
A Hierarchical Approach to Probabilistic Pursuit-Evasion

Games with Unmanned Ground and Aerial Vehicles1

H. Jin Kim René Vidal David H. Shim Omid Shakernia Shankar Sastry

Department of Electrical Engineering & Computer Sciences

University of California at Berkeley, Berkeley CA 94720

{jin,rvidal,hcshim,omids,sastry}@robotics.eecs.berkeley.edu

Abstract

We consider the problem of having a team of Un-
manned Ground Vehicles (UGV) and Unmanned Aerial
Vehicles (UAV) pursue a team of evaders while con-
currently building a map in an unknown environment.
We cast this problem in a probabilistic game-theoretic
framework and consider two computationally feasible
pursuit policies: greedy and global-max. We implement
this scenario on a fleet of UGVs and UAVs by using
a distributed hierarchical system architecture. Finally,
we present both simulation and experimental results
that evaluate the pursuit policies relating expected cap-
ture times to the speed and intelligence of the evaders
and the sensing capabilities of the pursuers.

1 Introduction

We consider pursuit-evasion games (PEG) in which a
team of Unmanned Aerial Vehicles (UAVs) and Un-
manned Ground Vehicles (UGVs) acting as pursuers

tries to capture evaders within a bounded but unknown
environment (see Figure 1). The classical approach to
this PEG is to first build a terrain map and then play
the game in the known environment. However, sys-
tematic map building is time consuming and compu-
tationally expensive, even in the case of simple two-
dimensional rectilinear environments [1]. On the other
hand, most of the PEG literature, see e.g. [5], consid-
ers worst-case motion for the evaders and assumes an
accurate map of the environment. In practice, this re-
sults in overly conservative pursuit policies if applied
to inaccurate maps built from noisy measurements.

In [2] we combined pursuit-evasion games and map
building in a single probabilistic framework which
avoids the conservativeness inherent to the classical
worst-case approaches and takes into account inaccu-
rate sensing. We also proved the existence of a per-

sistent pursuit policy which guarantees to capture a
randomly moving evader in finite time with probabil-

1This work was supported by grants ONR N00014-97-1-0946,
ONR N00014-00-1-0621, and ARO MURI DAAH04-96-1-0341.

Figure 1: Berkeley test-bed for pursuit-evasion games.

ity one. In [8] we extended this scenario to consider
supervisory pursuers and multiple evaders. The case
where an evader actively avoids the pursuers by hav-
ing access to their information has been investigated
in [3], which showed the existence of a one-step Nash
solution. The difficulty of implementing this compu-
tationally expensive sub-optimal solution in real-time
inspires the search for more efficient sub-optimal solu-
tions with good performance. In [8] we considered two
computationally feasible pursuit policies: greedy and
global-max, using expected capture time as a perfor-
mance metric.

In parallel with our theoretical work on pursuit-evasion
games, we have been developing a platform of UAVs
and UGVs as a test-bed for multi-agent coordination
and control. In [10] we developed a real-time control
system for regulation and navigation of a UAV. In [11]
we presented a distributed hierarchical system architec-
ture for pursuit-evasion games and described the im-
plementations of the navigation, communication and
sensing layers for teams of UGVs and UAVs.

In this work, we complete the implementation of our
architecture for probabilistic PEG on real UAVs and

UGVs. We implement the high-level mission coordi-
nation layer including the components for pursuit pol-
icy computation and map building. We also compare
pursuit policies relating expected capture times to the
speed and intelligence of the evaders and the sensing
capabilities of the pursuers. Our results show that in
real PEGs between our fleet of UAVs and UGVs, the
global-max policy outperforms the greedy policy.

Paper outline: Section 2 describes the PEG sce-
nario. Section 3 describes the design and implemen-
tation of an architecture for multi-agent coordination
and control. Section 4 presents the simulation and ex-
perimental results, and Section 5 concludes the paper.

2 Pursuit-Evasion Scenario

This section describes the theoretic foundations for the
PEG scenario following the frameworks described in [2,
8], and a vision-based detection algorithm [11].

