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Abstract— We propose a recursive identification algorithm
for a class of discrete-time linear hybrid systems known as
Switched ARX models. The key to our approach is to view
the identification of multiple ARX models as the identification
of a single, though more complex, lifted dynamical model
in a higher dimensional space. Since the dynamics of this
lifted model do not depend on the value of the discrete state
or the switching mechanism, we propose to use a standard
recursive identifier in the lifted space. We derive persistence of
excitation conditions on the input/output data that guarantee
the exponential convergence of the recursive identifier. Such
conditions are a natural generalization of the well known
result for ARX models. We then use the estimates of the lifted
model parameters to build a homogeneous polynomial whose
derivatives at a regressor give an estimate of the parameters
of the ARX model generating that regressor. Although our
algorithm is designed for the case of perfect input/output data,
our experiments also show its performance with noisy data.

I. I NTRODUCTION

Given input/output data generated by a hybrid linear
dynamical model,i.e. a system that switches among an
unknown number of linear dynamical models, we are inter-
ested in simultaneously identifying the number of models,
the model parameters, the mode sequence (i.e. the model
generating the data at each time) and the switching mech-
anism generating the transitions among the linear models.

When the model parameters and the switching mecha-
nism areknown, the above problem reduces to the design
of observers for the hybrid state [1], [5], [11], [14], together
with the study of observability conditions under which
hybrid observers operate correctly [4], [6], [9], [16], [17].

When the model parameters and the switching mecha-
nism areunknown, there is an apparent coupling between
the tasks of identifying the model parameters and estimating
the discrete state, which makes the identification problem
significantly more challenging. Due to this coupling, most
of the existing hybrid identification algorithms alternate
between parameter identification and state estimation. For
instance, [12] assumes that the number of models is known,
and proposes an identification algorithm that combines clus-
tering, regression and classification techniques; [7] uses a
greedy approach for initialization and then iterates between
assigning data points to models and computing the model
parameters; [8] uses mixed-integer quadratic programming.

Our recent work [19], [15] demonstrated that for the class
of switched ARX models one can derive an equation on the
input/output data called thehybrid decoupling polynomial
that does not depend on the mode sequence or the switching
mechanism. We also showed that one can identify the
number of modes from a rank constraint on the input/output
data and the model parameters from the derivatives of the
hybrid decoupling polynomial at a data point.

Unfortunately, all the aforementioned hybrid identifica-
tion algorithms operate in a batch mode,i.e. the model
parameters and the hybrid state are identified after all the
input/output data has been collected. This is a significant
limitation, because the computational complexity of batch
algorithms depends on the number of data points, hence
they may not be suitable for real time applications. To the
best of our knowledge, there is no prior work addressing
the recursiveidentification of hybrid dynamical models in
the case in which the model parameters, the hybrid state
and the switching mechanism are unknown.

In this paper we propose a recursive algorithm for
identifying the model parameters of switched ARX models
whose mode sequence and switching mechanism are un-
known. Rather than defining a recursive identifier of the
parameters of each ARX model, we propose to identify
the hybrid model parametersof a lifted model in a higher
dimensional space. A similar idea was used in [10] for the
identification of ARX models with structured parameters.
Since the dynamics of the lifted model are linear on the
hybrid model parameters, one can define convergence in the
lifted space and derive persistence of excitation conditions
on the input/output data that guarantee the exponential
convergence of the hybrid model parameter estimates. Our
conditions are a natural generalization of those for a single
ARX model. However, they also impose some restrictions
on the mode sequence. For instance, they require each
mode to be visited a minimum number of times. Given
an exponentially convergent estimate of the hybrid model
parameters, we build a homogeneous polynomial whose
derivatives give an exponentially convergent estimate of the
parameters of the ARX models. Although our identification
algorithm is derived for the case of perfect input/output data,
our experiments also show its performance with noisy data.



