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Abstract. We present a bottom up algebraic approach for segmenting multiple
2D motion models directly from the partial derivatives of an image sequence. Our
method fits a polynomial called the multibody brightness constancy constraint
(MBCC) to a window around each pixel of the scene and obtains a local motion
model from the derivatives of the MBCC. These local models are then clustered
to obtain the parameters of the motion models for the entire scene. Motion seg-
mentation is obtained by assigning to each pixel the dominant motion model in
a window around it. Our approach requires no initialization, can handle multiple
motions in a window (thus dealing with the aperture problem) and automatically
incorporates spatial regularization. Therefore, it naturally combines the advan-
tages of both local and global approaches to motion segmentation. Experiments
on real data compare our method with previous local and global approaches.

1 Introduction

Motion segmentation is a fundamental problem in many applications in computer vi-
sion, such as traffic surveillance, recognition of human gaits, etc. This has motivated
the recent development of various local and global approaches to motion segmentation.

Local methods such as Wang and Adelson [1] divide the image in small patches and
estimate an affine motion model for each patch. The parameters of the affine models are
then clustered using the K-means algorithm and the regions of support of each motion
model are computed by comparing the optical flow at each pixel with that generated
by the “clustered” affine motion models. The drawback of such local approaches is that
they are based on a local computation of 2-D motion, which is subject to the aperture
problem and to the estimation of a single model across motion boundaries.

Global methods deal with such problems by fitting a mixture of motion models to the
entire scene. [2] fits a mixture of parametric models by minimizing a Mumford-Shah-like
cost functional. [3, 4, 5, 6, 7, 8] fit a mixture of probabilistic models iteratively using the
Expectation Maximization algorithm (EM). The drawback of such iterative approaches
is that they are very sensitive to correct initialization and are computationally expensive.

To overcome these difficulties, more recent work [9, 10, 11, 12] proposes to solve
the problem by globally fitting a polynomial to all the image measurements and then
factorizing this polynomial to obtain the parameters of each 2-D motion model. These
algebraic approaches do not require initialization, can deal with multiple motion mod-
els across motion boundaries and do not suffer from the aperture problem. However,
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these algebraic techniques are sensitive to outliers in the data and fail to incorporate
spatial regularization, hence one needs to resort to some ad-hoc smoothing scheme for
improving the segmentation results.

1.1 Paper Contributions

In this paper, we present a bottom up approach to direct motion segmentation, that
integrates the advantages of the algebraic method of [12], and the non-algebraic method
of [1], and at the same time reduces the effect of their individual drawbacks.

Our approach proceeds as follows. We first consider a window around each pixel
of the scene and fit a polynomial called the multibody brightness constancy constraint
(MBCC) [12] to the image measurements of that window. By exploiting the properties
of the MBCC, we can find the parameters of the multiple motion models describing the
motion of that window. After choosing a dominant local motion model for each window
in the scene, we cluster these models using K-means to obtain the parameters describing
the motion of the entire scene [1]. Given such global models, we segment the scene by
allotting to every pixel the dominant global motion model in a window around it.

This new approach to motion segmentation offers various important advantages.

1. With respect to local methods, our approach can handle more than one motion
model per window, hence it is less subject to the aperture problem or to the estima-
tion of a single motion model across motion boundaries.

2. With respect to global iterative methods, our approach has the advantage of not
requiring initialization.

3. With respect to global algebraic methods, our approach implicitly incorporates spa-
tial regularization by assigning to a pixel the dominant motion model in a window
around it. This also allows our method to deal with a moderate level of outliers.

