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Abstract

We propose an algebraic geometric solution to the iden-
tification of a class of linear hybrid systems. We show
that the identification of the model parameters can be
decoupled from the inference of the hybrid state and
the switching mechanism generating the transitions,
hence we do not constraint the switches to be separated
by a minimum dwell time. The decoupling is obtained
from the so-called hybrid decoupling constraint, which
establishes a connection between linear hybrid system
identification, polynomial factorization and hyperplane
clustering. In essence, we represent the number of dis-
crete states n as the degree of a homogeneous polyno-
mial p and the model parameters as factors of p. We
then show that one can estimate n from a rank con-
straint on the data, the coefficients of p from a linear
system, and the model parameters from the derivatives
of p. The solution is closed form if and only if n ≤ 4.
Once the model parameters have been identified, the
estimation of the hybrid state becomes a simpler prob-
lem. Although our algorithm is designed for noiseless
data, we also present simulation results with noisy data.

1 Introduction

Hybrid systems are dynamical models that can be used
to describe continuous phenomena that exhibit discon-
tinuous behavior. For instance, the continuous trajec-
tory of a bouncing ball results from the alternation be-
tween free fall and elastic contact. However, hybrid
systems can also be used to approximate a phenomenon
that does not itself exhibit discontinuous behavior, by
concatenating different models from a simple class. For
instance, a non-linear dynamical system can be approx-
imated by switching among various linear models.

In this paper we look at the problem of modeling in-
put/output data by piecewise linear (hybrid) models:
Given input/output data, we want to simultaneously
estimate the number of underlying linear models, the
parameters of each model, and the hybrid state (con-
tinuous and discrete).
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Work on filtering and identification of hybrid systems
first appeared in the seventies; a review of the state of
the art as of 1982 can be found in [17]. After a decade-
long hiatus, the problem has recently been enjoying
considerable interest (see [3, 9, 15, 16, 19, 20] and ref-
erences therein). Related work has also appeared in the
machine learning community (see [6, 7, 8, 12, 13, 14]
and references therein).

When the model parameters and the switching mecha-
nism are known, the identification problem reduces to
the design of observers for the hybrid state; [1] consid-
ers the case in which the discrete state is further known
and proposes a Luenberger observer for the continuous
state; [2] combines location observers with Luenberger
observers to design a hybrid observer that identifies
the discrete location in a finite number of steps and
converges exponentially to the continuous state; [10]
proposes a moving horizon estimator that, under some
conditions, is asymptotically convergent and can be im-
plemented via mixed-integer quadratic programming.

When the model parameters and the switching mecha-
nism are unknown, the identification problem becomes
even more challenging: [11] assumes that the number
of models is known, and proposes an identification al-
gorithm that combines clustering, regression and clas-
sification techniques; [5] uses mixed-integer quadratic
programming; [4] uses a greedy approach for initializa-
tion and then iterates between assigning data points to
models and computing the model parameters.

In this paper, we propose a novel algebraic geometric
solution to the identification of a class of linear hy-
brid systems. We derive a polynomial constraint p, the
so-called hybrid decoupling constraint, which decouples
the identification of the model parameters from the in-
ference of the hybrid state and the switching mecha-
nism generating the transitions, hence we do not con-
straint the switches to be separated by a minimum
dwell time. By representing the number of discrete
states n as the degree of the polynomial p and the
model parameters as factors of p, we cast the identifi-
cation problem as a polynomial factorization problem,
which we solve using simple linear-algebraic techniques:
we estimate n from a rank constraint on the data, the
coefficients of p from a linear system, and the model
parameters from the derivatives of p. The solution is
closed form if and only if n ≤ 4. Once the model pa-
rameters have been identified, the estimation of the



hybrid state becomes a simpler problem. Although our
algorithm is designed for noiseless data, we also present
simulation results with noisy data.