2.1 Probabilistic Framework

Consider a finite two-dimensional environment X with
nc cells that contain an unknown number of fixed ob-
stacles. xp ⊂ X (xe ⊂ X) is the set of cells occupied by
the np pursuers (ne evaders). For each t ∈ {1, 2, . . .},
each pursuer or evader collects information within a
certain subset of X : the visibility region. We denote
the visibility region of pursuer k (evader i) at time t
as Vpk

(t) (Vei
(t)). Each measurement y(t) is a triple

{v(t), e(t),o(t)}, where v(t) denotes the measured po-
sitions of all the pursuers and e(t) (o(t)) is a set of cells
where each evader (obstacle) was detected. We denote
by Y∗ the set of all finite sequences of elements in Y ,
and for each t denote by Yt ∈ Y∗ the measurement
history {y(1), . . . ,y(t)}.

Whenever an evader is captured, that evader is re-
moved from the game. Capture is defined as follows:
Let vk(t) ∈ v(t) and xei

(t) ∈ e(t) be the estimated po-
sitions of pursuer k and evader i at time t, respectively.
We say that evader i is captured by pursuer k at time t
if xei

(t) ∈ Vpk
(t) and d(vk(t), xei

(t)) ≤ dm where d(·, ·)
is a metric in X and dm is a pre-specified capture dis-

tance. The capture time is defined as T∗ = max
i=1···ne

T∗
i ,

where T∗
i is the time instant at which evader i is cap-

tured by one of the pursuers. We assume that capture
and the pursuers’ own positions are perfectly detected.
For the other cells in the visibility region, we use a sen-
sor model based on the probability of false positive de-
tection p ∈ [0, 1] and false negative detection q ∈ [0, 1].

2.2 Map Building

We assume that pursuers are able to identify each
evader separately and that each evader moves indepen-
dently of the other evaders. Therefore, without loss

of generality we can assume ne = 1 for map building
purposes. Let pe(x, τ | Yt) be the posterior probabil-
ity of the evader being in cell x at time τ , given the
measurement history Yt = Yt. Similarly, let po(x | Yt)
be the conditional probability of having an obstacle in
cell x given Yt. At each t, pursuers have estimates
of the evader and obstacle maps pe(x, t | Yt−1) and
po(x | Yt−1), obtain a new measurement y(t) and re-
cursively estimate po(x | Yt) and pe(x, t + 1 | Yt) in
three steps: First, pursuers compute pe(x, t | Yt) ,

{

0 if x∈o(t)∪v(t)\e(t) or the evader captured
αpe(x, t | Yt−1)P (e | x, v, Yt−1) otherwise,

(1)

where α is a normalizing constant independent of x,
and P (e(t) = e | xe = x,v = v,Yt−1 = Yt−1) =

{

0 x ∈ v(t)

pk1(1−p)k2qk3(1−q)k4 otherwise.
(2)

Here, for each x, k1 is the number of false positives,
k2 is the number of true negatives, k3 is the number of
false negatives, and k4 is the number of true positives.

Second, pursuers compute po(x | Yt) ,

(1−q)po(x|Yt−1)
(1−q)po(x|Yt−1)+p(1−po(x|Yt−1))

x ∈ Vp(t) ∩ o(t)
qpo(x|Yt−1)

qpo(x|Yt−1)+(1−p)(1−po(x|Yt−1))
x ∈ Vp(t) \ o(t)

1 x ∈ v(t) ∩ o(t)

0 x ∈ v(t) \ o(t)

po(x | Yt−1) otherwise,

(3)

where Vp(t) = ∪
np

k=1Vpk
(t).

Finally, pursuers compute pe(x, t+1 | Yt) from pe(x, t |
Yt) assuming that the evader moves randomly [11].