II. PROBLEM STATEMENT

In this paper we consider a class of discrete-time linear
hybrid systems known as Switched Auto Regressive eXoge-
nous (SARX) models. The temporal evolution of a SARX
model is described as

yt =
na∑

j=1

aj(λt)yt−j +
nc∑

j=1

cj(λt)ut−j , (1)

where ut ∈ R is the input, yt ∈ R is the output,λt ∈
{1, 2, . . . , n} is thediscrete state, na andnc are the orders
of each ARX model, and{a`(i)}na

`=1 and {c`(i)}nc

`=1, for
i = 1, . . . , n, are their model parameters. We assume that
nc > 0 and that all the ARX models are of known and
equal orders,i.e. for all i = 1, . . . , n either ana

(i) 6= 0 or
cnc

(i) 6= 0. However, it should be possible to extend our
approach to ARX models of unknown and different orders
by combining our results with the batch algorithm of [15].

The discrete stateλt, also called themodeof the system,
can evolve due to a variety of mechanisms. In the least
restrictive case,{λt} is a deterministic but unknown se-
quence that can take a finite number of possible values,
which we can assume to coincide with a collection of
integers:λ : Z → {1, . . . , n}. One can further restrict the
set of mode sequences by assuming thatλt is a realization
of an irreducible Markov chain, governed by transition
probabilities π(i, j) .= P (λt+1 = j|λt = i). In this
case, the model (1) is often called a “Jump-Markov Linear
System” (JMLS). Finally, one can assume thatλt is a
piecewise constant function of the evolution of the model
(1), λt(yt, yt−1, . . . , yt−na). In this case, the model (1) is
often called a “PieceWise ARX” (PWARX) model.

In this paper we will consider the first scenario, so that
our results also apply to other switching mechanisms if
that information becomes available. The following problem
summarizes the goals of this paper:

Problem 1: Let {ut, yt}T
t=0 be input/output data gen-

erated by the SARX model (1), with known number of
discrete statesn and ordersna andnc. Identify the model
parameters{a`(i)}i=1,...,n

`=1,...,na
and {c`(i)}i=1,...,n

`=1,...,nc
, and esti-

mate the discrete state{λt}T
t=max {na,nc}.

The next sections present a solution to Problem 1 under
the following assumption of minimality of the SARX model.

Definition 1: A SARX model is said to beminimal if
1) For all i = 1, . . . , n, the ith ARX model is minimal.

That is, the numerator and denominator of the transfer
function Hi(z) of the ith ARX model are coprime
polynomials, hence there is no zero/pole cancelation.

2) For all i 6= j = 1, . . . , n the transfer functionsHi(z)
andHj(z) are such thatHi(z) 6= Hj(z) for all z ∈ C.

III. T HE HYBRID DECOUPLINGPOLYNOMIAL AND THE

HYBRID MODEL PARAMETERS

In this section we review the derivation of the hybrid
decoupling polynomial and its associated vector of hybrid
model parameters. We refer the reader to [19] for further
details.

A. The hybrid decoupling polynomial

Notice from equation (1) that if we letK
.= na +nc +1,

xt = [ut−nc
, . . . , ut−1, yt−na

, . . . , yt−1,−yt]T ∈ RK and

bi = [cnc(i), . . . , c1(i), ana(i), . . . a1(i), 1]T ∈ RK ,

for i = 1, . . . , n, then we have that for allt ≥ max{na, nc}
there exists a discrete stateλt = i ∈ {1, . . . , n} such that

bT
i xt = 0. (2)

Therefore, the followinghybrid decoupling polynomial
must be satisfied by the model parameters and the in-
put/output data for any possible value of the discrete state
and for any possible switching mechanism generating the
evolution of the discrete state (SARX, JMLS, or PWARX)

n∏

i=1

(bT
i xt) = 0. (3)

B. The hybrid model parameters

The hybrid decoupling polynomial eliminates the discrete
state by taking the product of the equations defining each
one of the ARX models. While taking the product is not
the only way of algebraically eliminating the discrete state,
this leads to an algebraic equation with a very nice alge-
braic structure. Indeed, the hybrid decoupling polynomial
is simply is a homogeneous polynomial of degreen in K
variables

pn(z) .=
n∏

i=1

(bT
i z) = 0, (4)

which can be written as

pn(z) .=
∑

hn1,...,nK zn1
1 · · · znK

K = hT νn(z) = 0, (5)

wherehI ∈ R represents the coefficient of the monomial
zI = zn1

1 zn2
2 · · · znK

K with 0 ≤ nj ≤ n for j = 1, . . . , K,
and n1 + n2 + · · · + nK = n; νn : RK → RMn(K) is the
Veronese mapof degreen which is defined as [13]:

