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Abstract

We study the problem of estimating the motion of independently moving objects
observed by a moving perspective camera. We show that infinitesimal image mea-
surements corresponding to independent motions lie on orthogonal six-dimensional
subspaces of a higher-dimensional linear space. We propose a factorization algo-
rithm that estimates the number of independent motions, the segmentation of the
image points and the motion of each object relative to the camera from a set of
image points and their optical flows in multiple frames. We evaluate the proposed
algorithm on synthetic and real image sequences.

1 Introduction

The problem of estimating the 3D motion of a moving camera imaging a single static
object has been thoroughly studied in the computer vision community. One of the first
multi-view algorithms was proposed by Tomasi and Kanade [15] who used a factorization
technique based on the fact that, under orthographic projection, discrete image measure-
ments lie on a three-dimensional linear variety. The method was extended to affine and
paraperspective cameras in [11] and to central panoramic cameras in [12].

Factorization approaches have also been extended to the case of multiple moving
points/objects observed by an orthographic camera. Boult and Brown [2] proposed a rank
constraint to estimate the number of independent motions and obtained the segmentation
of the image data from the leading singular vectors of the matrix of feature points in
multiple frames. Their algorithm was extended by Costeira and Kanade [3] who showed
that subspaces corresponding to different motions are orthogonal to each other. They
used this fact to define the so-called interaction matrix, from which the segmentation of
the image data is obtained using a graph-theoretic approach. A similar algorithm was
proposed by Han and Kanade [5] for reconstructing a scene containing multiple moving
points, some of them static and the others moving linearly with constant speed.

Under full perspective projection, discrete image measurements form a nonlinear va-
riety [16]. Therefore, even though factorization methods have been used for single-body
motion estimation [10], they have not been generalized to the case of multiple motions
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yet. Instead, various special cases have been analyzed using geometric techniques, e.g.
multiple points moving linearly with constant speed [5, 13] or in a conic section [1],
and two-body [18] and multi-body [17] motion segmentation from two perspective views.
Alternative probabilistic approaches to 3-D motion segmentation are based on model
selection techniques [16, 7], combine normalized cuts with a mixture of probabilistic
models [4], or compute statistics of the innovation process of a recursive filter [14].

On the other hand, perspective infinitesimal image measurements do lie on a low-
dimensional linear variety defined by the so-called subspace constraints [6]. Irani used
these constraints to obtain a multi-frame algorithm for the estimation of the optical flow
of a moving camera observing a static scene. However, these constraints have not been
used for 3D motion estimation.

In this paper, we use subspace constraints to develop a factorization algorithm for 3D
motion estimation and segmentation from multiple perspective views. We do not assume
prior segmentation of the points, nor do we restrict the motion of the objects to be linear
or constant. Also, we do not assume previous knowledge of the number of independent
motions. Our approach is based on the fact that infinitesimal image measurements
corresponding to independent motions lie on orthogonal six-dimensional subspaces of a
higher-dimensional linear space. Therefore, one can estimate the number independent
motions, the segmentation of the image points, and the motion of each object relative to
the camera from a set of image points and their optical flows. We present experimental
results on synthetic and real image sequences.

1.1 Notation and Problem Statement

The motion of the camera and that of the objects is modeled as a rigid body motion in
R3, i.e. as an element of the special Euclidean group SE(3) = {(R, T ) | R ∈ SO(3), T ∈
R3} and its Lie algebra se(3) = {(ω̂, v) | ω̂ ∈ so(3), v ∈ R3}, where SO(3) and so(3) are
the sets of rotation matrices and skew-symmetric matrices in R3×3, respectively1.

The image x = [x, y, 1]T ∈ R3 of a point q with coordinates [q1, q2, q3]T ∈ R3 (with
respect to the camera frame), is assumed to satisfy the perspective projection equation:

x = q/Z, (1)

where Z = q3 > 0 encodes the (unknown and positive) depth of the point q with respect
to its image x. The optical flow u is defined as the velocity of x on the image plane,
i.e.

[uT , 0]T = ẋ.

Problem Statement: Let xij be the image of point i in frame j, with i = 1, . . . , n and
j = 0, . . . ,m, where j = 0 indicates the reference frame. Let {uij} be the optical flow
of point xi0 between frames 0 and j = 1, . . . ,m. Given the images {xi0} and the flows
{uij}, recover the number of moving objects, the object to which each point belongs to,
the depth of the n points and the motion of the objects relative to the camera.