2.3 Pursuit Policies

Pursuer k decides its next desired position and heading
uk(t + 1) within a control action set Upk

based on the
measurement history. We define Upk

:= Xpk
× Ψpk

,
where Xpk

⊂ X denotes the set of one-step reachable
cells for pursuer k and Ψpk

⊂ (−π, π) denotes the set
of one-step achievable headings. We call the collection
g : Y∗ → Π

np

k=1Upk

g(Yt) =
[

u1(t+ 1), · · · ,unp
(t+ 1)

]

(4)

a pursuit policy.

We measure the performance of a given pursuit policy
g, by the expected capture time E[T∗ | g = g]. The
dependence of the conditional probability of finding an
evader at a time t on the pursuit policy is in general
very complex. This makes the optimization problem of
computing the policy which minimizes expected cap-
ture time not suitable for real-time applications.

Following [2, 8], we concentrate on finding efficiently
computable policies with good performance. Instead of

considering general policies of the form in equation (4),
we implement memoryless policies which depend on
the probabilistic maps, or belief states, po(x | Yt) and
pe(x, t+ 1 | Yt).

Greedy Policy: Under the greedy policy, pur-
suer k moves to the cell in Xpk

with the highest proba-
bility of containing an evader over all the evader maps
at the next time instant. That is, the desired position
and heading, uk(t+ 1) = [xd(t+ 1), ψd(t+ 1)], are:

xd(t+ 1) = argmax
x∈Xpk

max
i={1...ne}

pei
(x, t+ 1 | Yt)

ψd(t+ 1) = argmin
ψ∈Ψpk

| ∠(xd(t+ 1)− vk(t)) − ψ |2 .

Notice that this policy is advantageous in scalability,
since it assigns more importance to local measurements
by searching only in Xpk

regardless of the size of X .

Global-Max Policy: Under the global-max

policy, pursuer k moves to the cell in Xpk
which is

closest to the cell in X with the highest discounted
probability of having an evader. The desired position
and heading, uk(t+ 1) = [xd(t+ 1), ψd(t+ 1)], are:

xd(t+ 1) = argmin
x′∈Xpk

d

(

x′, argmax
x∈X

max
i={1...ne}

pei
(x,t+1|Yt)

d(x,vk(t))

)

ψd(t+ 1) = argmin
ψ∈Ψpk

| ∠(xd(t+ 1)− vk(t)) − ψ |2 .

Here the discount factor encourages a pursuer to ex-
plore locations nearby before heading to far-away cells.
Thus, if there are two cells in the map with the same
high probability of having an evader, the global-max
policy guides the pursuer towards the closer one.

2.4 Evasion Policy

A evader can either move randomly, or be smart. In the
latter case, it builds a map of obstacles and pursuers
and employs a greedy policy (to move to the one-step
reachable cell with the minimum probability of being
captured at the next time instant) or global-min policy
(to move to the one-step reachable cell which is closest
to the global location with the minimum discounted
probability of being captured at the next time instant).

2.5 Vision-based Detection

The pursuers need to detect the locations of obstacles
and evaders to build a probabilistic map. In [11] we
described a technique and successful experiments on
3D position estimation based on a sensor fusion of color
tracking and GPS information.

The position and heading of the pursuer, and the cam-
era calibration parameters of the vision system deter-
mine the region in the environment that is visible to
the pursuer. The vertices of the visibility region are
computed by applying image projection equations to

vertices of a fixed rectangle in the image. This visibil-
ity region is trapezoidal for pursuers with perspective
projection cameras, and is a square for pursuers with
omni-directional cameras. The trapezoidal and rectan-
gular visibility regions are depicted in Figures 3 and 4.

3 Architecture Implementation

This section briefly describes a hierarchical control ar-
chitecture for multi-agent coordination and its imple-
mentation on our fleet of UGVs and UAVs. Our ar-
chitecture design was inspired by Automated Highway
Systems [6], Air Traffic Management Systems [7], and
Flight Management Systems [4].

3.1 System Architecture

As shown in Figure 2, we employ a hierarchical ar-
chitecture which divides the control of each vehicle
into different layers of abstraction. The architecture is
modular and scalable, allowing one to design a com-
plex large scale system by integrating simpler com-
ponents. The abstraction allows a unified framework
for high-level intelligent planning across heterogeneous
platforms of unmanned vehicles.

