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Abstract

We analyze the observability of the continuous and dis-
crete states of a class of linear hybrid systems. We
derive rank conditions that the structural parameters
of the model must satisfy in order for filtering and
smoothing algorithms to operate correctly. We also
study the identifiability of the model parameters by
characterizing the set of models that produce the same
output measurements. Finally, when the data are gen-
erated by a model in the class, we give conditions under
which the true model can be identified.

1 Introduction

Hybrid systems are mathematical models of physical
processes governed by differential equations that ex-
hibit discontinuous behavior. Examples of such pro-
cesses are ubiquitous in nature and in man-made de-
vices, from action potentials in neurons to flight control
systems in aircrafts. A particular but important class
of hybrid systems is obtained by assuming that the dy-
namics between discrete events are linear. This class of
systems is important not only because the analysis and
design of linear control systems is well understood, but
also because many real processes can be approximated
arbitrarily well by models in this class. Previous work
on hybrid systems concentrated on the areas of model-
ing, stability, controllability and verification. However
(see Section 1.2), little attention has been devoted to
the study of the observability of the continuous and
discrete states of a hybrid system. Another important
issue is whether the model itself can be inferred from
data, i.e., whether it is identifiable. While many iden-
tification algorithms have been proposed (see Section
1.2), most of them do not give conditions under which
their solution is unique.

In this paper, we study the observability and identi-
fiability of so-called jump linear systems (JLSs), i.e.,
systems whose evolution is determined by a collec-
tion of linear models with continuous state xt ∈ Rn
connected by switches of a number of discrete states
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λt ∈ {1, 2, . . . , N}. The evolution of the continuous
state xt is described by the linear system

xt+1 = A(λt)xt + vt
yt = C(λt)xt + wt,

(1)

where A(k) ∈ Rn×n and C(k) ∈ Rp×n, for k ∈
{1, 2, . . . , N}, xt0 ∼ P0, vt ∼ N (0, Q(λt)) and wt ∼
N (0, R(λt)). The evolution of the discrete state λt
can be modeled, for instance, as an irreducible Markov
chain governed by the transition map π, P (λt+1|λt) =
πt+1,t, or (a we do here) as a deterministic but unknown
input that is piecewise constant and finite valued1.

1.1 Contributions of this paper
In Section 2 we introduce the notion of observability
for JLSs, and derive conditions under which the con-
tinuous and discrete states can be inferred from data.
Unlike previous work, we derive simple and intuitive
rank conditions that depend on the system parameters
A(·), C(·) and on the separation between jumps, and
not on the noise or inference criterion. The rank condi-
tions we derive can be thought of as an extension of the
Popov-Belevic-Hautus rank test for linear systems [10]
and are, to the best of our knowledge, novel.

In Section 3 we study two problems. The first one is
concerned with the characterization of the set of mod-
els that produce the same outputs (“realizability”). We
show that, in lack of assumptions on the model generat-
ing the data, there are infinitely many models that pro-
duce the same measurements and, therefore, a unique
model cannot be inferred from data. We also show
that the set of unidentifiable models is actually the
entire set of possible models, unless proper conditions
are imposed. Therefore, extreme care has to be ex-
ercised in the use of iterative identification techniques
for JLSs, since they can in principle converge to any
model if proper conditions are not enforced. We derive
such conditions in Section 3.1. The second problem is
concerned with the conditions under which the actual
model that generated the data (the “true” model) can
be recovered from the output (“identifiability”), under
the assumption that the true model belongs to the class
of JLSs. We address this problem in Section 3.2.

1Most of the literature on hybrid systems restricts the switch-
ing mechanism of the discrete state to depend on the value of the
continuous state. While this is generally sensible in the study of
stability, it is a significant restriction to impose in the context
of filtering and identification. Our model is more general, as it
imposes no restriction on the mechanism that governs the tran-
sitions between discrete states.



1.2 Relation to prior work
Filtering and identification of JLSs was an active area
of research through the seventies and eighties: a review
of the state of the art in 1982 can be found in [19].
That paper discusses sub-optimal algorithms for mini-
mum mean-square error state estimation. In [18], the
same author uses a finite-memory approximation to
the maximum likelihood for simultaneously estimating
the model parameters and the continuous and discrete
states. The paper includes a condition for observabil-
ity which, although tautological, is significant because
it represents the first attempt to characterize the ob-
servability of hybrid systems.