2 Problem Statement

Consider a motion sequence taken by a moving camera observing an unknown number
of independently and rigidly moving objects. Assume that each one of the surfaces
in the scene is Lambertian, so that the optical flow u(x) = [u, v, 1]� ∈ P

2 of pixel
x = [x, y, 1]� ∈ P

2 is related to the spatial-temporal image derivatives at pixel x,
y(x) = [Ix, Iy , It]� ∈ R

3, by the well-known brightness constancy constraint (BCC)

y�u = Ixu + Iyv + It = 0. (1)

We assume that the optical flow in the scene is generated by nt 2-D translational
motion models {ui ∈ P

2}nt

i=1 or by na 2-D affine motion models {Ai ∈ R
3×3}na

i=1

u = ui i = 1, . . . nt or u = Aix =

⎡
⎣

a�
i1

a�
i2

0, 0, 1

⎤
⎦ x i = 1, . . . , na, (2)

respectively. Under these models, the BCC (1) reduces to

y�ui = 0 and y�Aix = 0 (3)
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for the 2-D translational and 2-D affine motion models, respectively.
In this paper, we consider the following problem.

Problem 1 (Direct 2-D motion segmentation). Given the spatial-temporal derivatives
{(Ixj , Iyj , Itj))}N

j=1 of a motion sequence generated by a known number of n = nt

translational or n = na affine motion models, estimate the optical flow u(x), the mo-
tion model at each pixel {xj}N

j=1 and the segmentation of the image measurements,
without knowing which measurements correspond to which motion model.

3 Global Algebraic Motion Segmentation from the Multibody
Brightness Constancy Constraint

In this section, we review the global algebraic approach to direct motion segmentation
introduced in [12], which is based on a generalization of the BCC to multiple motions.

Let (x, y) be an image measurement associated with any of the motion models. Ac-
cording to the BCC (1) there exists a 2-D motion model, say the kth model, whose
optical flow uk(x) satisfies y�uk(x) = 0. Therefore, the following multibody bright-
ness constancy constraint (MBCC) must be satisfied by every pixel in the image

MBCC(x, y) =
n∏

i=1

(y�ui(x)) = 0. (4)

From equation (4) we can see that in the purely translational case, the MBCC is a
homogeneous polynomial of degree nt which can be written as a linear combination
of the monomials yl1

1 yl2
2 yl3

3 with coefficients Ul1,l2,l3 . By stacking all the monomials
in a vector νnt(y) ∈ R

Mnt and the coefficients in a multibody optical flow vector
U ∈ R

Mnt , where Mnt = (nt+1)(nt+2)
2 , we can express the MBCC as

MBCC(x, y) = νnt(y)�U =
nt∏
i=1

(y�ui). (5)

The vector νnt(y) ∈ R
Mnt is known as the Veronese map of y of degree nt.

Similarly, if the entire scene can be modeled by affine motion models only, the
MBCC is a bi-homogeneous polynomial of degree na in (x, y). The coefficients of
this polynomial can be stacked into a multibody affine matrix A ∈ R

Mna×Mna , so that
the MBCC can be written as

MBCC(x, y) = νna(y)�Aνna(x) =
na∏
j=1

(y�Ajx). (6)

3.1 Computing the Multibody Motion Model

As the MBCC holds at every image measurement {(xj , yj)}N
j=1, we can compute the

multibody motion model M = U or A by solving the linear system

Lnm = 0, (7)
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where m is the stack of the columns of M. In the case of translational models, the jth
row of Lnt ∈ R

N×Mnt is given by νnt(yj)�. In the case of affine models, the jth row

of Lna ∈ R
N×(M2

na
−Zna ) is given by a subset of the entries of (νna(yj) ⊗ νna(xj))�.

The dimension of Lna is N ×(M2
na

−Zna) rather than N ×M2
na

, because Zna elements
of A are zero, as the (3, 1) and (3, 2) elements of every affine motion model {Ai}na

i=1
are zero. The enforcement of this constraint leads to a more robust calculation of A.

With noisy data the equation MBCC(x, y) = 0, becomes MBCC(x, y) ≈ 0. Never-
theless, since the MBCC is linear in the multibody motion parameters U or A, we can
solve a linear inhomogeneous system by enforcing the last entry of m to be 1. It is easy
to prove, that when nt = 1 or na = 1, this method of solving the linear system, reduces
to the standard local approaches of fitting a single motion model to a given window.

