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Abstract

In this paper, we study classes of discrete time hybrid
systems for which the classical algorithm for comput-
ing the maximal controlled invariant set and the least
restrictive controller is computable and guaranteed to
terminate in a finite number of iterations. We show
how the algorithm can be encoded using quantifier elim-
ination, which leads to a semi-decidability result for
definable hybrid systems. For discrete time linear sys-
tems with linear constraints that are either controllable
or nilpotent and have bounded disturbances, we show
that the controlled invariance algorithm terminates in
a number of iterations which is at most the dimension
of the state space. Both in the hybrid and in the linear
case, our results are much more general than the corre-
sponding ones for continuous time systems. Finally we
show that for linear systems with ellipsoidal constraints,
an approximated solution can be obtained using robust
convex programming. We provide an example showing
that our algorithm gives better estimations than other
ellipsoidal methods and is more efficient than the exact
method for linear constraints.

1 Introduction

In this paper, we study classes of discrete time hybrid
systems (DTHS) for which the the controlled invari-
ance algorithm (CIA) is computable and guaranteed to
terminate in a finite number of iterations.

The CIA for discrete time systems was proposed by
Bertsekas and Rhodes [2]. They prove that, under cer-
tain conditions, the maximal controlled invariant set is
a fixed point of a predecessor operator. However, the
predecessor operator is not computable in general and
the algorithm is not guaranteed to terminate.

Dórea and Hennet [7] consider a discrete time linear sys-
tem with polyhedral state and disturbance constraints.
They show that each iteration of the CIA is computable
using linear programming and Fourier-Motzkin elimi-
nation. However, there is no analysis of the conditions
under which the algorithm terminates.
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Shamma [22] proved that the CIA terminates in a suf-
ficiently large number of iterations provided that a cer-
tain set is nonempty. However, the paper does not give
any upper bound for the sufficiently large number of
iterations. Also, given a system, there is no way to tell
if the algorithm will terminate without fully computing
each iteration of the CIA.

Blanchini [3] also studied the termination of the CIA for
a modified version of the controlled invariance problem
(CIP) that includes a ”speed of convergence” parame-
ter. When this parameter is less than one, the author
gives conditions that guarantee termination in a suffi-
ciently large but finite number of iterations. Unfortu-
nately, this theorem is not valid for the case we consider
here where the ”speed of convergence” parameter is one.

The termination of the CIA has also been studied for
continuous time hybrid systems. Many of the existing
results have been motivated by the discovery of classes
of linear systems for which the computation of reach-
able sets is decidable [11, 15]. For example, see [18] for
decidable controller synthesis of continuous time linear
systems and [19, 20] for semi-decidable controller syn-
thesis for continuous time hybrid systems.

Even with guaranteed termination, the computational
complexity of exactly solving the CIP through quanti-
fier elimination may be doubly exponential [1]. There-
fore, it is computationally attractive to consider ellip-
soidal approximations to the problem [2, 9]. Indeed, el-
lipsoidal methods and convex programming [5, 8] have
been successfully applied to many control problems, in
particular to the computation of reachable sets [10].

Paper outline: Section 2 applies the concept of con-
trolled invariance [2, 4, 21, 26] to a discrete time ver-
sion of the hybrid automata in [13, 14]. Sections 3 and 4
study classes of DTHS for which the CIA is computable
and guaranteed to terminate in a finite number of it-
erations. The proposed conditions for decidability are
illustrated with some examples. Section 5 presents a
polynomial time algorithm based on convex program-
ming for solving the CIP. A numerical example com-
pares our algorithm to the linear method in [7] and the
ellipsoidal method in [2]. Section 6 concludes the paper.



2 Controlled Invariance of DTHS

2.1 Discrete Time Hybrid Systems
A discrete time hybrid system (DTHS) is a collec-
tion H = (S, V , Init, Inv, r, R) consisting of:

• A finite collection of state variables, S, parti-
tioned as S = Q∪X , with Q being discrete and X
being continuous. We use Y to denote the set of
valuations of Y . We use s = (q, x) ∈ S to denote
the state of the system.