The field was revived in the last few years, when many
iterative algorithms were proposed, along with a few
attempts to characterize observability. [16] gives an
unusual and somewhat limited condition in terms of
the existence of a discrete state trajectory. These con-
ditions pertain to systems where the discrete state is
controlled, rather than evolving out of its own dynam-
ics. [17] gives conditions for a particular class of lin-
ear time-varying systems where the system matrix is
a linear combination of a basis with time-varying co-
efficients. They relate to the conditions of [16], where
the discrete state is controlled. [8] addresses observ-
ability and controllability for switched linear systems
with known and periodic transitions. [2] proposes the
notion of incremental observability of a hybrid system,
which requires the solution of a mixed-integer linear
program in order to be tested.

In a series of papers (see [7] and references therein)
Krishnamurthy, Doucet et al. propose various forms
of alternating minimization algorithms for estimating
continuous and/or discrete states that are optimal in
the maximum a-posteriori sense. Various forms of ap-
proximate inference for JLSs include [14, 12, 4]. In [12],
approximate filtering and maximum likelihood param-
eter estimates are obtained via alternating minimiza-
tion. The approximate filtering entails the assump-
tion that the underlying conditional density is uni-
modal, similarly to [14], which implicitly approximates
the posterior density with a Gaussian. Also [15] al-
ternates between approximate filtering, which uses so-
called Viterbi approximations (where the evolution of
the conditional density is approximated by the trajec-
tory of its mode; which subsumes the assumption that
it is unimodal), and maximum likelihood parameter es-
timation. In [13] approximate filtering is performed by
approximating the posterior density with a member of
an ad-hoc parametric class. In [5] particle filtering is
used for simultaneous filtering and identification. In [9]
approximate filtering is applied to systems in which the
discrete dynamics do not affect the evolution of the
continuous states, but only the choice of the measured
output. The textbook [1] uses the interacting multiple
models scheme to provide an approximation of the two-

step prediction using N Gaussian densities rather than
N2. [3] uses mixed-integer quadratic programming for
identifying the parameters of piecewise affine models
with known polyhedral partitions. The algorithm has
polynomial complexity on the number of data.

2 Observability

Given a model Σ = {A(k), C(k); k = 1 . . .N} of the
type described by equation (1), we focus our attention
on how to infer the state of the system and the sys-
tem parameters from the output {yt}. The simplest
instance of this problem can be informally described as
follows. Assume that we are given the model param-
eters A(k), C(k) and that Σ evolves starting from an
(unknown) initial condition (xt0 , λt0). Given the out-
put on the interval [t0, t0 + T ], is it possible to recon-
struct the sequence of continuous states xt0 , . . . , xt0+T

as well as the sequence of discrete states λt0 , . . . λt0+T

uniquely?

If the sequence of discrete states is known, then the
output of the system between two consecutive jumps
can be written explicitly in terms of the model param-
eters A(·), C(·), and the initial value of the continuous
state xt0 . Thus the entire continuous state trajectory
can be reconstructed from the initial value of the con-
tinuous state xt0 and the discrete states λt0 , . . . , λt0+T .
More specifically, the output sequence is given by:



yt0
...

yt1−1

yt1
...

yt2−1

yt2
...




=




C(λt0)xt0
...

C(λt0)A(λt0)t1−t0−1xt0
C(λt1)A(λt0)t1−t0xt0

...
C(λt1)A(λt1)t2−t1−1A(λt0)t1−t0xt0
C(λt2)A(λt1)t2−t1A(λt0)t1−t0xt0

...




(2)

=




Oτ0(λt0)xt0
Oτ1(λt1)A(λt0)t1−t0xt0

Oτ2(λt2)A(λt1)t2−t1A(λt0)t1−t0xt0
...