3.2 Motion Segmentation Using the MBCC

In this subsection, we demonstrate how one can calculate the parameters of the multiple
motion models associated with the entire scene from its MBCC.

A very important and powerful property of the MBCC is that one can compute the
optical flow u(x) at each pixel in closed form, without knowing which motion model
is associated with each pixel. Since each pixel x is associated with one of the n motion
models, there is a k = 1, . . . , n such that y�uk(x) = 0, so

∏
� �=i(y

�u�(x)) = 0 for
all i �= k. Therefore, the optical flow at a pixel obeying model k can be obtained as

∂MBCC(x, y)
∂y

=
n∑

i=1

ui(x)
∏
� �=i

(y�u�(x)) ∼ uk(x). (8)

For 2-D translational motions, the motion model is the optical flow at each pixel.
Hence, we can take the optical flow at all the pixels in the scene and obtain the nt

different values {ui}nt

i=1 using any clustering algorithm in R
2. Alternatively, one can

choose nt pixels {xi}nt

i=1 with reliable optical flow and then obtain ui = u(xi). As
shown in [12], under the assumption of zero-mean Gaussian noise in y with covariance
Λ ∈ R

3×3, one can choose a measurement (xnt , ynt
) that minimizes

d2
nt

(x, y) =
|MBCC(x, y)|2
‖Λ∂MBCC(x,y)

∂y ‖2
. (9)

The remaining measurements (xi−1, yi−1) for i = nt, nt − 1, . . . , 2 are chosen as the
ones that minimize

d2
i−1(x, y) =

d2
i (x, y)
|y�ui|2
‖Λui‖2

. (10)

Notice that in choosing the points there is no optimization involved. We just evaluate
the distance functions di at each point and choose the one giving the minimum distance.

In the case of 2-D affine motion models, one can obtain the affine motion model
associated with an image measurement (x, y) from the cross products of the derivatives
of the MBCC. More specifically, note that if (x, y) comes from the ith motion model,
i.e. if y�Aix = 0, then
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∂MBCC(x, y)
∂x

∼ y�Ai. (11)

Thus, the partials of the MBCC with respect to x give linear combinations of the rows of
the affine model at x. Now, since the optical flow u = [u, v, 1]� at pixel x is known, we
can evaluate the partials of the MBCC at (x, y1), with y1 = [1, 0, −u]�, and (x, y2),
with y2 = [0, 1, −v]�, to obtain the following linear combination of the rows of Ai

gi1 ∼ ai1 − ue3 and gi2 ∼ ai2 − ve3, (12)

where ei is given by the ith column of the 3 × 3 identity matrix. Let bi1 = gi1 ×
e3 ∼ ai1 × e3 and bi2 = gi2 × e3 ∼ ai2 × e3. Although the pairs (bi1, e1) and
(bi2, e2) are not actual image measurements, they satisfy e�1 Aibi1 = a�

i1bi1 = 0 and
e�2 Aibi2 = a�

i2bi2 = 0. Therefore, we can immediately compute the rows of Ai up to
scale factors λi1 and λi2 as

ã�
i1 =λ−1

i1 a�
i1 =

∂MBCC(x, y)
∂x

∣∣∣∣
(bi1,e1)

, ã�
i2 =λ−1

i2 a�
i2 =

∂MBCC(x, y)
∂x

∣∣∣∣
(bi2,e2)

. (13)

Finally, from the optical flow equations u = Aix we have that u = λi1ã
�
i1x and

v = λi2ã
�
i2x, hence the unknown scales are automatically given by

λi1 =
u

ã�
i1x

and λi2 =
v

ã�
i2x

. (14)

In order to obtain the na different affine matrices, we only need to apply the method
to na pixels corresponding to each one of the na models. We can automatically choose
the na pixels at which to perform the computation using the same methodology pro-
posed for 2-D translational motions, i.e. by choosing points that minimize (9) and a
modification of (10). For the 2-D affine models, (10) is modified as

d2
i−1(x, y) =

d2
i (x, y)

|y�Aix|2
‖Λ(Aix)‖2

. (15)