2 Problem statement

We consider a class of discrete-time hybrid systems,
known as linear hybrid systems, whose evolution is de-
termined by a collection of linear models with contin-
uous state xt ∈ Rna connected by switches, indexed by
a number of discrete states λt ∈ {1, 2, . . . , n}.
The evolution of the continuous state xt is described
by the linear system

xt+1 = A(λt)xt +B(λt)ut
yt = C(λt)xt

, (1)

where A(i) ∈ Rna×na , B(i) ∈ Rna×q and C(i) ∈ Rp×na ,
for i ∈ {1, 2, . . . , n}. Furthermore, we assume that each
linear system can be written in ARX form1

yt =

na∑

j=1

aj(λt−1)yt−j +

nc∑

j=1

cj(λt−1)ut−j (2)

where nc ≤ na is the degree of the input.

The evolution of the discrete state λt can be described
in a variety of ways. In Jump-linear systems (JLS)
λ is an unknown, deterministic and finite-valued in-
put. In Jump-Markov linear systems (JMLS) λ is an
irreducible Markov chain governed by the transition
probabilities π(i, i′)

.
= P (λt+1 = i′|λt = i). In Piece-

wise affine systems (PWAS) λ is a piecewise constant
function of the continuous state that is defined by a
polyhedral partition of the state space. In this paper,
we take the least restrictive model (JLS), so that our
results also apply to other switching mechanisms.

We call a JLS whose linear dynamics can be written
in ARX form a Piece-Wise ARX (PWARX) model and
consider the following identification/filtering problem.

Problem 1 Let {ut, yt}Tt=0 be input/output data gen-
erated by a PWARX model with known dimension of
the state space na and degree of the input nc. Esti-
mate the number of discrete states n, the model pa-
rameters {a`(i)}i=1,...,n

`=1,...,na
and {c`(i)}i=1,...,n

`=1,...,nc
, and the

hybrid state {xt, λt−1}Tt=na .

3 Identification of linear hybrid systems in
PWARX form

In this section, we present an algebraic geometric so-
lution to the identification of linear hybrid systems in
PWARX form. Most of our development will concen-
trate on the case of single-input single-output (SISO)
systems, i.e. ut ∈ R and yt ∈ R. However, we show in
Remark 5 that our approach can be easily extended to
the multiple-input multiple-output (MIMO) case.

1For a single SISO linear time-invariant system, both the
state-space and the ARX representations are equivalent. For
SISO JLS, the ARX representation is more restrictive.

We notice from (2) that if we let K
.
= na + nc + 1,

xt = [ut−nc , . . . , ut−1, yt−na , . . . , yt−1,−yt]T ∈ RK and

bi = [cnc(i), . . . , c1(i), ana(i), . . . a1(i), 1]T ∈ RK ,
for i = 1, . . . , n, then we have that for all t ≥ na there
exists a discrete state λt−1 = i ∈ {1, . . . , n} such that
the point xt lies on the hyperplane

bTi xt = 0. (3)

Therefore, the input/output data {ut, yt}Tt=0 generated
by a SISO PWARX model can be mapped into a set
of points {xt}Tt=na lying on a collection of hyperplanes

Hi = {z : bTi z = 0} ⊂ RK , for i = 1, . . . , n. Further-
more, each hyperplane corresponds to one of the linear
models, because the normal to the ith hyperplane, bi,
encodes the model parameters of the ith ARX model.
Hence, switching from one linear model to another is
equivalent to jumping from one hyperplane to another.
Similarly, staying in the same discrete state is equiva-
lent to drawing samples {xt} from the same hyperplane.

With this interpretation, the identification problem is
reduced to estimating the number of hyperplanes (num-
ber of discrete states) and their normals (the model
parameters), from sample points (input/output data)
lying on those hyperplanes (generated by the PWARX
model). In order to do so, we first need to decouple
the identification of the model parameters from the fil-
tering of the hybrid state and the identification of the
switching parameters. We show how to do so in Sec-
tion 3.1 where we derive the so-called hybrid decoupling
constraint. In Section 3.2 we show how to recover the
number of discrete states from a rank constraint on the
input/output data and the model parameters from the
derivatives of the hybrid decoupling constraint. Sec-
tion 3.3 shows how to recover the hybrid state.