The hierarchical system architecture consists of:

• High level

– Strategy Planner implements high-level intelli-
gent control for the vehicles, i.e. the pursuit
policy computation described in Section 2.3.

– Map Builder gathers sensor information from
each vehicle and implements the map building
described in Section 2.2.

• Low level

– Tactical Planner converts strategic plans into a
sequence of way-points or flight modes.

– Trajectory Planner produces a realizable and
safe trajectory based on a dynamic model of the
vehicle and the specified way-points.

– Regulation Layer performs real-time control to
guide the vehicle along the specified trajectory.

3.2 Implementation of Low Level

Each UAV and UGV has two on-board computers: The
tactical planner is implemented on one computer while
the trajectory planner and regulation layers are im-
plemented on the other. The UAVs and UGVs share
many components for sensing and communication, such
as IEEE 802.11b wireless LAN connectivity, differen-
tial GPS, a PC104 Pentium 233MHz-based PC run-
ning Linux, and a color-tracking vision system. Each
of these components is described in detail in [11].

Figure 2: System Architecture

Our UAV fleet consists of custom-designed UAVs based
on Yamaha R-50 and R-MAX industrial helicopters.
The interface between the strategy planner and the
lower level regulation was implemented through a
framework called Vehicle Control Language (VCL).
VCL is a script language that specifies a sequence of
flight-modes and/or way-points. The implementation
details of VCL and our UAV test-bed appear in [9, 10].

Our UGV fleet consists of ActivMedia Pioneer 2-AT
all-terrain ground robots. The implementation details
of the tactical/trajectory planner and regulation layer
for the UGV’s are provided in [11].

3.3 Implementation of High Level

We implemented the strategy planner and map builder

in a MATLAB/Simulink environment as part of a uni-
fied platform on which to conduct both simulations
and experiments. Further, we use a TCP interface to
connect the MATLAB-based strategy planner and map
builder with the UAVs and UGVs through the wireless
LAN. The interface is implemented as a MEX function,
which opens a TCP socket and communicates with a re-
mote process. We enforce Simulink to run in real-time
by having the TCP socket block program execution.

With this unified platform we are able to seamlessly
combine experiments and simulations. In simulation
mode, the strategy planner sends control commands
in VCL to the UAV simulator obtained from system
identification [10] and over TCP to a UGV simulator.
Visibility regions are simulated according to the state
variables of each vehicle, and the detection of evaders

and obstacles is simulated based on probabilistic sensor
models. In experiment mode, the same strategy plan-
ner sends commands over TCP to the actual UAVs and
UGVs, while the same map builder receives vehicle lo-
cations from the GPS, and visibility region and loca-
tions of obstacles and evaders from the vision system.

4 Simulation and Experimental Results

Here we present the results from simulations and
experiments performed using the unified simula-
tion/experimentation platform. We also study the ef-
fects of the pursuers’ physical limitations (speed, vis-
ibility region, etc.) on their behavior under different
pursuit policies, considering the capture time as a per-
formance measure1.

4.1 Simulation Results

Table 1 presents mean capture time of ten PEG simu-
lations between 3 pursuers and 1 evader with random
initial conditions. Experiments 1–4 evaluate the perfor-
mance of the two pursuit policies against a randomly
moving evader for two types of visibility regions: A
sonar-based omni-directional view Spk

2 and a camera-
based trapezoidal view Tpk

3. Experiments 5–8 evaluate
the performance of the global maximum policy for dif-
ferent speeds and levels of intelligence of the evader.

Table 1: Simulation Results
Exp Purs.