νn : [z1, . . . , zK ]T 7→ [. . . , zI , . . .]T , (6)

with I chosen in the degree-lexicographic order; and

Mn(K) =
(

n + K − 1
K − 1

)
=

(
n + K − 1

n

)
(7)

is the total number of independent monomials.
One can show (see [13]) that the vectorh ∈ RMn(K)

is simply a vector representation of the symmetric tensor
product of the ARX model parameters{bi}n

i=1, i.e.∑

σ∈Sn

bσ(1) ⊗ bσ(2) ⊗ · · · ⊗ bσ(n), (8)

whereSn is the permutation group ofn elements. There-
fore, since the vectorh ∈ RMn(K) encodes the parameters
of all the ARX models, we will refer to it as thehybrid
model parametersfrom now on. Notice that the last entry
of h is always one, because the last entry of eachbi is
also one. Therefore,h is uniquely defined and there is a
one-to-one correspondence betweenh and the ARX model
parameters{bi}n

i=1 modulo a permutation of the latter ones.



IV. RECURSIVE IDENTIFICATION OF THE HYBRID

MODEL PARAMETERS

In this section we propose a recursive algorithm for iden-
tifying the hybrid model parameters and derive a persistence
of excitation condition that guarantees the exponential con-
vergence of the estimates of the hybrid model parameters.

Recall from [2] that in the case of a single minimal ARX
model, i.e. if n = 1, the recursiveequation error identifier

b̂t+1 = b̂t − µ

[
Π1xt(ŷt−yt)

1+µ
(∑na

j=1 y2
t−j+

∑nc
j=1 u2

t−j

)
0

]
(9)

ŷt = b̂
T

t ΠT
1 Π1xt =

na∑

j=1

âjtyt−j +
nc∑

j=1

ĉjtut−j , (10)

whereΠ1 = [IK−1 0] ∈ R(K−1)×K andµ > 0, produces an
exponentially convergent estimate of the model parameters
b ∈ RK if the input/output data ispersistently exciting, i.e.
if there is anS ∈ N andρ1, ρ2 > 0 such that for allj

ρ1IK−1 ≺
j+S∑

t=j

Π1xtx
T
t ΠT

1 ≺ ρ2IK−1, (11)

whereA ≺ B if (B−A) is positive definite. It is shown in
[3] that the above condition for exponential convergence is
satisfied if the input sequence ispersistently exciting, i.e. if
there is anS ∈ N andρ3, ρ4 > 0 such that for allj

ρ3IK−1 ≺
j+S−na+1∑

t=j

utu
T
t ≺ ρ4IK−1, (12)

whereut = [ut−nc , . . . , ut+na−1]T ∈ RK−1.
The question is now how to generalize the recursive

identifier in (9)-(10) and its convergence properties to the
case of SARX models such as (1). In principle, we could
try using the same recursive identifier (9)-(10). However,
characterizing its exponential convergence is not as straight-
forward, because its dynamics are now hybrid and each
discrete state may only be visited a finite amount of time.

Thanks to the hybrid decoupling polynomial, we can
now propose a new recursive identification algorithm that
operates on the hybrid model parametersh rather than
on the ARX model parameters{bi}n

i=1. The advantage
of doing so is that the hybrid model parameters do not
depend on the value of the discrete state or the switching
mechanism. Therefore, we can directly propose a recursive
identifier ĥt for the hybrid model parametersh. Given an
estimate forh, the ARX model parameters{bi}n

i=1 can be
easily identified, as we will show in Section V.

To this end, letΠn =[IMn(K)−1 0]∈R(Mn(K)−1)×Mn(K)

and consider the recursive identification scheme

ĥt+1 = ĥt − µ

[
Πnνn(xt)(ĥ

T
t νn(xt))

1+µ‖Πnνn(xt)‖2
0

]
. (13)

Notice that (13) reduces to (9) ifn = 1. The following
theorem gives a sufficient condition for the exponential
convergence of thehybrid equation error identifier(13) in
terms of the regressors{xt} generated by the SARX model.