3.1 Decoupling identification from filtering
At a given time, t, the discrete state λt takes one out
of n possible values {1, 2, . . . , n}. In other words, for
all t ≥ na there exists an i such that bTi xt = 0. There-
fore, the following constraint must be satisfied by the
model parameters and the input/output data regard-
less of the value of the discrete state and regardless of
the switching mechanism generating the evolution of
the discrete state

n∏

i=1

(bTi xt) = 0. (4)

We call equation (4) the hybrid decoupling constraint
(HDC), since it will allow us to identify the model
parameters {bi}ni=1 independently from the filtering
of the discrete state {xt, λt−1} and regardless of the
mechanism generating the transitions (JLS, JMLS, or
PWAS). Notice that in the absence of knowledge about
the switching mechanism, the HDC in (4) encodes all
the information we can obtain from input/output data.



3.2 Identification of the model parameters
Thanks to the HDC we can concentrate on the identifi-
cation of the number of models n and the model param-
eters {bi}ni=1 from input/output data without having
to worry about knowing the value of the hybrid state
or the type of switching mechanism. The identification
problem is then equivalent to solving for the number
of discrete states n and the model parameters {bi}ni=1

from the HDC. To this end, notice that the HDC

pn(z)
.
=

n∏

i=1

(bTi z) = 0 (5)

is a homogeneous polynomial of degree n in K = na +
nc + 1 variables. Therefore it can be written as

pn(z)
.
=
∑

hn1,...,nKz
n1
1 · · · znKK = hT νn(z) = 0, (6)

where hI ∈ R represents the coefficient of the monomial
zI = zn1

1 zn2
2 · · · znKK with 0 ≤ nj ≤ n for j = 1, . . . ,K,

and n1 + n2 + · · · + nK = n; νn : RK → RMn is the
Veronese map of degree n which is defined as:

νn : [z1, . . . , zK ]T 7→ [. . . , zI , . . .]T , (7)

with I chosen in the degree-lexicographic order; and

Mn =

(
n+K − 1
K − 1

)
=

(
n+K − 1

n

)
(8)

is the total number of independent monomials. One
can show [18] that the vector h ∈ RMn is simply a
vector representation of the symmetric tensor product
of the individual model parameters {bi}ni=1, i.e.

∑

σ∈Sn

bσ(1) ⊗ bσ(2) ⊗ · · · ⊗ bσ(n), (9)

where Sn is the permutation group of n elements. We
will refer to h as the hybrid model parameters, since it
is a combination of the individual model parameters.

If we now apply the HDC (6) to the input/output data
{xt}Tt=na , then we obtain the following system of linear
equations on the hybrid model parameters h

Ln h
.
=




νn(xna)T

νn(xna+1)T

...
νn(xT )T


h = 0 ∈ RT−na+1. (10)

We are now interested in determining under what con-
ditions we can solve for the number of discrete states n
and the hybrid model parameters h from (10). To this
end, notice that if n was known, we could immediately
recover h from the linear system Lnh = 0. However,
since the linear system in (10) depends explicitly on n,
we cannot estimate h directly without knowing n in
advance. The following theorem (see [18]) shows that
the estimation of the number of discrete states n is very
much related to the conditions under which the solu-
tion for h from (10) is unique (recall that hMn

= 1).

Theorem 1 (Number of discrete states) Given
input/output data {ut, yt}Tt=0 generated by a PWARX
model, let Li ∈ R(T−na+1)×Mi be the matrix defined
in (10), but computed with the Veronese map νi of
degree i. If T is large enough (T ≥ Mn + na − 2, if
n is known) and if the points {xt}Tt=na are in general

position on the hyperplanes {bTi z = 0}ni=1 with at least
K − 1 points per hyperplane, then:

rank(Li)





> Mi − 1, i < n,
= Mi − 1, i = n,
< Mi − 1, i > n.