To be consistent with the notation, we always use the superscript to enumerate the n
different points and/or the object to which the point belongs to. We omit the superscript
when we refer to a generic single point and/or object. The subscript is always used to
enumerate the m different camera frames.

1The “hat” notation, (̂·), denotes the map from R3 to so(3), that transforms a three-dimensional
vector u into a 3× 3 matrix û such that ûv = u× v ∀ u, v ∈ R3.



2 Single-Body Multi-View Geometry

Let us start with the simplest case in which the moving camera observes a single mov-
ing object. Let (Ro(t), To(t)) ∈ SE(3) and (Rc(t), Tc(t)) ∈ SE(3) be the pose of the
object and that of the camera at time t with respect to an inertial (fixed) reference
frame. Let q be a point located on the object with coordinates [q1, q2, q3]T ∈ R3 rel-
ative to the object frame. The coordinates of the same point relative to the inertial
reference frame are: qo(t) = Ro(t)q + To(t) and the coordinates of q relative to the cam-
era frame are: qoc(t) = RT

c (t)Ro(t)q + RT
c (t)(To(t)− Tc(t)). Differentiating this equation

yields: q̇oc = (ṘT
c Ro +RT

c Ṙo)q + ṘT
c (To − Tc) +RT

c (Ṫo − Ṫc). Combining the previous
two equations yields:

q̇oc = (ṘT
c Rc +RT

c ṘoR
T
oRc)qoc +RT

c (Ṫo − Ṫc − ṘoR
T
o (To − Tc)). (2)

Since ṘRT ∈ so(3), R̂Tω = RT ω̂R and ṘTR = −RT ṘRTR [9], we may define the angular
velocities ωc, ωo ∈ R3 by: ω̂o = ṘoR

T
o and ω̂c = ṘcR

T
c . Combining the previous equation

with (2) yields:

q̇oc =[RT
c (ωo − ωc)]× qoc +RT

c (Ṫo − Ṫc − ω̂o(To − Tc)) = ω̂qoc + v,

where ω and v are the angular and translational velocities of the object relative to the
camera. Under perspective projection, the optical flow u of point q is then given by:

u =
d

dt

(qoc
Z

)
=

1

Z

[
1 0 −x
0 1 −y

]
q̇oc =

[
−xy 1 + x2 −y 1/Z 0 −x/Z

−(1 + y2) xy x 0 1/Z −y/Z

][
ω
v

]

where qoc = (X,Y, Z)T and (x, y, 1)T = qoc/Z.
Given measurements for the optical flow uij = (uij, v

i
j)
T of point xi0 = (xi, yi, 1)T ,

i = 1, . . . , n, in frame j = 1, . . . ,m, define the matrix of rotational flows Ψ and the
matrix of translational flows Φ as:

Ψ =

[
−{xy} {1 + x2} −{y}
−{1 + y2} {xy} {x}

]
∈ R2n×3 and Φ =

[
{1/Z} 0 −{x/Z}

0 {1/Z} −{y/Z}

]
∈ R2n×3,

where (for example) {xy}T = [x1y1, · · · , xnyn]. Also let

U =




u1
1 · · · u1

m
...

...
un1 · · · unm


 and V =




v1
1 · · · v1

m
...

...
vn1 · · · vnm


 .

Then, the optical flow matrix W ∈ R2n×m satisfies:

W =

[
U
V

]
= [Ψ Φ]2n×6

[
ω1 · · · ωm
v1 · · · vm

]

6×m
= SMT

where ωj and vj are the velocities of the object relative to the camera in the j th frame.
We call S ∈ R2n×6 the structure matrix and M ∈ Rm×6 the motion matrix. We conclude
that, for general translation and rotation, the optical flow matrix W has rank 6. This
rank-6 constraint is an extension of the rank-3 constraint proposed by Oliensis [10], and
was first derived by Irani [6] who used it to obtain a multi-frame algorithm for the
estimation of the optical flow of a moving camera observing a static scene.