Theorem 1 (Persistence of excitation for SARX models):
Consider a minimal SARX system of the form (1) and
assume that the recursive identification scheme (13) is
used. If there existρ1, ρ2 > 0 and an integerS such that
for all j ≥ max{na, nc}

ρ1IMn(K)−1≺
j+S∑

t=j

Πnνn(xt)νT
n (xt)ΠT

n ≺ρ2IMn(K)−1,(14)

thenh− ĥt converges exponentially to zero.
Proof: The proof of this result for ARX models, can

be found,e.g.in Theorem 2.8, page 77 of [2]. Applying (11)
to the ARX modelzt = (−1)nyn

t = (Πnh)T (Πnνn(xt)) =∑Mn(K)−2
j=0 hjwt−j gives the result for SARX models.
Theorem 1 establishes a condition on the input/output

data under which our recursive identification scheme con-
verges. Notice that this condition is a natural generaliza-
tion of the persistence of excitation condition (11) for
a single ARX model. However, it is important to notice
that, although the recursive identification scheme does not
take into account the evolution of the discrete state, the
condition for convergence (14) does impose constraints on
the mode sequence. For instance, letn > 1, and assume
that the SARX model (1) always stays in one of the discrete
states. Then it is easy to see that (14) is violated, because∑j+S

t=j Πnνn(xt)νn(xt)T ΠT
n is not full rank for anyS.

Indeed, since the rank of
∑

xtx
T
t is bounded above by

K − 1, the rank of
∑

νn(xt)νn(xt)T is bounded above by
Mn(K − 1) < Mn(K) − 1, for n > 1, as stated by the
following basic fact from algebraic geometry.

Lemma 1:Let V be a subspace ofRK of dimensionk.
Then the dimension of the subspace ofRMn(K) spanned by
{νn(v) : v ∈ V } is Mn(k).

Proof: Without loss of generality, we can writeV as
V = {v ∈ RK : vk+1 = · · · = vK = 0}. Then, the entries
of νn(v) are reduced to theMn(k) monomialsvn1

1 · · · vnk

k ,
wheren1 + · · ·+nk = n, which form a basis for the space
of homogeneous polynomials of degreen in k variables.

We are therefore interested in understanding what restric-
tion condition (11) imposes on the mode sequence{λt}.
The following theorem gives necessary conditions on the
mode sequence for the persistence of excitation condition
for SARX models (14) to hold.

Theorem 2:For i = 1, . . . , n, let σi ⊂ {1, . . . , n} be
any choice ofi ≤ n integers from the set{1, . . . , n}, and
Ti = {t ∈ {j, j +1, . . . , j + S} : λt = i} be the set of time
instances that modei is visited in the interval{j, . . . , j+S}.
If (14) holds for someS ∈ N and ρ1, ρ2 > 0, then for
all i = 1, . . . , n there existρ3, ρ4 > 0 such that for all
j ≥ max{na, nc}
ρ3IMi(K)−1≺

∑

t∈∪k∈σi
Tk

Πiνi(xt)νi(xt)T ΠT
i ≺ρ4IMi(K)−1.(15)

Furthermore, the mode sequenceλt satisfies

∀ i = 1, . . . , n τi =
∑

k∈σi

|Tk| ≥ Mi(K)− 1. (16)



Proof: It is clear that (15) implies (16), because the
matrix Γi ∈ R(Mi(K)−1)×τi , whose columns areΠiνi(xt)
for t ∈ ∪k∈σiTk, must be full rank. Therefore, it is enough
to prove (15), which we do by contradiction.

Assume first that there is ani such thatΓi is not full rank.
Then there is a nonzero vectorci∈RMi(K) whose last entry
is zero such thatcT

i νi(xt) = 0 for all t ∈ ∪k∈σi
Tk. Since

in addition the regressors{xt}t∈∪k∈σi
Tk

live in a union of
i hyperplanes ofRK , they must also satisfyhT

i νi(xt) =∏
k∈σi

(bT
k xt) = 0, where the last entry ofhi ∈ RMi(K)

is equal to one, so thathi 6= ci. Therefore, there are
two vectorsh 6= c ∈ RMn(K) defined byhT νn(z) =∏n

i=1(b
T
i z) and cT νn(z) = (cT

i νi(z))
∏

k 6∈σi
(bT

k z) such
that hT νn(xt) = cT νn(xt) = 0 for all t ∈ {j, . . . , j + S}.
This implies that the matrixΓn must be rank deficient,
which is in contradiction with the left hand side of (14).