 (3)

where {tk, k≥1} are the switching times, τk = tk+1−tk
and Oτk(λtk) ∈ Rpτk×n, defined by the equations
above, is the extended observability matrix of the pair
(A(λtk), C(λtk)). We thus propose the following no-
tions of indistinguishability and observability:

Definition 1 (Indistinguishability) We say that the
states {xt0 , λt0 , . . . , λt0+T } and {x̄t0 , λ̄t0 , . . . , λ̄t0+T }
are indistinguishable on the interval [t0, t0 +
T ] if the corresponding outputs in free evolution
{yt0 , . . . , yt0+T } and {ȳt0 , . . . , ȳt0+T } are equal. We de-
note the set of states which are indistinguishable from
{xt0 , λt0 , . . . , λt0+T } as I(xt0 , λt0 , . . . , λt0+T ).



Definition 2 (Observability) We say that a state
{xt0 , λt0 , . . . , λt0+T } is observable on [t0, t0 + T ] if
I(xt0 , λt0 , . . . , λt0+T ) = {xt0 , λt0 , . . . , λt0+T }. When
any admissible state is observable, we say that the
model Σ is observable.

2.1 Observability of the initial state
We first analyze the conditions under which we
can determine λt0 = λt0+1 = · · · = λt1−1 and
xt0 uniquely, i.e., before a switch occurs. We
have that {xt0 , λt0 , . . . , λt1−1} is indistinguishable from
{x̄t0 , λ̄t0 , . . . , λ̄t1−1} if Oτ0(λt0)xt0 = Oτ0(λ̄t0)x̄t0 , i.e.,
if rank([Oτ0(λt0) Oτ0(λ̄t0)]) < 2n. If either pτ0 < 2n or
rank(Oτ0(λt0)) < n or rank(Oτ0(λ̄t0)) < n, the above
rank condition is trivially satisfied, so we assume that
τ0 ≥ τ , 2n. We then have the following:

Lemma 1 (Observability of the initial state)
If τ0 ≥ τ , 2n, then {xt0 , λt0 , λt0+1, . . . , λt0+τ−1} is
observable if and only if for all k 6= k′ ∈ {1, . . . , N} we
have rank([Oτ (k) Oτ (k′)]) = 2n.

Readers may notice that the joint observability matrix
O2n(k, k′) , [O2n(k) O2n(k′)] equals the observability
matrix of the 2n-dimensional system defined by:

A(k, k′) =

[
A(k) 0

0 A(k′)

]
C(k, k′) =

[
C(k) C(k′)

]
.

Therefore, we can define the joint observability index of
systems k and k′ as the minimum integer ν(k, k′) such
that the rank of the extended joint observability matrix
Oj(k, k′) , [Oj(k) Oj(k′)] stops growing. Hence, we
can rephrase Lemma 1 in terms of the largest joint
observability index ν , max

k 6=k′
{ν(k, k′)} ≤ 2n as follows:

Corollary 1 If τ0 ≥ ν, then {xt0 , λt0 , . . . , λt0+ν−1} is
observable if and only if for all k 6= k′ ∈ {1, . . . , N} we
have rank([Oν(k) Oν(k′)]) = 2n.

Remark 1 (Observability subspaces) Notice that
the rank-2n condition implies that each linear system
(A(k), C(k)) must be observable, i.e., rank(Oν(k)) = n
for all k ∈ {1, . . . , N}. In addition, the rank-2n con-
dition implies that the intersection of the observabil-
ity subspaces of each pair of linear systems has to be
empty. In fact, the set of unobservable states can be
directly obtained from the intersection of the observabil-
ity subspaces. One could therefore introduce a notion
of distance between models using the angles between the
observability spaces, similarly to [6].

2.2 Observability of the switching times
Corollary 1 gives conditions for the observability of
{xt0 , λt0 , λt0+1, . . . , λt0+ν−1}. We are now interested in
the observability of {xt0 , λt0 , λt0+1, . . . , λt1−1}. Since
λt1−1 = · · · = λt0 , we only need to concentrate on the
conditions under which the first transition, t1, can be
uniquely determined. We will distinguish between two
different aspects of the problem:

Detection of a switch: this refers to the problem of
determining whether a jump has occurred or not, given
the output of the system {yt} on the interval [t0, t0+T ].
We will derive a rank condition that guarantees the
detection of a switch, either at the same instant, or
post-mortem (i.e., after it has occurred).