• A finite collection of input variables, V , parti-
tioned as V = Σ ∪ U ∪ ∆ ∪ D. We use (σ, u)
to denote the control inputs, with σ ∈ Σ and
u ∈ U denoting the discrete and continuous con-
trol inputs, respectively. Similarly, we use (δ, d)
to denote the disturbance inputs of the system,
with δ ∈ ∆ and d ∈ D denoting the discrete and
continuous disturbance inputs, respectively.

• A set of initial states, Init ⊆ S,
• An invariant set Inv ⊆ S×V,
• A continuous reset relation, r : S×V → 2X and
• A discrete reset relation R : S×V → 2S.

A sequence χ = (s, v) ∈ (S×V)∗ is called an execution
of the DTHS H if s[0] ∈ Init, and for all k ≥ 0,

• s[k + 1] ∈ R(s[k], v[k]), or
• (s[k], v[k]) ∈ Inv, q[k + 1] = q[k] and
x[k + 1] ∈ r(s[k], v[k]).

Like their continuous time counterparts, DTHS can be
thought of as directed graphs, with nodes q ∈ Q and
edges (q, q′) for all q, q′ ∈ Q such that

∃x, x′ ∈ X, v ∈ V with (q′, x′) ∈ R(q, x, v).

With each node of the graph, q ∈ Q, we associate a
set of initial conditions, an invariance relation and a
transition relation given by

Initq = {x ∈ X | (q, x) ∈ Init},
Invq(v) = {x ∈ X | (q, x, v) ∈ Inv},
rq(x, v) = {x′ ∈ X | x′ ∈ r(q, x, v)}.

With each edge, (q, q′) of the graph we associate a guard
relation and a reset relation given by:

Gqq′ (v) = {x ∈ X | ∃x′ ∈ X, (q′, x′) ∈ R(q, x, v)},
Rqq′ (x, v) = {x′ ∈ X | (q′, x′) ∈ R(q, x, v)}.

For pairs (q, q′) which are not edges, we can set
Gqq′ (v) = Rqq′ (x, v) = ∅ for all x ∈ X and v ∈ V.

2.2 Controlled Invariance of DTHS
A (memoryless) controller, g, is a map g : S → 2Σ×U.
A controller is called non-blocking if g(s) 6= ∅ for all
s ∈ S. We say that a controller g solves the problem
(H,2F ), if and only if, g is non-blocking and the closed
loop causal executions stay in F forever. If such a con-
troller exists we say that (H,2F ) can be solved.

A set W ⊆ S is called a controlled invariant set of
H if (H ′,2W ) can be solved, where H ′ is the same as
H , but with Init′ = W . We say that the controller that
solves (H ′,2W ) renders the set W invariant. Also,
given a set F ⊆ S, a set W ⊆ F is called a maximal
controlled invariant subset of F , if it is controlled invari-
ant and it is not a proper subset of any other controlled
invariant subset of F .

Many controllers may be able to solve a particular prob-
lem. We would like to find a controller that imposes
less restrictions on the inputs it allows. A controller
g that solves (H,2F ) is called a least restrictive
controller if it is maximal among the controllers that
solve (H,2F ) in the partial order defined by �, where
g1 � g2 if for all s ∈ S, g1(s) ⊆ g2(s).

Notice that, the problem (H,2F ) can be solved if and
only if there exists a unique maximal controlled invari-
ant set Ŵ with Init ⊆ Ŵ ⊆ F , and a unique least
restrictive controller, ĝ, that renders Ŵ invariant [25].

Controlled Invariance Problem (CIP) Given a
DTHS and a set F ⊆ S compute the maximal controlled
invariant subset of F , Ŵ , and the least restrictive con-
troller, ĝ, that renders Ŵ invariant.