Assume now that for somei there is a nonzero vector
ci ∈ RMi(K) whose last entry is zero such that for all
ρ4 > 0 and S ∈ N there is aj ≥ max{na, nc} such
that ρ4‖ci‖2 ≤

∑
t∈∪k∈σi

Tk
(cT

i νi(xt))2. Since in addition

(cT
i νi(xt))2 ≤ ‖ci‖2‖νi(xt)‖2, we have that for allρ4 > 0

andS ∈ N there is aj ≥ max{na, nc} such that

ρ4 ≤
∑

t∈∪k∈σi
Tk

‖νi(xt)‖2. (17)

Notice also that for all̀ ∈ N we have

‖x‖2` =

(
K∑

k=1

x2
k

)`

=
∑

`1+`2+···+`K=`

P`1,...,`K
x2`1

1 · · ·x2`K

K

=
∑

`1+`2+···+`K=j

(
`
`1

)
· · ·

(
`

`K

)
x2`1

1 · · ·x2`K

K .

SinceP`1,...,`K
≥ 1, if we let ` = i and` = n in the above

equation we obtain‖νi(x)‖2n ≤ ‖x‖2in ≤ P i
n‖νn(x)‖2i,

whereP` =max`1,...,`K P`1,...,`K . Replacing in (17) yields

ρ
n/i
4 ≤


 ∑

t∈∪k∈σi
Tk

‖νi(xt)‖2



n/i

≤
∑

t∈∪k∈σi
Tk

i
√
‖νi(xt)‖2n

≤
∑

t∈∪k∈σi
Tk

Pn‖νn(xt)‖2.

If we let ρ2 = ρ
n/i
4 P−1

n , then for anyc ∈ RMn(K) we have

ρ2‖c‖2 ≤
S∑

t=j

(cT νn(xt))2, (18)

which is in contradiction with the right hand side of (14).

Loosely speaking, condition (16) of Theorem 2 states
that if the persistence of excitation condition for SARX
models (14) holds, then the mode sequence should visit
any subset of the set ofn modes a minimum number
of times in any moving time window. This motivates the
following definition of persistence of excitation for the
mode sequence.

Definition 2 (Persistently exciting mode sequences):A
mode sequence{λt} is calledpersistently excitingif there
is anS ∈ N such that for allj ≥ max{na, nc} (16) holds.

We are now interested in determining whether this per-
sistence of excitation condition on the mode sequence
together with the persistence of excitation condition on the
input/output data generated by each ARX model (11) are
sufficient to guarantee the convergence of our recursive
identification algorithm. More specifically, is it true that
if the output {yt} is bounded, the mode sequence{λt}
is persistently exciting, and there exists anS ∈ N and
ρ1, ρ2 > 0 such that for allj ∈ N and for all i = 1, . . . , n

ρ1IK−1 ≺
∑

t∈Ti

Π1xtx
T
t ΠT

1 ≺ ρ2IK−1, (19)

where Ti = {t ∈ {j, j + 1, · · · , j + S} : λt = i}, then
h− ĥt converges exponentially to zero?

Unfortunately, the answer is no. To see this, consider a
second order SARX model

yt = c1(λt)ut−1 + c2(λt)ut−2

with a periodic mode sequence defined fort ≥ 2

λt = {1, 1, 1, 1|2, 2, 2, 2|1, 1, 1, 1|2, 2, 2, 2| · · · }
and a periodic (fort ≥ 1) input sequence defined fort ≥ 0

ut = {1|1, 1, 1, 1| − 1, 1,−1, 1|1, 1, 1, 1| − 1, 1,−1, 1| · · · }.
Since n = 2 and K = 3 we haveM1(K) = 3 and
M2(K) = 6. Therefore, the mode sequence is persistently
exciting with S = 5, because each mode is visited al least
2 times and both modes are visited at least 5 times in any
moving window of size at least6. The input/output data is
also persistently exciting withS = 4, because fort ≥ 2 the
sequence of(M1(K)− 1 = 2)-dimensional regressors