Observation of a switch: this refers to the problem
of uniquely determining the time instant tk at which a
jump occurs, given the output of the system {yt} on the
interval [t0, t0+T ]. We will derive additional conditions
on the system parameters that guarantee that a switch
is recovered uniquely when it is detected post-mortem.

Let us first derive conditions under which a switch is
immediately reflected in the measurements. We have
yt1 = C(λt1)A(λt0)t1−t0xt0 and want to determine
whether it is possible that yt1 = C(λt0)A(λt0)t1−t0xt0 .
This happens for all xt0 in the null-space of
(C(λt1)− C(λt0))A(λt0)t1−t0 . Therefore:

Lemma 2 If xt0 ∈ Null (C(λt1)−C(λt0))A(λt0)t1−t0 ,

then {xt0 ,
t1−t0 times︷ ︸︸ ︷
λt0 , . . . , λt0 , λt1} and {xt0 ,

t1−t0 times︷ ︸︸ ︷
λt0 , . . . , λt0 , λt0},

are indistinguishable in [t0, t1].

We conclude from Lemma 2 that a switch can be in-
stantaneously detected for all xt0 ∈ Rn if and only
if (C(k)− C(k′))A(k) is full rank for all k 6= k′ ∈
{1, . . . , N}. This condition, together with those of
Corollary 1, enable us to uniquely recover xt0 , λt0 and
t1 from the output {yt, t ∈ [t0, t1]} as follows. Let

Yi ,
[
yTt0 . . . yTt0+i−1

]T
= Oi(λt0)xt0 . (4)

If i = ν, equation (4) has a solution for only one λt0 ∈
{1, . . . , N} which is given by

λt0 = {k : rank([Oν(k) Yν ]) = n}. (5)

Given such a λt0 , equation (4) has a solution for any
i ∈ [ν, τ0] and does not have a solution for i = τ0 + 1.
Therefore t1 can be uniquely recovered as:

t1 = min{i : rank([Oi(λt0) Yi]) = n+ 1}+ t0− 1. (6)

Once t1 has been determined, we set τ0 = t1 − t0 and
xt0 = Oτ0(λt0)†Yτ0 . Then we repeat the process for
the remaining jumps. The only difference is that xtk ,
k ≥ 1, will be given. However, since λt0 is originally
unknown, we still need to check the rank-2n condition
of Corollary 1 for any pair of extended observability
matrices in order for xt0 and λt0 to be uniquely recov-
erable. Therefore, we have:

Theorem 1 If (C(k)− C(k′))A(k) is full rank for all
k 6= k′ ∈ {1, . . . , N} and τk ≥ ν for all k ≥ 0, then
{xt0 , λt0 , . . . , λt0+T } is observable if and only if for all
k 6= k′∈{1, . . . , N} we have rank([Oν(k) Oν(k′)])=2n.



Let us now consider the case in which a jump occurs
at time t1, but it cannot be detected at the same
time. This happens, for example, when C(λt1) =
C(λt0) or p < n. It can be easily verified that
the output of the system in [t1, t1 + j − 1], yt1+i =
C(λt1)A(λt1)iA(λt0)t1−t0xt0 , can also be obtained as
C(λt0)A(λt0)t1+i−t0xt0 if and only if xt0 belongs to
Null

(
(C(λt1)A(λt1)i − C(λt0)A(λt0)i)At1−t0(λt0)

)
for

all i = 0, 1, . . . , j − 1. This condition is compactly ex-
pressed in the following lemma.

Lemma 3 (Detection of a switch) If xt0 belongs to
Null ((Oi(λt1)−Oi(λt0))At1−t0(λt0)) for all i=1, ..., j,

then {xt0 ,
t1+j−t0 times︷ ︸︸ ︷
λt0 , ..., λt0 } and {xt0 ,

t1−t0 times︷ ︸︸ ︷
λt0 , ..., λt0 ,

j times︷ ︸︸ ︷
λt1 , ..., λt1}

are indistinguishable on the interval [t0, t1 + j − 1].