(11)

Therefore, the number of discrete states n is given by:

n = min{i : rank(Li) = Mi − 1}. (12)

Remark 1 (Identifying n and h from noisy data)
In the presence of noise, we can still solve for the
hybrid model parameters h from (10) in a least-squares
sense. We let h be the eigenvector of LTnLn associated
with its smallest eigenvalue, and then normalize h so
that hMn

= 1. However, we cannot directly estimate
n from (12), because the matrix Li may be full rank.
In the noisy case we declare the rank of Li to be r
if σr+1/σr < ε, where σ` is the `th singular value
of Li and ε > 0 is a pre-specified threshold. We
have found this simple criterion to work well in our
experiments. One can also use this estimate of n to
initialize iterative techniques, such as the one in [4].

Theorem 1 and the linear system in (10) allow us to de-
termine the number of discrete states n and the hybrid
model parameters h, respectively, from input/output
data {ut, yt}Tt=0. The rest of the problem is to recover
the model parameters {bi}ni=1 from h. To this end, let
us consider the partial derivative of pn(z) in (5)

Dpn(z) =
∂pn(z)

∂z
=

n∑

i=1

∏

`6=i
(bT` z)bi. (13)

If z belongs to hyperplane Hi, then we have bTi z = 0.
Therefore, since the Kth entry of bi is equal to one,
after replacing bTi z = 0 into (13) we obtain

bi =
Dpn(z)

eTKDpn(z)

∣∣∣∣
z∈Hi

, (14)

where eK = [0, · · · , 0, 1]T ∈ RK . Therefore, we can es-
timate the model parameters directly from the deriva-
tives of pn(z) at a collection of n points {zi ∈ Hi}ni=1

lying on the n hyperplanes. However, since the value of
the discrete state λt is unknown, we do not know which
data points {xt}Tt=na belong to which hyperplane. In
order to find the set of points {zi ∈ Hi}ni=1, let us
consider a line with base point z0 and direction v,
L = {z0 + αv, α ∈ R}. If z0 6= 0, z0 is not paral-
lel to v, and bTi v 6= 0, then the line L must intersect



the union of all hyperplanes ∪ni=1Hi = {z : pn(z) = 0}
at n distinct points

zi = z0 + αiv ∈ Hi ∩ L i = 1, . . . , n, (15)

where {αi} are the roots of the univariate polynomial

qn(α) = pn(z0 + αv). (16)

We are left with choosing the parameters x0 and v for
the line L. The base point x0 can be chosen as any
nonzero vector in RK . Given z0, the direction v must
be chosen not parallel to z0 and such that bTi v 6= 0, for
all i = 1, . . . , n. Since the latter constraint is equiva-
lent to pn(v) 6= 0, and pn is known, we can immediately
choose v even though we do not know the model pa-
rameters {bi}ni=1. We have shown the following:

Theorem 2 (Identifying the model parameters)
Given input/output data {ut, yt}Tt=0, T ≥Mn +na− 2,
generated by a PWARX model with n discrete states,
the model parameters {bi}ni=1 can be computed from
the the hybrid model parameters h ∈ RMn as follows:

1. Choose z0 6=0 and v such that v 6=γz0 and pn(v) 6=0.

2. Solve for the n roots {αi}ni=1 of qn(α) = pn(z0 +αv)
and obtain the model parameters {bi}ni=1 as

bi =
Dpn(zi)

eTKDpn(zi)
, (17)

where zi = z0 + αiv for i = 1, . . . , n.

Hence, the identification of the model parameters can
be obtained in closed form if and only if n ≤ 4, because
the only nonlinear step is to solve for the roots of qn.

Remark 2 (Identifying {bi}ni=1 from noisy data)
In the presence of noise, we can still estimate the
normal vectors {bi}ni=1 as in Theorem 2. However, the
quality of the estimates will depend on the choice of
the parameters z0 and v. In this case, one can choose
multiple (z0,v) satisfying the above conditions, obtain
the model parameters for each choice, and let {bi}ni=1 be

the parameters that better reconstruct h. Alternatively,
one can obtain {zi}ni=1 as points in the data set that
minimize a certain distance to the hyperplanes. We
refer the interested reader to [18] for further details.