Policy
Purs.
Speed

Evad.
Policy

Evad.
Speed

Visib.
Region

Capt.
Time

1 Greedy 0.3 Rand 0.3 Omni 279s
2 Greedy 0.3 Rand 0.3 Trap 184s
3 G-max 0.3 Rand 0.3 Omni 86s
4 G-max 0.3 Rand 0.3 Trap 67s
5 G-max 0.3 Rand 0.5 Trap 56s
6 G-max 0.3 Rand 0.1 Trap 92s
7 G-max 0.3 G-min 0.1 Trap 151s
8 G-max 0.3 G-min 0.5 Trap 168s

4.2 Experimental Results

Table 2 presents results of real PEG experiments be-
tween 3 UGV pursuers and 1 UGV evader. Figure 3
shows the evolution of Experiment 1 through pho-
tographs and corresponding snapshots created by the
map builder. The darker cells in the map represent
regions with higher probability of having an evader.
Figures 4 and 5 show the map building snapshots for
Experiments 2 and 3, respectively.

1All the experiments are performed in a 20m× 20m environ-
ment with 1m× 1m square cells, p = q = 0.1 and dm = 1.5m.

2Spk
(t) is a square of side 5m, centered at xpk

(t).
3Tpk

(t) := 4(xpk
(t), ∠45◦, 7m)\4(xpk

(t), ∠45◦, 1m), where
4(x, ∠θ, h) is an isosceles triangle with vertex x, height h and
angle θ.

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

t=0

P1

P2

P3

E1

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

t=20

P1

P2

P3
E1

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

t=40

P1

P2

P3

E1

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

t=60

P1

P2

P3

E1

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

t=80

P1

P2

P3

E1

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

t=105

P1

P2

P3

E1

Figure 3: Showing a PEG between 3 UGV pursuers and
1 UGV evader. The pursuers move at 0.3 m/s using the
global-max policy; the evader moves randomly at 0.1 m/s.

Table 2: Experimental Results
Exp Purs.

Policy
Purs.
Speed

Evad.
Policy

Evad.
Speed

Visib.
Region

Capt.
Time

1 G-max 0.3 Rand 0.1 Omni 105s
2 G-max 0.3 Rand 0.1 Trap 42s
3 G-max 0.3 Rand 0.5 Trap 37s

4.3 Discussion

Capture Time vs. Pursuit Policy: Exper-
iments 1–4 in Table 1 show that the global-max pol-
icy generally outperforms the greedy policy. This is
because for each pursuer, the direction to the cell
with locally maximum probability of containing an
evader changes much more quickly than the direction
to the cell with globally maximum probability. Thus,
greedy pursuers spend more time changing heading
than global-max pursuers, which effectively reduces
their translational speed.

Capture Time vs. Visibility Region: Ex-
periments 1–4 in Table 1 and 1–3 in Table 2 show that,
regardless of the policy, pursuers with trapezoidal vis-
ibility regions outperform those with omni-directional
visibility regions. At a given instant, the trapezoidal
and omni-directional visibility regions cover approxi-
mately the same number of cells. However, a head-
ing change allows a pursuer with a trapezoidal view
to cover many more new cells than a pursuer with an
omni-directional view.

Capture Time vs. Evasion Policy: Experi-
ments 5–8 in Table 1 evaluate the global-max pursuit
policy against an evader following either a random or
global-min evasion policy. The pursuers always assume
a randomly moving evader, instead of a computation-
ally expensive one-step Nash solution. As expexted,
it takes longer to capture an intelligent evader than a
randomly moving evader. Further, for a fast evader
it takes 300% more time to capture an intelligent one
than a randomly moving one, while for a slow evader
it takes only 64% more time. Finally, we can see that
the global-max pursuit policy is robust with respect to
changes in the evasion policy.

Capture Time vs. Evader Speed: Experi-
ments 5 and 6 in Table 1 show that it takes longer to
capture a slightly faster random evader than a slower
random evader. This is because a faster random evader
visits more cells in the map, increasing the chances of
being detected. This argument can be applied to Fig-
ure 5: The higher speed of E1 allows it to move away
from the visibility region of P2 for t ∈ [0, 14], but E1
soon moves into the visibility region of P3 and is quickly
captured.