Therefore, if (Oν(k)−Oν(k′))A(k) is full rank for
all k 6= k′ ∈ {1, . . . , N}, then a switch can be de-
tected for all xt0 ∈ Rn (either immediately or after
it has occurred). Even though this condition guar-
antees that a switch is detected, it does not guaran-
tee that it can be uniquely recovered. For instance,
imagine that a jump occurs at time t1, but it is
not detected until time t1 + j. Since both t1 and
j ≤ ν are unknown, in general we cannot tell when
the jump occurred. However, if we assume that t2 ≥
t1 + j+ν, since t1 + j is known, under the assumptions
of Corollary 1, we can determine (A(λt0), C(λt0), xt0)
and (A(λt1), C(λt1), xt1+j) uniquely from the mea-
surements on the intervals [t0, t0 + ν − 1] and [t1 +
j, t1 + j + ν − 1], respectively. Since we must have
xt1+j = A(λt1)jA(λt0)t1−t0xt0 , in order for t1 to be
uniquely recoverable for all xt0 ∈ Rn, we need that

rank
(

(A(λt1)j −A(λt1)j
′
A(λt0)j−j

′
)A(λt0)t1−t0

)
= n

for all 0 ≤ j′ ≤ j − 1. Since j is unknown we need to
enforce this for all j ≤ ν. We have shown that:

Theorem 2 If for all k ≥ 0 we have τk ≥ 2ν and
for all k 6= k′ ∈ {1, . . . , N}, j′ = 0, . . . , j − 1
and j ≤ ν we have rank([Oν(k) Oν(k′)]) = 2n,
rank((Oν(k)−Oν(k′))A(k)) = n and rank(A(k′)j −
A(k′)j

′
A(k)j−j

′
) = n, then {xt0 , λt0 , λt0+1, . . . , λt0+T }

is observable on [t0, t0 + T ].

3 Identification

The study of identifiability aims at answering two cru-
cial questions in modeling time series with JLSs.

The first question pertains to uniqueness: Given
measurements {yt}t0+T

t=t0 , generated by a model Σ =
{Ai, Ci; i = 0 . . .N − 1}, what is the set of models
Σ̃ = {Ãi, C̃i; i = 0 . . . Ñ − 1} that may have produced

the same output sequence {yt}t0+T
t=t0 ? Clearly, this ques-

tion is crucial in the design of inference algorithms: if
the set Σ̃ is non-empty, then any inference algorithm
can converge to any points of the set. In other words,
all models in the set are indistinguishable. In order for
inference algorithms to converge to a unique model, it
is necessary to understand the structure of the set, and
elect a representative for each class. This will need im-
posing conditions on the structure of the models. Fail-
ing that, any inference algorithm may give dramatically
different answers when operating on the same data de-
pending on initialization, or on numerical errors.

The second question pertains to identifiability of the
“true” model: Assuming that the model that generates
the data is actually a jump linear system, under what
conditions can we recover it from the data? We address
these two questions in order in the next two sections.

3.1 Realizability
The results we are about to present reveal that, given
data alone, there are infinitely many systems that gen-
erate it, which differ in the trajectories of both discrete
and continuous states, and model parameters. Even
more surprisingly, given any system, one can always
find arbitrary changes of basis of the same system that
re-create the data. In other words, given any system,
one can “simulate” the jumps. This is grim news for
inference algorithms, because it means that – unless
appropriate conditions are enforced – one can never re-
cover a meaningful model from data.

Consider a vector YT collecting the measurements from
t0 to t0 + T < ∞. We will now show that one can
explain the data with one single model, or with two
models and one switch, all the way to T + 1 models
and T switches. In fact, we can always choose (in-
finitely many) models {A0, C0} with extended observ-
ability matrix O0, and initial conditions x0 ∈ Rn with
n large enough, such that YT = O0x0. However, we can
also choose τ0 ≤ T/2, two systems {A1, C1}, {A2, C2}
with observability matrices O1 and O2, two initial con-
ditions x1, x2 ∈ Rn1 , and n1 large enough, such that:

YT = O0x0 =

[
O1x1

O2x2

]
(7)

where {Ai,Ci}2i=1 are chosen with respect to a basis such
that x2 =Aτ01 x1. Similarly, one can split the time series
into 3, ..., T+1 segments, and find {Ai, Ci} for each one.