Π1xt =
[
1 1 1 1 1 −1 1 −1 1 1 1 1 · · ·
1 1 1 1 −1 1 −1 1 1 1 1 1 · · ·

]

is of rank 2 for any moving time window of size at
least5. However, the sequence of embedded regressors of
dimensionM2(K)− 1 = 5 defined fort ≥ 2 as

Π2ν2(xt) =




1 1 1 1 1 1 1 1 1 1 1 1 · · ·
1 1 1 1 −1 −1 −1 −1 1 1 1 1 · · ·
r r r r s s s s r r r r · · ·
1 1 1 1 1 1 1 1 1 1 1 1 · · ·
r r r r −s −s −s −s r r r r · · ·




,

wherer = c1(1) + c2(2) ands = c1(1)− c2(2), is of rank
at most 2 for any moving window of any size. This is be-
cause the input/output data, although persistently exciting,
satisfiese.g.the polynomial of degree twou2

t−1−u2
t−2 = 0.

The above example suggests that the main difficulty that
prevents us from decoupling the persistence of excitation
condition on the input/output data generated by an SARX
model (14) inton persistence of excitation conditions on
the mode sequence and the input/output data generated by
the individual ARX models is that the input/output data



can potentially satisfy a homogeneous polynomial of degree
n other than the polynomialhT νn(z) defining the SARX
model. Although we could impose as a condition on the
input/output data that no polynomial of degreen other than
hT νn(z) fits the data, such a condition would essentially
be the same as assuming that (14) holds.

It remains an open issue whether it is possible to achieve
exponential convergence by imposing persistence of excita-
tion conditions on the input and mode sequences only, thus
generalizing the persistence of excitation condition on the
input sequence (12) from ARX to SARX models.

V. RECURSIVE IDENTIFICATION OF THE PARAMETERS

OF THE INDIVIDUAL ARX M ODELS

The recursive identification algorithm proposed in the
previous section provides an estimateĥt of the hybrid
model parameters given the data up to timet. Under suitable
conditions, such an estimate converges exponentially toh
ast →∞. The rest of the problem is to obtain an estimate
b̂λt of the model parameters{bi}n

i=1 at time t from ĥt.
To this end, recall from [15], [18], [19] that givenh one

may recover the model parameters generating the regressor
vectorxt by looking at the partial derivative of the hybrid
decoupling polynomialpn(z) = hT νn(z) at z = xt

Dpn(xt) =
∂pn(xt)

∂xt
=

n∑

i=1

∏

` 6=i

(bT
` xt)bi. (20)

This is because if the current measurementxt is generated
by theith ARX model, all the terms in the above summation
vanish, except for theith, and sobi ∼ Dpn(xt). Since in
addition theKth entry of bi is equal to one, we obtain

bi =
Dpn(xt)

eT
KDpn(xt)

, (21)

where eK = [0, · · · , 0, 1]T ∈ RK . Therefore, given an
estimateĥt of the hybrid model parameters up to timet,
we may identify the parameters of the current ARX model
as

b̂λt =
DνT

n (xt)ĥt

eT
KDνT

n (xt)ĥt

. (22)

Since the estimates of the hybrid model parameters con-
verge toh, andh is uniquely determined by the parameters
of the ARX models,{bi}n

i=1, the estimates of parameters of
each ARX model also converge, in spite of the switching
among different ARX models, as stated by the following
theorem.

Theorem 3:Consider a minimal SARX system of the
form (1) and assume that the recursive identification scheme
defined by (13) and (22) is used. If there existρ1, ρ2 > 0
and an integerS such that for allj ≥ max{na, nc}

ρ1IMn(K)−1≺
j+S∑

t=j

Πnνn(xt)νT
n (xt)ΠT

n ≺ρ2IMn(K)−1,(23)

thenbλt − b̂λt converges to zero exponentially.