The rank constraint rank(W ) = 6 can be naturally used to derive a factorization
method for estimating the relative velocities (ωj, vj) and depth Z i from image points
xi0 and optical flows uij. We can do so by factorizing W into its motion and structure

components. To this end, consider the singular value decomposition (SVD) ofW = USV T
and let S̃ = U and M̃ = VS. Then we have S = S̃A and M = M̃A−T for some A ∈ R6×6.
Let Ak be the k-th column of A. Then the columns of A must satisfy:

S̃A1−3 = Ψ and S̃A4−6 = Φ.

Since Ψ is known, A1−3 can be immediately computed. The remaining columns of A and
the vector of depths {1/Z} can be obtained up to scale from:




−I S̃u 0 0

−I 0 S̃v 0

diag({x}) 0 0 S̃u

diag({y}) 0 0 S̃v

0 S̃v 0 0

0 0 S̃u 0







{1/Z}
A4

A5

A6


 = 0.

where S̃u ∈ Rn×6 and S̃v ∈ Rn×6 are the upper and lower part of S̃, respectively.

3 Multi-Body Multi-View Geometry

So far, we have assumed that the scene contains a single moving object. Now, we consider
the case in which a single camera observes no objects. The new optical flow matrix W
will contain additional rows corresponding to measurements from the different objects.
However, we cannot directly apply the factorization method of the previous section to
solve for the relative motion of each object, because we do not know which measure-
ments in W correspond to which object. We therefore need to consider the segmenta-
tion problem first, i.e. the problem of separating all the measurements into no classes:
Ik = {i ∈ {1...n}| xi0 ∈ object k}. Furthermore, we assume that no itself is unknown.

3.1 Estimating the number of independent motions

Assume that the camera tracks nk image points for object k and let n =
∑
nk be the

total number of points tracked. Also let U k and V k be matrices containing the optical
flow of object k. If the segmentation of these points were known, then the multi-body
optical flow matrix could be written as:

W =

[
U
V

]
=




U1

...
Uno

V 1

...
V no




=




S̃1
u · · · 0
...

. . .
...

0 · · · S̃nou

S̃1
v · · · 0
...

. . .
...

0 · · · S̃nov




[
M̃1 · · · M̃no

]T
= S̃M̃T

= S̃



A1 · · · 0
...

. . .
...

0 · · · Ano






A1 · · · 0
...

. . .
...

0 · · · Ano




−1

M̃T = S̃AA−1M̃T = SMT .



where S̃ku and S̃kv ∈ Rn
k×6, k = 1, . . . , no, S̃ and S ∈ R2n×6no , A ∈ R6no×6no , and M̃ and

M ∈ Rm×6no .
Since we are assuming that the segmentation of the image points is unknown, the

rows of W may be in a different order. However, the reordering of the rows of W will
not affect its rank. Assuming that n ≥ 6no and m ≥ 6no, we conclude that the number
of independent motions no can be estimated as:

no = rank(W )/6. (3)

In practice, optical flow measurements will be noisy and W will be full rank. Although
one could estimate the number of objects by thresholding the singular values of W , a
better choice comes from analyzing the statistics of the residual. Kanatani [8] studied the
problem for the orthographic projection model using the geometric information criterion.
The same method can be used here for a perspective camera as shown in Figure 1, which
plots the singular values of W and the estimated rank as a function of noise.
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Figure 1: Estimating the rank of W for two independent motions. Zero mean Gaussian
noise with standard deviation σ in pixels is added to W . (a) Singular values of W for
different levels of noise σ ∈ [0, 1.5]. (b) rank(W ) estimated with a threshold of 10−4 and
(c) with Kanatani’s method.

3.2 Segmenting the image points

Segmenting the image points is equivalent to finding the unknown reordering of the rows
of W . We can model such a reordering as an n × n permutation matrix P applied to
both U and V . Such a permutation will affect the rows of S̃, hence those of S, but A,
M̃ and M are unaffected. Therefore, from the SVD of W = USVT we have

UUT =




P



S̃1

uS̃
1T
u 0

. . .

0 S̃nou S̃noTu


P T P



S̃1

uS̃
1T
v 0

. . .

0 S̃nou S̃noTv


P T

P



S̃1

vS̃
1T
u 0

. . .

0 S̃nov S̃noTu


P T P



S̃1

vS̃
1T
v 0

. . .

0 S̃nov S̃noTv


P T




,

We define the segmentation matrix Σ as the sum of the diagonal blocks of UU T , i.e.