Once the n models have been computed, the scene is segmented using the following
scheme: assign (xj , yj) to group i if

i = arg min
�=1,...,n

|y�
j u�|2

‖Λu�‖2 for the translational case, (16)

i = arg min
�=1,...,n

|y�
j A�xj |2

‖Λ(A�xj)‖2 for the affine case. (17)

4 A Bottom Up Approach to Direct 2-D Motion Segmentation

The local method of [1] considers a window around every pixel, fits a single motion
model to each window, and then clusters the locally estimated motion models. As ear-
lier pointed out, this method can suffer from the aperture problem and hence, one would
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be required to take a large window to avoid it. However, using a large window can lead
to the estimation of a single motion model across motion boundaries. The global method
of [12] helps in overcoming these two problems by globally fitting a MBCC to the entire
scene. However, this purely algebraic method does not incorporate spatial regulariza-
tion, because the segmentation is point-based rather than patch-based, as suggested by
equations (16) and (17). This results in noisy segmentations, which need to be post-
processed using ad-hoc techniques for spatial smoothing. In addition, the method does
not deal with outliers in the image measurements.

In this section, we propose a bottom up approach to motion segmentation which
integrates the local and algebraic approaches by exploiting their individual advantages.
We propose to fit multiple motion models to a possibly large window around each pixel
using the algebraic method, to then cluster these locally estimated models. The details
of our approach are given in the following subsections.

4.1 Local Computation of Multiple Motion Models

We consider a window W(x) around a pixel x and fit a MBCC to the measurements in
that window. In doing so, we use a variable number of models n = 1, . . . , nmax, where
nmax is the maximum number of motion models in the scene. For every n, we use the
method described in Section 3 to calculate n motion models M1

n . . . Mn
n for that win-

dow. As n varies, this gives a total of nmax(nmax+1)
2 motion models for every window.

From these candidate local models, we choose the dominant local motion model for that
window as the one that minimizes the sum of the squares of the brightness constancy
constraint evaluated at every pixel in the window. That is, we assign to xj the model

M(xj) = min
n=1...nmax

l=1...n

{M l
n :

∑
xk∈W(xj)

(y�
k ul

n(xk))2}, (18)

where ul
n(xk) is the optical flow evaluated at xk according to M l

n, i.e. the lth motion
model estimated assuming n motion models in the window. This is equivalent to as-
signing to a window the motion model that gives the least residual with respect to the
BCC for that window. By applying this procedure to all pixels in the image, {xj}N

j=1,
we estimate a collection of N local motion models for the entire scene.

Note that, in comparison with the local approach of [1], our method can account for
more than one motion model in a window. In addition, the structure of the MBCC lets
us choose the size of the window as large as necessary without having to worry about
the motion boundary problem. In fact [12] deals with the case where the window size
is the size of the entire image and hence fits the motion models to the entire scene.

An additional feature of our method is that equation (18) can also be used to esti-
mate the number of motion models in a window. However, an accurate estimation of
the number of models is not critical, as long as nmax is larger than or equal to the true
number of models in the window. This is because if the true number of motion models
is over estimated, then the estimated MBCC in (4) has additional factors apart from
the true factors. Once can show that these additional factors do not affect the calcula-
tions described in equations (8) - (15). We omit the details of the proof due to space
limitations.
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4.2 Clustering the Model Parameters

Ideally, pixels corresponding to the same motion should have the same motion parame-
ters. However, due to noise and outliers, the locally estimated motion model parameters
may not be the same for pixels corresponding to the same motion.