Proof: By assumption, the SARX model is minimal.
Therefore, there is aT such that for allt ≥ T there is
a unique i such thatbT

i xt = 0. This implies that the
polynomial hT νn(z) has no repeated factor, hence there
is a δ > 0 such that‖Dνn(xt)T h‖ ≥ δ. From Theorem
1 we have that̂ht − h converges to zero exponentially,
i.e. there areκ, λ > 0 such that‖ĥt − h‖ < κλ−t.
Therefore,‖Dνn(xt)T ĥt‖ ≥ δ, else there is a sequence
of times t1 < t2 < · · · such thatδ < ‖Dνn(xtj )

T h‖ =
‖Dνn(xtj

)T (h− ĥtj
+ ĥtj

)‖ ≤ ‖En‖ρ2κλ−tj + δ, where
En ∈ RMn(K)×Mn−1(K) is a constant matrix containing the
exponents of the Veronese map of degreen and is such that
Dνn(xt) = Enνn−1(xt). Therefore,
‖bλt − b̂λt‖ =

‖ eT
KDνT

n (xt)ĥtDνT
n (xt)h− eT

KDνT
n (xt)hDνT

n (xt)ĥt

|eT
KDνT

n (xt)ĥt||eT
KDνT

n (xt)h|
‖ =

‖ eT
KDνT

n(xt)(ĥt−h)DνT
n (xt)h−eT

KDνT
n(xt)hDνT

n(xt)(ĥt−h)

|eT
KDνT

n(xt)ĥt||eT
KDνT

n (xt)h|
‖

≤ 2
‖DνT

n (xt)(ĥt − h)‖‖DνT
n (xt)h‖

|eT
KDνT

n (xt)ĥt||eT
KDνT

n (xt)h|
≤ 2

ρ2
2‖En‖2‖h‖κλ−t

δ2
.

VI. EXPERIMENTS

In this section we present experiments evaluating the
performance of the proposed algorithm as a function of the
mode sequence and the level of noise. We consider a first
order SARX model

yt = a(λt)yt−1 + b(λt)ut−1 + wt−1 (24)

with modeλt ∈ {0, 1}, input ut ∼ N (0, 1), noisewt ∼
N (0, σ2), and parametersa(1)=−0.9, a(2)=0.7, c(1)=1
andc(2)=−1, so thath=[−1, 1.6, 0,−0.63, 0.2, 1]T ∈ R6.
We set the parameter of the recursive identifier toµ = 1.

Figure 1 shows the evolution of the model parameters in
the absence of noise starting fromΠ2ĥ0 = 0. The top and
middle figures show that the estimated parameters converge
to their true values in approximately 50 and 100 seconds,
respectively, whenλt alternates periodically between the
two modes with a period of2 and30 seconds, respectively.
This suggests that the speed of convergence of the algorithm
depends on the speed of the mode sequence: the faster the
mode sequence the fasterĥt converges. The bottom figure
shows that even though the hybrid model parameters have
not converged to their true values fort ∈ [0, 200] (they
converge after 800 seconds), the ARX model parameters
approacha(1), c(1) and a(2), c(2) after approximately20
and 130 seconds, respectively. This suggests that whenλt

stays constant for a long period of time one may still be
able to estimate the ARX model parameters correctly, even
though the hybrid model parameters have not yet converged.

Figure 2 shows the evolution of the model parameters
starting fromΠ2ĥ0 = 0 for a noise level ofσ = 0.02
(top) andσ = 0.05 (bottom). Even though the algorithm
is designed for noiseless measurements, it also works in
the presence of noise. However, the performance of the
algorithm deteriorates asσ increases, as expected.
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Fig. 1. Evolution ofĥt (left), â(λt) and ĉ(λt) (right) for Π2ĥ0 = 0,
σ = 0 andλt of period of2 (top),30 (middle) and200 seconds (bottom).
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Fig. 2. Evolution ofĥt (left), â(λt) and ĉ(λt) (right) for Π2ĥ0 = 0,
λt of period30 seconds,σ = 0.02 (top) andσ = 0.05 (bottom).

VII. C ONCLUSIONS AND FUTURE WORK

We have presented a recursive algorithm for identifying
the parameters of switched ARX models with known and
equal orders and derived persistence of excitation conditions
on the input/output data that guarantee the exponential
convergence of the identifier. It should be easy to extend
our approach to systems of unknown and different orders,
by combining our results with the batch algorithm of [15]
for that case. It remains open to determine persistence of
excitation conditions on the input and mode sequences only,
and to extend the algorithm to multivariate SARX models.
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