2.3 The Controlled Invariance Algorithm (CIA)
We first present a conceptual algorithm for solving the
CIP for general DTHS. The algorithm is an extension
of the algorithm proposed by Bertsekas [2]. It is based
on the the computation of the operator Pre : 2S → 2S,
W 7→ {s ∈W | ψ(s)}, where

ψ(s) = ∃σ ∈ Σ ∃u ∈ U ∀δ ∈ ∆ ∀d ∈ D ∀q′ ∈ Q,
[x ∈ Invq(v) ⇒ rq(x, σ, u, δ, d) ⊆Wq]∧
[x ∈ Gqq′ (v) ⇒ Rqq′ (x, σ, u, δ, d) ⊆Wq′ ]

(1)

with Wq = {x ∈ X | (q, x) ∈W}.

Algorithm 1 (Controlled Invariance Algorithm)

initialization: W 0 = F , W−1 = S, l = 0
while W l 6= W l−1 do

W l+1 = Pre(W l)
l = l + 1

end while
set Ŵ =

⋂
l≥0W

l

set ĝ(s) =

{
{(σ, u) ∈ Σ×U | φ(s, σ, u)} s ∈ Ŵ
Σ×U s 6∈ Ŵ

where φ is the same as ψ in (1), but without the quan-
tifiers for σ and u. To implement the controlled in-
variance algorithm one needs to be able to (a) encode
sets of states, perform intersection and complementa-
tion, and test for emptiness, (b) compute the Pre of a
set, and (c) guarantee that a fixed point is reached after
a finite number of iterations. For classes of DTHS for
which (a) and (b) are satisfied we say that the CIP is
semi-decidable; if all three conditions are satisfied we
say that the CIP is decidable.



3 Semi-decidable Controller Synthesis

In this section, we show how the CIA (which in general
is not computable) can be implemented for a special
class of DTHS. We say that (H,2F ), is definable in
a theory T if Q, Σ, and ∆ are finite sets; X = Rn,
U ⊆ Rnu and D ⊆ Rnd ; and for all q, q′ ∈ Q, x ∈ X and
v ∈ V the sets U, D, Initq, Invq(v), rq(x, v), Gqq′ (v),
Rqq′(x, v), and Fq = {x ∈ X|(q, x) ∈ F} are definable in
the same theory. For example, we denote by Lin(R) the
theory of linear constraints and by OF(R) the theory
of polynomial constraints.

In order to determine whether each iteration of the CIA
is computable one needs to be able to decide whether
W l+1 = {s : ψl+1(s)} ⊂ W l = {s : ψl(s)} or not. Since
OF(R) is decidable [17, 23], the question can be solved
if the formulas ψl and ψl+1 belong to OF(R). We show
this by induction when (H,2F ) is definable in OF(R).
First, it is clear that ψ0 is definable in OF(R). Now
assume that ψl is definable. Then ψl+1 (See (1)) is not
directly in OF(R) since it contains some quantifiers on
discrete variables. Nevertheless, it is straightforward to
see that ψl+1(s) is equivalent to a first order formula in
the corresponding language, since the existential quan-
tifier over σ is equivalent to a disjunction and the uni-
versal quantifier over δ is equivalent to a conjunction.
We conclude that for definable systems the question
W l+1 ⊂W l can be decided, hence each iteration of the
algorithm is computable. However, there is no guaran-
tee that the algorithm will terminate in a finite number
of iterations. We have just proven that:

Theorem 1 If (H,2F ) is definable in OF(R), then the
CIP is semi-decidable.

Remark 1 Notice that the class of systems for which
the CIP is semi-decidable is more general than its con-
tinuous time counterpart: While for DTHS the problem
is semi-decidable when (H,2F ) is definable in OF(R),
in the continuous case the system is required to be tri-
angular and U and D must be rectangles [20].

Remark 2 Different methods have been proposed for
performing quantifier elimination in OF(R) [1, 17,
23], and the process can be automated using symbolic
tools [6]. However, the quantifier elimination procedure
is, in general, hard, both in theory and in practice, since
the solvability may be doubly exponential [1].