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

t=0

P1P2

P3

E1

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

t=8

P1
P2

P3

E1

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

t=16

P1
P2

P3

E1

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

t=24

P1P2

P3

E1

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

t=32

P1
P2

P3

E1

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

t=42

P1

P2

P3

E1

Figure 4: Showing snapshots of an actual PEG between 3
UGV pursuers and 1 UGV evader. The pursuers move at 0.3
m/s and use the global-max pursuit policy with simulated
trapezoidal view. The evader moves at 0.1 m/s.

5 Conclusions

We presented a framework for real-time control of mul-
tiple unmanned ground and aerial vehicles. The im-
plementation was based on a distributed hierarchical
architecture that is modular, scalable, and applicable
to heterogeneous unmanned vehicles. The architecture
was successfully applied to a scenario in which one team
pursues another while concurrently building a map of
the environment. We presented experimental results
evaluating the performance of different pursuit policies
with respect to speed, intelligence of the evaders and
sensing capabilities of the pursuers. Our result shows
that the global-max policy outperforms the greedy pol-
icy in realistic situations in which the vehicle dynamics
and vision-based detection are incorporated.

References

[1] X. Deng, T. Kameda, and C. Papadimitriou. How to learn
an unknown environment I: The rectilinear case. Journal of the
ACM, 45(2):215–245, March 1998.

[2] J. Hespanha, H.J. Kim, and S. Sastry. Multiple-agent
probabilistic pursuit-evasion games. In Proc. of 38th IEEE CDC,
pages 2432–2437, Dec. 1999.

[3] J. Hespanha, M. Prandini, and S. Sastry. Probabilistic

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

t=0

P1

P2

P3

E1

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

t=7

P1

P2

P3

E1

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

t=14

P1

P2

P3

E1

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

t=21

P1

P2

P3

E1

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

t=28

P1

P2

P3

E1

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

t=37

P1

P2

P3

E1

Figure 5: Showing snapshots of an actual PEG between 3
UGV pursuers and 1 UGV evader. The pursuers move at 0.3
m/s and use the global max pursuit policy with simulated
trapezoidal view. The evader moves at 0.5 m/s.

pursuit-evasion games: a one-step Nash approach. In Proc. of
39th IEEE CDC, pages 2272–2277, Dec. 2000.

[4] T. Koo, F. Hoffmann, D.H. Shim, B. Sinopoli, and S. Sas-
try. Hybrid control of an autonomous helicopter. In IFAC Work-
shop on Motion Control, pages 285–290, 1998.

[5] S. LaValle, D. Lin, L. Guibas, J-C. Latombe, and R. Mot-
wani. Finding an unpredictable target in a workspace with obsta-
cles. In Proc. of IEEE Int. Conf. on Robotics and Automation,
pages 732–742, 1997.

[6] J. Lygeros, D.N. Godbole, and S. Sastry. Verified hybrid
controllers for automated vehicles. IEEE Transactions on Auto-
matic Control, 43(4):522–539, April 1998.

[7] G. Pappas, C. Tomlin, J. Lygeros, D. Godbole, and S. Sas-
try. A next generation architecture for air traffic management
systems. In Proc. of 36th IEEE CDC, pages 2405–2410, Dec.
1997.

[8] S. Rashid and H.J. Kim. Multiple-agent probabilistic
pursuit-evasion games in 2.5D. Technical Report UCB/ERL
M99/34, UC Berkeley, 1999.

[9] D.H. Shim. Hierarchical Flight Control System Synthesis
for Rotorcraft-Based Unmanned Aerial Vehicles. PhD thesis, UC
Berkeley, 2000.

[10] D.H. Shim, H.J. Kim, and S. Sastry. Hierarchical control
system synthesis for rotorcraft-based unmanned aerial vehicles.
In Proc. of AIAA Conference on Guidance, Navigation and Con-
trol, Denver, 2000.

[11] R. Vidal, S. Rashid, C. Sharp, O. Shakernia, H.J. Kim,
and S. Sastry. Pursuit-evasion games with unmanned ground
and aerial vehicles. In Proc. of IEEE Conference on Robotics
and Automation, pages 2948–2955, 2001.