This shows that there is an inherent ambiguity between
the number of models N and their complexity n: one
cannot tell, from YT , how many, and how complex,
the models that generated the data are. Note that,
even if the maximum number of models is known and
equal to the true N , one can always generate the same
data with an equal or smaller number of models Ñ and
a larger dimension of their continuous state. Similarly,



even if the maximum dimension of the continuous state
is known and equal to the true one n, one can always
generate the same data with models of smaller or equal
state dimension ñ, and a larger number of models.

Therefore, imposing a limit on the dimension of the
state space n or on the number of models N allowable
in a given time interval T is not enough to make the
inference task well-posed and we will need to constrain
both of them simultaneously. If only one model is al-
lowed, i.e., if N = 1, then the order n of a minimal
realization must satisfy 2n ≤ T + 1. If N models are
allowed, and we are given a lower bound τ on the mini-
mum separation between consecutive switches, then we
must have 2n+2n ≤ τ , hence 2nN+2n(N−1) ≤ T+1,
in order to obtain a minimal realization for each one of
the N linear systems and identify the N − 1 switches.

From linear systems theory, we know that the realiza-
tion of a linear system is obtained up to a change of
basis of the state space. Since xt0 is unknown, such a
change of basis is arbitrary for the first linear system.
However, the choice of basis for subsequent systems is
not arbitrary, but depends on the choice of the initial
continuous state. Therefore we have the following:

Theorem 3 If we are given a lower bound τ on
the minimum separation between consecutive switches,
then the set of models that generate the data {yt}t0+T

t=t0

is given by Σ = {MiAiM
−1
i , CiM

−1
i ; i = 0 . . .N − 1},

where Mi ∈ GL(n) is such that Mi+1xti+1
= MiA

ti
i xti ,

i = 0, . . .N − 1, 4n ≤ τ and 4nN − 2n ≤ T + 1.

The intuition behind the theorem is as follows. Since
the first switch occurs after t0 + τ , we can use the first
τ measurements to identify the dimension of the state
space n, the initial state (xt0 , λt0) and the system pa-
rameters (A(λt0), C(λt0)) up to a change of basis M0 ∈
GL(n). Then, assuming that t1 can be uniquely recov-
ered, one can use the measurements in [t1, t1 +τ ] to ob-
tain (xt1 , λt1), (A(λt1), C(λt1)) up to a change of basis
M1 ∈ GL(n) that must satisfy M1xt1 = M0A(λt0)xt0
and so on.

Consider now a set of data YT and any (observable)
system {A,C}, with continuous state space of dimen-
sion n, which generates an extended observability ma-
trix O. For simplicity, let T be a multiple of n,
T = kn. Then, one can find k matrices Mi ∈ GL(n),
i = 1 . . . k, such that the same system, with changes
of basis Mi, generates the data. This means that one
can choose an arbitrary model (A,C), of arbitrary or-
der n, and generate k models which differ only by a
change of basis while generating the data. Consider,
in fact, the equation YT =

[
(Ox1)T . . . (Oxk)T

]
. If

O has full rank (which is true provided that {A,C}
is minimal), then one can always choose x1, . . . , xk so

that the above equation is satisfied. However, given
an arbitrary choice of the state-space, one can always
choose M2, . . . ,Mk ∈ GL(n) in the following way. Let
M2x2 = At2−t1x1 and define O2

.
= OM−1

2 and conse-
quently A2 and C2. Similarly one defines M3 so that
M3x3 = At3−t22 At2−t1x1 from which O3

.
= OM−1

3 and
so on. Therefore, given any (finite) dataset, one can
pick an arbitrary model that will explain the data, pro-
vided that the number of models one can use (all con-
structed from the given one just by changes of basis) is
large enough.

3.2 Identifiability
In this section we address the question of identifiabil-
ity: under what conditions can we recover the “true”
model from data? From the discussion of the previous
sections, if the model can be uniquely identified (The-
orems 2 and 3) and the “true” model belongs to the
class of JLSs, then the model being identified has to be
the true one.

Consider now the doubly infinite Hankel matrix

H =




yt0 yt0+1 · · ·
yt0+1 yt0+2 · · ·

...
...

. . .