Example 1 (Semi-decidable controller synthesis)
Consider the water tank system shown in Figure 1. For
i = 1, 2, let xi denote the volume of water in Tank i,
and di denote the flow of water out of Tank i. Let
u denote the flow of water into the system, dedicated
exclusively to either Tank 1 or Tank 2 at each time
instant. The control task is to keep the water volumes

x2 > r2−

.

.x2 = −d2
x1 = u−d1

u

d2d1

r2
r1

x1 x2
q=1 q=2

x1 < r1

x2 < r2

.x1 = −d1.x2 = u−d2

−x1 > r1

Figure 1: The water tank system

above levels l1 and l2, respectively. This is to be
achieved by a switched control strategy that switches
the inflow to Tank 1 whenever x1 < r1 and to Tank 2
whenever x2 < r2. We assume that x1[0] ≥ r1 > l1 > 0
and x2[0] ≥ r2 > l2 > 0. The continuous dynamics of
the water tank are discretized with period τ , so that it
can be modeled as the following DTHS:

• Q={1, 2}, Σ= ∆ ={1};
• X=R2, U=[um, uM ], D=[dm, dM ]×[dm, dM ];
• Init = Q× {x ∈ X : (x1 ≥ r1) ∧ (x2 ≥ r2)};
• Inv1={x ∈ X : x2 ≥ r2}, Inv2={x ∈ X : x1 ≥ r1};
• G12={x ∈ X : x2 < r2}, G21={x ∈ X : x1 < r1};
• rq(x, u, d) = x+ τ(bTq u− d), b1 = (1, 0), b2 = (0, 1);
• R12(x, u, d) = R21(x, u, d) = x− τd.

We implemented the CIA in Mathematica for a water
tank system with the following parameters: um = 0,
uM = 12, dm = 0, dM = 1, τ = 1, r1 = r2 = 20
and l1 = l2 = 10. The algorithm converges after 11
iterations to the following solution:

Ŵ1 = {x ∈ X | x ≥ (10, 20) ∨ x ≥ (21, 11)}
Ŵ2 = {x ∈ X | x ≥ (20, 10) ∨ x ≥ (11, 21)}.

4 Decidable Controller Synthesis

Even though for a definable CIP each iteration of the
CIA is computable, termination in a finite number of
iterations is not guaranteed. To the best of our knowl-
edge, the only existing results on the decidability of the
CIP are for linear systems with polyhedral constraints,
so we restrict our attention to this class of systems.

More formally, a linear CIP (LCIP) consists of [25]:
• a Linear DTS (LDTS), i.e. a DTS with X =

Rn, U = {u ∈ Rnu | Eu ≤ η} ⊆ Rnu , D =
{d ∈ Rnd |Gd ≤ γ} ⊆ Rnd , Init = {x ∈ X | Jx ≤ θ}
and a reset relation given by f(x, u, d) = {Ax+Bu+
Cd}, where A ∈ Qn×n, B ∈ Qn×nu , C ∈ Qn×nd ,
E ∈ Qmu×nu , G ∈ Qmd×nd , η ∈ Qmu, γ ∈ Qmd ,
J ∈ Qn×mi and θ ∈ Qmi with mu, md and mi

being the number of constraints on the control, dis-
turbance and initial conditions, respectively; and,

• a set F = {x ∈ Rn |Mx ≤ β} where M ∈ Qm×n,
β ∈ Qm and m is the number of state constraints.



In this section, we extend our results in [25] to a much
larger class of linear systems. Our new results are based
on the following theorem (See [24] for the proof of the
theorem and propositions):

Theorem 2 If ∃ l ≥ 1 such that ∀x0 ∈ F there is
a sequence {u[k]}l−1

k=0 in U such that for all sequences
{d[k]}l−1

k=0 in D we have x[l] ∈ F , then W l+1 = W l.