3.3 Filtering of the hybrid state
Given the number of discrete states n and the model
parameters {bi}ni=1, we now show how to recon-
struct the hybrid state trajectory {xt, λt−1} from in-
put/output data {xt}Tt=na . We first notice that for
each time t ≥ na there exists a generally unique2 i
such that bTi xt = 0. Therefore, the discrete state can
be trivially identified as:

λt−1 = arg min
i=1,...,n

(bTi xt)
2. (18)

2In principle, it is possible that a data point xt belongs to
more than one hyperplane bTi z = 0. However, the set of all such
points is a zero measure set on the variety {z : pn(z) = 0}.

Furthermore, since the parameters of the PWARX
model {a`(λt−1)}na`=1 and {c`(λt−1)}nc`=1 are now known
for all t ≥ na, we can find a state-space realization
(At, Bt, Ct) of the model. Therefore, we can express
the output yt directly as a function of the continuous
state at time t = na, xna , and the (known) input ut as



yna
yna+1

yna+2

...
yt




=




Cna
Cna+1Ana

Cna+2Ana+1Ana
...

CtAt−1 · · ·Ana



xna+ (19)




0 0 · · · 0
Cna+1Bna 0 · · · 0

Cna+2Ana+1Bna Cna+2Bna+1

...
. . .

CtAt−1 · · ·Ana+1Bna CtBt−1







una
una+1

una+2

...
ut−1



.

From (19) we can solve for xna uniquely, provided that
the matrix multiplying xna has full rank. Given xna ,
ut and λt, the continuous state trajectory {xt} can be
trivially recovered from equation (1).

Remark 3 (No minimum dwell time) Notice that
our algorithm does not require that the switching times
be separated by a minimum dwell time.

Remark 4 (Inferring the switching parameters)
Once the model parameters and the hybrid state have
been identified, the problem of estimating the switching
parameters, e.g. the partition of the state space
for PWAS, becomes a simpler problem. We refer
interested readers to [4, 11] for specific algorithms.

Remark 5 (MIMO systems) Notice than our algo-
rithm for SISO systems can also be applied to MIMO
systems. To see this, let us first consider the case of
multiple-input single-output (MISO) systems. In this
case one can write the PWARX model as

yt =

na∑

j=1

aj(λt−1)yt−j+

n1
c∑

j=1

c1j (λt−1)u1
t−j + · · ·+

nqc∑

j=1

cqj(λt−1)uqt−j ,

where njc is the degree of input j = 1, . . . , q. In this
case, one can define the data points and the normals to
the hyperplanes as

xt = [u1T , . . . , uqT , yt−na , . . . , yt−1,−yt]T ∈ RK and

bi = [c1T (i), . . . , cqT (i), ana(i), . . . a1(i), 1]T ∈ RK ,
where K = na+

∑q
j=1 n

j
c+1, uj = [uj

t−njc
, . . . , ujt−1]T ∈

Rnjc and cj(i) = [cj
njc

(i), . . . , cj1(i)]T ∈ Rnjc for j =

1, . . . , q and i = 1, . . . , n. Therefore, if the dimen-
sions of the PWARX model na and njc are known for
all j = 1, . . . , q, then the algorithm for SISO systems
can also be applied to MISO systems. Furthermore, in
the case of MIMO systems one can apply the MISO
algorithm to each one of the q outputs independently.



4 Experiments

We present simulation results on the identification of
1000 randomly chosen JLS with n = 3 discrete states.
Each linear system is described by the following ARX
model with zero-mean additive Gaussian noise wt

yt = a1(λt−1)yt−1 + a2(λt−1)yt−2 + c1(λt−1)ut−1 +wt.