In order to obtain a set of reliable motion model parameters that define the motion
of the entire scene, we apply the K-means algorithm in the space of model parameters.
Note that if we were to apply [12] to the entire scene followed by the K-means algo-
rithm, we would have had problems due to outliers. However, in our approach, even for
windows centered at outliers, we choose the pixels with most reliable motion model pa-
rameters in the window, thus providing better estimates of the local motion model at a
pixel than [12]. We also provide better estimates than [1] that evaluates just one motion
model per pixel, because we can evaluate multiple motion models at motion boundaries.
Though we finally consider only one motion model per pixel on motion boundaries also,
we claim that this motion model is more accurate than the motion model given by [1],
because we choose the best among multiple local models.

4.3 Segmentation of the Motion Models

Once the motion model parameters describing the motion of the entire scene are cal-
culated, it remains to be decided as to how one should segment the scene. While [12]
performs well to a great extent, it does not incorporate spatial regularization. As a re-
sult the segmentation has a lot of holes and one has to use some ad-hoc method for
smoothing the results.

We would like to design a segmentation scheme which incorporates spatial regular-
ization, because it is expected that points that are spatially near by will obey the same
motion model. Hence, we consider a window W(xj) around every pixel {xj}N

j=1 and
assign to it the dominant global motion model for that window, that is, the global model
that minimizes the residual with respect to the BCC for the entire window. In the case
of translational models, this can be expressed mathematically as follows

u(xj) = min
i=1...nt

{ui :
∑

xk∈W(xj)

(y�
k ui)2}. (19)

In the case of affine motion models, the segmentation of the scene is obtained as follows

A(xj , yj) = min
i=1...na

{Ai :
∑

xk∈W(xj)

(y�
k Aixk)2}. (20)

5 Results

In this section, we test our algorithm on real world data and compare its performance
with that of the algorithms in [1] and [12]. For all methods, we model the scene as a
mixture of 2-D translational motion models. For the method in [12], we post process
the segmentation results by spatially smoothing them with a median filter in a window
of size 10 × 10.
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Method in [1] Method in [12] Our method

Fig. 1. Segmenting 3 frames from the car-parking lot sequence
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Method in [1] Method in [12] Our method

Fig. 2. Segmenting 3 frames from the head-lab sequence
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Figure 1 shows an example of segmentation of a 240×320 sequence of a car leaving a
parking lot. The scene has 2 motions, the camera’s downward motion and the car’s right-
downward motion. We use a window size of 10 × 10 to define the local neighborhoods
for the method in [1] and for our method. The first and second columns of Figure 1
show the segmentation obtained using the methods in [1] and [12], respectively. The
final column shows the results obtained using our method. In each image, the pixels
that do not correspond to the group are colored black. Note that the best segmentation
results are obtained using our approach. Although the improvement with respect to the
method in [1] is not significant, the segmentation of the car is very good as compared
to the method in [12] in the sense that very less amount of the parking lot is segmented
along with the car.

Figure 2 shows an example of segmentation of a 240 × 320 sequence of a person’s
head rotating from right to left in front of a lab background. The scene has 2 motions,
the camera’s fronto-parallel motion and the head’s motion. We use a window size of
20 × 20 to define the local neighborhoods for the method in [1] and for our method.
The first and second columns of Figure 2 show the segmentation obtained using the
methods in [1] and [12], respectively. The final column shows the results obtained using
our method. In each image, pixels that do not correspond to the group are colored red.
Notice that we cannot draw any conclusion for this sequence as to which algorithm
performs better, because essentially all the methods misclassify the regions that have
low texture. However, our method does perform better than [12] in terms of spatial
regularization of the segmentation.

6 Conclusions and Future Work

We have presented a bottom up approach to 2-D motion segmentation that integrates the
advantages of both local as well as global approaches to motion segmentation. An im-
portant advantage of our method over previous local approaches is that we can account
for more than one motion model in every window. This helps us choose a big window
without worrying about any aperture problem or motion boundary issues, and also re-
duces the need for iteratively refining the motion parameters across motion boundaries.
An important advantage of our method over global algebraic approaches is that we
incorporate spatial regularization into our segmentation scheme and hence we do not
need to apply any ad-hoc smoothing to the segmentation results. Future work entails
developing a robust algorithm for determining the number of motions in a window.
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