For LDTS, the theorem reduces to the following:

Proposition 1 Let Cl(A,X) = [Al−1X · · ·AX X ],
ul = [uT

0 · · ·uT
l−1]

T ∈ Ul = U × · · · × U and dl =
[dT

0 · · · dT
l−1]

T ∈ Dl = D× · · · ×D. Let Λ = [Λ1 Λ2] be
the matrix whose rows are the generators of the non-

negative left kernel of
[
MCl(A,B)

E

]
. If ∃ l≥1 such that

max
x∈F

Λ1MAlx ≤ Λ1(β − max
dl∈Dl

MCl(A,C)dl) + Λ2η

with the maximum taken componentwise, then the LCIP
is decidable and the CIA terminates in at most l + 1
steps.

Proposition 1 states that in order to check for the de-
cidability of the LCIP problem it is sufficient to solve
a finite number of linear programs (polynomial time)
plus one Fourier-Motzkin elimination problem (worst
case exponential [12]). However, there is no way of de-
tecting if the algorithm terminates in an infinite number
of iterations, which happens for l = ∞. The following
propositions are special cases under which l is guaran-
teed to be finite.

Proposition 2 If A is nilpotent of index l, Λ1(β −
max
dl∈Dl

MCl(A,C)dl) + Λ2η ≥ 0, then the LCIP is de-

cidable and the CIA terminates in at most l + 1 steps.

Proposition 3 If (A,B) is controllable, U = Rnu and

max
dn∈Dn

MCn(A,C)dn ≤ β (2)

then the CIP problem is decidable and the CIA termi-
nates in at most n+ 1 steps.

Remark 3 Notice that the class of linear systems for
which the controlled invariance problem is decidable
is also more general than its continuous counterpart:
While in the discrete time case, the problem is decid-
able if (A,B) is controllable or A is nilpotent, in the
continuous time case, the problem is decidable if (A,B)
and (A,C) are normal, U and D are rectangles and A
is either nilpotent or diagonalizable with real rational
eigenvalues [18].

Example 2 (Decidable controller synthesis) We
consider Example 2 in [25], which requires an infinite
number of iterations to converge. The LDTS is defined
by U = R, D = [−1, 1],

A =
[

0 1
1 1

]
, B =

[
0
1

]
, C =

[
1
1

]
,

M =


1 1

−1 −3
1 −1

−3 1

 and β =


100
−50
100
−50

 .

Even though the pair (A,B) is controllable, we have
δ = max

d2∈D2
MC2(A,C)d2 = [5 11 1 3]T 6≤ β. There-

fore, this example does not satisfy all the conditions of
Proposition 3.

If D = [17, 18], then δ = [90 −187 −17 −51]T ≤ β.
Indeed, using our Controlled Invariance Toolbox [16]
for MATLAB, the algorithm terminates in 2 iterations.

If D = [15, 20], then δ = [100 −165 −15 −45]T 6≤ β.
However, the algorithm still terminates in 2 iterations,
showing that the conditions in Proposition 3 are not
necessary. In this case, the conditions of Proposition 1
are met for l = 2.

5 CIP for LDTS with Ellipsoidal Constraints

Although for the classes of linear systems in Proposi-
tions 2 and 3 the LCIP is decidable, the computational
complexity of exactly solving the problem is worst case
exponential [12]. Because of this, in this section we spe-
cialize the implementation of the CIA to the case where
the sets F , U and D are ellipsoids. Notice that given a
LDTS, if F and U are convex so are Ŵ and ĝ(x). Hence
the CIP is suitable for convex optimization algorithms,
such as convex programming (CP).

Let E1(P, x̂) = {x | (x − x̂)TP−1(x − x̂) ≤ 1} be an el-
lipsoid with positive definite shape matrix P � 0 and
center x̂. A second representation is E2(E, x̂)={x | x=
x̂ + Ez, ||z|| ≤ 1} where E=P 1/2. A third representa-
tion is given by the linear matrix inequality (LMI):[

P x− x̂
(x − x̂)T 1

]
� 0.

To make the subsequent LMIs more readable, we use
a ∗ to denote elements in the lower triangular part of
a symmetric matrix. Further, we use log det(E) as a
measure of the volume of the ellipsoid E2(E, x̂).