 (8)

and let Ht|i|j ∈ Rip×j be a finite-dimensional Hankel
sub-matrix with upper left entry yt, lower left entry
yt+i−1 and upper right entry yt+j−1. If the dimension
of the continuous state space n and the switching times
tk and tk+1 were known, then the continuous state of
the system Xk = [xtk · · ·xtk+1−1] and the model pa-
rameters (Ak, Ck) could be identified up to a change of
basis Mk ∈ GL(n) from the Hankel sub-matrix gener-
ated by measurements {yt} corresponding to that lin-
ear system, i.e., from Htk|n+1|n. Such a computation
can be done using, for example, a simplified version of
the subspace identification algorithms described in [11].
The details of the computation are as follows (we use
MATLAB notation):

Htk|n+1|n = UkSkV
T
k (9)

Ak = Uk(1 : pn, 1 : n)†Uk(p+ 1 : p(n+ 1), 1 : n) (10)

Ck = Uk(1 : p, 1 : n) (11)

Xk = Sk(1 : n, 1 : n)Vk(:, 1 : n)T . (12)

Since in practice n and tk are unknown, we con-
sider Hankel sub-matrices of the form Htk|ik|jk , with
ik ≥ n̄ + 1, jk ≥ n̄ and ik + jk ≤ τ + 1,
where n̄ is a given upper bound on n. Since
Htk|ik|jk = Oik(λtk)[xtk · · ·xtk+jk−1] and we are look-
ing for a pair (Ak, Ck) that is observable, we have
that rank(Htk|ik|jk) = n. Since t0 is known, the di-
mension of the continuous state can be obtained as
n = rank(Ht0|i0|j0). Given n and t0, we can obtain xt0
and (A0, C0) from equations (9)-(12) up to a change of
basis M0 ∈ GL(n).



We are now interested in identifying t1, for which we
consider a Hankel sub-matrix of the formHt0|n+1|j with
a variable number of columns j ≥ n. If n ≤ j < t1−n,
Ht0|n+1|j is generated by measurements corresponding
to one linear system, thus rank(Ht0|n+1|j) = n. If j ≥
t1−n, the matrix Ht0|n|j is generated by two linear sys-
tems. Since we have assumed that the switching times
are detectable, we must have rank(Ht0|n+1|j) > n from
some j on. Letting j∗ = min{j : rank(Ht0|n+1|j) > n},
we can recover t1 uniquely from j∗ as follows. Com-
pute xj∗ and (A1, C1) up to a change of basis M1 by
applying (9)-(12) to Hj∗|n+1|n. We must have that

M1xj∗ = M0A
j∗−t1
1 At1−t00 xt0 . Under the assumptions

of Theorem 2, there is a unique t1 satisfying such an
equation. Once such a t1 has been computed, the iden-
tification process can be repeated starting with t1 as
we did with t0.

Finally, we emphasize that the matrices Mk ∈ GL(n)
cannot be chosen arbitrarily, since they must satisfy
the following constraint:

Mk+1xtk+1
= MkA

tk+1−tk
k xtk . (13)

Thus, one can pick M0 arbitrarily and then determine
Mk+1 from Mk, xtk+1

and xtk as follows:

Mk+1 =[Mkxtk+1
(MkA

tk+1−tk
k xtk)⊥]†[xtk+1

(xtk+1
)⊥],

where X⊥ ∈ Rn−1×n is the space orthogonal to X∈Rn.

4 Conclusions

We have presented an analysis of the observability of
the continuous and discrete states of a class of linear
hybrid systems, as well as a characterization of the
identifiability of the model parameters. The character-
ization of observability and identifiability given above
sheds light on the geometry of the spaces spanned by
the outputs of a JLS, regardless of noise. For a given
system structure, which could be for instance a gener-
ative model, the conditions tell us whether one could
use any of the filtering or identification algorithms pro-
posed in the literature or, if the conditions are not sat-
isfied, how one should modify the model or the infer-
ence procedure. We have also characterized the classes
of unidentifiable models, i.e., models that produce the
same outputs, and derived conditions under which the
“true” model can be identified from data.

An important issue that we did not addressed is con-
cerned with characterizing the set of observationally
equivalent models. In linear systems theory, this is
done elegantly by the Kalman decomposition, which
partitions the state space into orthogonal subspaces.
Future work will address a characterization of the set
of observationally equivalent models as well as a study
of the observability and identifiability conditions in the
presence of noise.
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