Σ = P



S̃1

uS̃
1T
u + S̃1

vS̃
1T
v 0

. . .

0 S̃nou S̃noTu + S̃nov S̃noTv


P T .



Then, Σij > 0 if and only if image points i and j belong to the same object. In the
absence of noise, the matrix Σ can be trivially used to determine the class to which each
image point belongs to. One can also use each one of the two diagonal blocks of UU T .
In the presence of noise, Σij will be nonzero even if points i and j correspond to different
objects. Techniques that handle this case can be found in [3, 7] for the orthographic case.
They can also be applied here to the perspective case.

4 Experimental Results

In this section, we evaluate the proposed algorithm on real and synthetic image sequences.
Each pixel of each frame is considered as a feature and segmentation is performed using
the segmentation matrix associated to the optical flow of those pixels.

Figure 2 shows the street sequence2, which contains two independent motions: the
motion of the car and the motion of the camera that is panning to the right. Figure 4(a)
shows frames 3, 8 12 and 16 of the sequence with the corresponding optical flow super-
imposed. Optical flow is computed using Black’s algorithm3. Figures 4(b)-(c) show the
segmentation results. In frame 4 the car is partially occluded, thus only the frontal part
of the car is segmented from the background. The door is incorrectly segmented because
it is in a region with low texture. As time proceeds, motion information is integrated over
time by incorporating optical flow from many frames in the optical flow matrix, thus the
door is correctly segmented. In frame 16 the car is fully visible and correctly segmented
from the moving background.

Figure 3 shows the sphere-cube sequence2, which contains a sphere rotating along a
vertical axis and translating to the right, a cube rotating counter clock-wise and trans-
lating to the left, and a static background. Even though the optical flow of the sphere
appears to be noisy, its motion is correctly segmented. The top left (when visible), top
and right sides of the square are also correctly segmented in spite of the fact that only
normal flow is available. The left bottom side of the cube is merged with the background,
because its optical flow is small, since the translational motion of the cube cancels its ro-
tational motion. The center of the cube is never segmented correctly since it corresponds
to a region with low texture. Integrating motion information over many frames does not
help here since those pixels are in a region with low texture during the whole sequence.

Figure 4(a) shows the two-robot sequence with the corresponding optical flow super-
imposed. Figures 4(b) and 4(c) show the results of the segmentation. Groups 1 and
2 correspond to the each one of the moving objects, while group 3 corresponds to the
background, which is the correct segmentation.

5 Conclusions

We have proposed an algorithm for estimating the motion of multiple moving objects as
observed by a moving camera in multiple frames. Our algorithm is based on the fact that
image measurements from independent motions lie on orthogonal subspaces of a higher-
dimensional space, thus it does not require prior segmentation or previous knowledge
of the number of independent motions. Experimental results show how segmentation is
correctly obtained by integrating image measurements from multiple frames.

2http://www.cs.otago.ac.nz/research/vision/Research/OpticalFlow/opticalflow.html#Sequences
3http://www.cs.brown.edu/people/black/ignc.html
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(a) Optical flow (b) Group 1 (c) Group 2

Figure 2: Segmentation results for the street sequence. The sequence has 18 frames and
200 × 200 pixels. The camera is panning to the right while the car is also moving to
the right. (a) Frames 3, 8 12 and 16 of the sequence with the corresponding optical flow
superimposed. (b) Group 1: motion of the camera. (c) Group 2: motion of the car.



(a) Optical flow (b) Group 1 (a) Group 2 (b) Group 3

Figure 3: Segmentation results for the sphere-cube sequence. The sequence contains 10
frames and 400× 300 pixels. The sphere is rotating along a vertical axis and translating
to the right. The cube is rotating counter clock-wise and translating to the left. The
background is static. (a) Frames 2-8 with corresponding optical flow superimposed. (b)
Group 1: cube motion. (c) Group 2: sphere motion. (d) Group 3: static background.



(a) Optical flow (b) Group 1 (c) Group 2 (d) Group 3

Figure 4: Segmentation results for the two-robot sequence. The sequence contains 6
frames and 200 × 150 pixels. (a) Frames 1-5 of the sequence with optical flow super-
imposed. (b) Group 1: one moving robot. (c) Group 2: the other moving robot. (d):
Group 3: static background.