5.1 CP inner approximations of Prem(W 0)
We assume that F =W 0 =E1(Ω0, x̂0), U=E1(Γ, û) and
D = E1(∆, d̂), where Ω0 � 0 ∈ Rn×n, Γ � 0 ∈ Rnu×nu ,
∆ � 0 ∈ Rnd×nd , x̂0 ∈ Rn, û ∈ Rnu and d̂ ∈ Rnd .



At each iteration of the controlled invariance algorithm
we need to compute W l+1 = Pre(W l) defined by{
x ∈W l | ∃ul ∈ U ∀dl ∈ D, Ax+Bul + Cdl ∈W l

}
.

For l = 0, the inner formula is equivalent to

∀d0 , ||∆−1/2(d0 − d̂)|| ≤ 1 ⇒
[

Ω0 v0
vT
0 1

]
� 0, (3)

with v0 = Ax+Bu0 +Cd0− x̂0. In order to replace the
universal quantifier ∀ in (3) by an existential quantifier
∃, we use a lemma from [8]:

Lemma 1 Let F = FT , L and R be given matrices of
appropriate size. We have(
∀Z, ||Z|| ≤ ρ ⇒ F + LZR+ (LZR)T � 0

)
⇐⇒(

∃τ ≥ 0 |
[
F − τRTR ρL

ρLT τI

]
� 0

)
.

We apply Lemma 1 to Z = ∆−1/2(d0 − d̂), ρ = 1,

F =
[
Ω0 v01
vT
01 1

]
, L =

[
C∆1/2

0

]
and R =

[
0 1

]
,

where v01 = Ax+Bu0 + Cd̂− x̂0. We then obtain the
following formula for Pre(W 0):

{x ∈ W 0 | ∃u0 ∈ U ∃τ0,

Ω0 v01 C∆1/2

∗ 1− τ0 0
∗ 0 τ0I

 � 0}. (4)

We now compute an inner approximation E2(E1, x̂1)
of Pre(W 0). Such approximation must satisfy: ∀x ∈
E2(E1, x̂1) ⇒ x ∈ Pre(W 0), which is equivalent to
∀z, ||z|| ≤ 1, ∃u0 ∈ U ∃τ0 |

[
Ω0 x̂1 − x̂0 + E1z
∗ 1

]
� 0,

Ω0 v̂01 +AE1z C∆1/2

∗ 1− τ0 0
∗ 0 τ0I

 � 0,

where v̂01 = Ax̂1 + Bu0 + Cd̂ − x̂0. In order to ap-
ply Lemma 1, we first exchange the quantifiers1. Since
∀z

∧m
l=1 ψ

l(z) ≡
∧m

l=1 ∀z ψl(z), we can apply Lemma 1
to each LMI separately. Let Z1 = Z2 = z, ρ1 = ρ2 = 1,
τ1 = γ0, τ2 = γ1,

F1 =
[
Ω0 x̂1 − x̂0

∗ 1

]
, L1 =

[
E1

0

]
,R1 =

[
0 1

]
,

F2 =

Ω0 v̂01 C∆1/2

∗ 1− τ0 0
∗ 0 τ0I

 , L2 =

AE1

0
0

 ,R2 =
[
0 1 0

]
.

1This may reduce the size of the set we want to approximate,
hence the inner ellipsoidal approximation may be conservative

Then the ellipsoidal inner approximation of Pre(W 0)
can be obtained as the solution of the following CP:

max log det(E1)
s.t. E1 � 0,Ω0 x̂1 − x̂0 E1

∗ 1− γ0 0
∗ 0 γ0I

 � 0,
[
Γ u0 − û
∗ 1

]
� 0,

Ω0 v̂01 C∆1/2 AE1

∗ 1− τ0 − γ1 0 0
∗ 0 τ0I 0
∗ 0 0 γ1I

 � 0.

