 shows the evolution of the model parameters in
where e = [0,---,0,1]7 € RK. Therefore, given an the absence of noise starting frdyho = 0. The top and

middle figures show that the estimated parameters converge
etio their true values in approximately 50 and 100 seconds,
respectively, when\; alternates periodically between the
DUT () h, two modes with a period df and30 seconds, respectively.
#~ (22)  This suggests that the speed of convergence of the algorithm
ex Dvy ()b depends on the speed of the mode sequence: the faster the
Since the estimates of the hybrid model parameters comode sequence the fastey converges. The bottom figure
verge toh, andh is uniquely determined by the parametershows that even though the hybrid model parameters have
of the ARX models{b;}"_,, the estimates of parameters ofnot converged to their true values fore [0,200] (they
each ARX model also converge, in spite of the switchingonverge after 800 seconds), the ARX model parameters
among different ARX models, as stated by the followingapproacha(1),c(1) and a(2),c(2) after approximately20
theorem. and 130 seconds, respectively. This suggests that wken
Theorem 3:Consider a minimal SARX system of the stays constant for a long period of time one may still be
form (1) and assume that the recursive identification schenadle to estimate the ARX model parameters correctly, even
defined by (13) and (22) is used. If there existpo > 0  though the hybrid model parameters have not yet converged.
and an integetS such that for allj > max{n,, n.} Figure 2 shows the evolution of the model parameters
starting fromIlohy = 0 for a noise level ofc = 0.02

estimateh, of the hybrid model parameters up to time
we may identify the parameters of the current ARX mod
as

by, =

j+8 ;
top) ando = 0.05 (bottom). Even though the algorithm
I =D Iy, T < poI _1,(23 ( : . ) .
PLEM (K)-1 tz:; nVn(@)vn (@) < p2la, 10)-1,(23) g designed for noiseless measurements, it also works in

R the presence of noise. However, the performance of the
thenb,, — by, converges to zero exponentially. algorithm deteriorates as increases, as expected.
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Fig. 1. Evolution ofh; (left), a(A:) and &(\:) (right) for TIahg = 0,
o = 0 and\; of period of2 (top), 30 (middle) and200 seconds (bottom).
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Fig. 2. Evolution ofh; (left), a(A;) and é():) (right) for IIshg = 0,
At of period 30 secondsg = 0.02 (top) ando = 0.05 (bottom).
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We have presented a recursive algorithm for identifying
the parameters of switched ARX models with known andt’]
equal orders and derived persistence of excitation conditions
on the input/output data that guarantee the exponentiab;
convergence of the identifier. It should be easy to extend
our approach to systems of unknown and different orderﬁ,g]

by combining our results with the batch algorithm of [15]

for that case. It remains open to determine persistence of
excitation conditions on the input and mode sequences only,
and to extend the algorithm to multivariate SARX models.
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