The dimension of the state space is na = 2, the de-
gree of the input is nc = 1 and the discrete state
is λt ∈ {1, 2, 3}. In each one of the 1000 trials,
the model parameters (a1, a2) for each discrete state
were randomly chosen so that the poles of each lin-
ear system are uniformly distributed on the annulus
0.8 ≤ ‖z‖ ≤ 1 ⊂ C. The model parameter c1 for each
discrete state was chosen according to a zero-mean unit
variance Gaussian distribution. The value of the dis-
crete state was chosen as

λt =





1 1 ≤ t ≤ 30

2 31 ≤ t ≤ 60

3 61 ≤ t ≤ 100

.

The initial value of the continuous state was randomly
drawn from a zero-mean Gaussian distribution with
variance Σ = I2. The input sequence was drawn from
a zero-mean unit variance Gaussian distribution. The
standard deviation σ of wt was chosen in the range
[0, 0.01] to simulate a measurement error of about 1%.

We compare the polynomial factorization algorithm
(PFA) of [21], which identifies the model parameters
based on algebraically factoring the polynomial pn(z),
with our polynomial differentiation algorithm (PDA),
which identifies the parameters from the derivatives of
pn(z). Figure 1 shows the mean error on the estimation
of the model parameters,3 the continuous state,4 and
the discrete state,5 respectively, as a function of σ.6

Both the model parameters and the continuous state
are perfectly estimated when σ = 0. For σ > 0, the
estimation error increases approximately linearly with
the amount of noise. Notice that the discrete state is in-
correctly estimated approximately 7− 8% of the times
for σ = 0.01. Notice also that PDA performs better
than PFA, especially in the estimation of the continu-
ous state where it achieves about half of the error.

3The error between the estimated model parameters
(â1, â2, ĉ1) and the true model parameters (a1, a2, c1) was com-
puted as ‖(â1, â2, ĉ1) − (a1, a2, c1)‖, averaged over the number
of models and the number of trials.

4The error between the estimated continuous state x̂t and the
true continuous state xt was computed as ‖x̂t − xt‖, averaged
over the number of data points and the number of trials.

5The error between the estimated discrete state λ̂t and the
true discrete state λt was computed as the percentage of times
in which λ̂t 6= λt, averaged over the number of trials.

6In all the trials, the number of discrete states was correctly
estimated as n = 3 by using a threshold of ε = 3× 10−3 on the
singular values of Ln to compute its rank (see Remark 1).

Figures 2 and 3 show the reconstruction of the state
trajectory for a particular trial with σ = 0.01. Notice
that there are 5 time instances in which the estimates
of the discrete state are incorrect. However, the contin-
uous state is estimated with a small error throughout
the whole time interval, in spite of the errors in the
identification of the discrete state.
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Figure 1: Mean error over for the identification of the
model parameters (top), the continuous state
(middle) and the discrete state (bottom) as a
function of the standard deviation of the mea-
surement error σ. Since neither PFA nor PDA
impose stability constraints on the estimation
of the parameters of the JLS, about 150 trials
yield unstable systems. We considered those
150 trials as outliers and computed the mean
error over the remaining 850 trials.



5 Conclusions and open issues

We have proposed an algebraic geometric solution to
the identification of a class of linear hybrid systems. We
showed that the identification of the model parameters
can be decoupled from the inference of the hybrid state
and from the switching mechanism generating the tran-
sitions. By representing the number of discrete states
n as the degree of a polynomial p and the model pa-
rameters as factors of p, we casted the identification
problem as a polynomial factorization problem, which
we solved using simple linear-algebraic techniques. We
showed that one can estimate n from a rank constraint
on the data, the coefficients of p from a linear sys-
tem, and the model parameters from the derivatives
of p. We presented simulation results evaluating the
performance of the algorithm with noisy data. Open
issues include a detailed analysis of the robustness of
the algorithm with noisy data, as well as extending it
to situations in which the dimension of the state space
is unknown, or the models of have different dimensions.
Other extensions include imposing stability or causality
constraints on the estimation of the model parameters.
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Figure 2: Evolution of the first entry of the continuous
state xt and its estimate x̂t for 0 ≤ t ≤ 100.
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Figure 3: Evolution of the estimated discrete state λ̂t.
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