This procedure can be generalized to obtain an ellip-
soidal inner approximation E2(Em, x̂m) of Prem(W 0)
by solving the CP:

max log det(Em)
s.t. Em � 0,Ω0 x̂m − x̂0 Em

∗ 1− γ0 0
∗ 0 γ0I

 � 0,
[
Γ ui − û
∗ 1

]m−1

i=0

� 0,

Ω0 v̂j−1,m C∆1/2 · · · Aj−1C∆1/2 AjEm

∗ δj,m 0 · · · 0 0
∗ 0 τm−jI 0 0
...

...
. . .

...
...

∗ 0 0 · · · τm−1I 0
∗ 0 0 · · · 0 γjI



m

j=1

� 0,

with v̂j−1,m = Aj x̂m +
∑j−1

i=0 A
i(Bum+i−j + Cd̂)− x̂0,

for all j = 1 . . .m, and δj,m = 1−
∑m−1

i=m−j τi − γj .

5.2 A “heuristic” CP approach
Here we combine inner and outer approximations
heuristically. We first compute a polytope containing
Pre(W 0) in (4) by solving a series of CPs of the type:

max wT
i x

s.t.
[

Ω0 x− x̂0

∗ 1

]
� 0,

[
Γ u0 − û
∗ 1

]
� 0, Ω0 v01 C∆1/2

∗ 1− τ0 0
∗ 0 τ0I

 � 0,

where the vectors wi ∈ Rn, i = 1 . . . p are chosen ar-
bitrarily. Then an outer approximation of Pre(W 0) is
given by {x | Mx ≤ β} where wT

i is the i-th row of
M and βi is the optimal value of the convex program
associated to wi, i = 1 . . . p. Then we compute an ellip-
soidal inner approximation E2(E1, x̂1) of the obtained
polytope by solving the CP:

max log det(E1)

s.t. E1 � 0,
[

(βi − wT
i x̂1)I E1wi

(E1wi)T βi − wT
i x̂1

]p

i=1

� 0. (5)

Letting Ω1 = E2
1 , we can compute an approxima-

tion of Pre2(W 0) by using the same two step proce-
dure. Generalizing, we get an ellipsoidal approximation
E1(Ωm, x̂m) of Prem(W 0).



5.3 Experimental Results
We implemented the CP and heuristic CP algorithms
in SDPSOL and MATLAB. Our results are compared
with the ones given by the exact algorithm for LDTS [7]
(which we assume as the correct solution) and with the
ellipsoidal method by Bertsekas [2].

Example 3 The LDTS is defined by X = R2,

A =
[

0 0.5
−1 1

]
, B =

[
0 1
1 0

]
and C =

[
1
1

]
.

The ellipsoids U and D are defined by:

Γ =
[
0.0625 0

0 0.1406

]
, û =

[
0

−0.125

]
, ∆ = 0.01, d̂ = 0.

The set F is defined by

Ω0 =
[
660.3 416.8
416.8 1324.7

]
and x̂0 =

[
6.5

20.4

]
.

Figure 2 shows a comparison of the different methods.
The heuristic CP approach gives the largest ellipse, but
the solution is not a subset of the correct solution. The
results of the CP method for m ≥ 2 are the same as
those for m = 2, and better than the corresponding ones
for m = 1. The algorithm by Bertsekas gives the small-
est ellipsoid.
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Example 4 results

CP for m=1 safe set   
Heuristic safe set 
CP for m=2 safe set   
Bertsekas Algorithm
Linear safe set    

Figure 2: Comparison of CP, heuristic CP, exact linear,
and Bertsekas algorithms for Example 3.

6 Conclusions

This paper studied classes of DTHS for which the CIA
algorithm is computable and guaranteed to terminate.
First, we proposed an implementation of the algorithm
based on quantifier elimination, which led to a semi-
decidability result for definable systems. Second, we
found that for LDTS which are either nilpotent or con-
trollable and have bounded disturbances, the CIP is
decidable. Finally, we proposed two algorithms for solv-
ing the CIP for LDTS with ellipsoidal constraints and
showed that they give better estimations than the el-
lipsoidal method by Bertsekas [2] and are more efficient
than the exact one for linear constraints [7].
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