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Abstract— We consider the problem of identifying the orders
and the model parameters of PWARX hybrid models from
noiseless input/output data. We cast the identification problem
in an algebraic geometric framework in which the number of
discrete states corresponds to the degree of a multivariate
polynomial p and the orders and the model parameters are
encoded on the factors of p. We derive a rank constraint on the
input/output data from which one can estimate the coefficients
of p. Given p, we show that one can estimate the orders and
the parameters of each ARX model from the derivatives of p

at a collection of regressors that minimize a certain objective
function. Our solution does not require previous knowledge
about the orders of the ARX models (only an upper bound
is needed), nor does it constraint the orders to be equal. Also
the switching mechanism can be arbitrary, hence the switches
need not be separated by a minimum dwell time. We illustrate
our approach with an algebraic example of a switching circuit
and with simulation results in the presence of noisy data.

I. INTRODUCTION

We consider the problem of identifying the orders and the
model parameters of a class of discrete-time hybrid systems
known as PieceWise Auto Regressive eXogenous (PWARX)
systems, i.e. systems whose evolution is described as

yt =

na(λt−1)
∑

j=1

aj(λt−1)yt−j + cj(λt−1)ut−j , (1)

where ut ∈ R is the input, yt ∈ R is the output, λt ∈

{1, 2, . . . , n} is the discrete state, and na(i), {a`(i)}
na(i)
`=1

and {c`(i)}
na(i)
`=1 are, respectively, the orders and the model

parameters of the ith ARX model for i = 1, . . . , n.
The evolution of the discrete state λt can be described in

a variety of ways:

• In Jump-linear systems (JLS) λt is an unknown, deter-
ministic and finite-valued input.

• In Jump-Markov linear systems (JMLS) λt is an ir-
reducible Markov chain governed by the transition
probabilities π(i, i′)

.
= P (λt+1 = i′|λt = i).

• In Piecewise affine systems (PWAS) λt is a piecewise
constant function of the continuous state that is defined
by a polyhedral partition of the state space.

In this paper, we take the least restrictive model (JLS), so
that our results also apply to other switching mechanisms.
We therefore consider the following identification/filtering
problem.

Problem 1: Let {ut, yt}
T
t=0 be input/output data gen-

erated by the PWARX model (1), with known number
of discrete states n. Given an upper bound na for the
orders of the ARX models, identify the order of each
ARX model {na(i) ≤ na}

n
i=1, the model parameters

{a`(i)}
i=1,...,n

`=1,...,na(i) and {c`(i)}
i=1,...,n

`=1,...,na(i), and estimate the
discrete state {λt−1}

T
t=na

.

Work on identification/filtering of hybrid systems first
appeared in the seventies (see [19] for a review). More
recent works consider variations of Problem 1 in which the
model parameters, the discrete state and/or the switching
mechanism are known, and concentrate on the analysis of
the observability of the hybrid state [2], [4], [9], [11], [18],
[21], [22] and the design of hybrid observers [1], [3], [7],
[8], [10], [12], [14], [16], [17], [20].

The more challenging case in which both the model pa-
rameters and the hybrid state are unknown has been recently
addressed using mixed-integer quadratic programming [6]
or iteratively by alternating between assigning data points to
models and computing the model parameters starting from a
random or ad-hoc initialization [5], [13]. The first algebraic
approach to the identification of PWARX models appeared
in [25], where it was shown that one can identify the model
parameters in closed form when the ARX models are of
known and equal order and the number of discrete states is
less than or equal to four.

In this paper, we consider the case in which the orders of
the ARX models are unknown and possibly different from
each other. Following [25], we represent the number of
discrete states as the degree of a polynomial p and the orders
and model parameters as factors of p. We show that one can
linearly solve for the coefficients of p, even in the case of
unknown and different orders, thanks to a rank constraint
on the data. Given p, the orders and the parameters of
each ARX model are estimated from the derivatives of
p evaluated at a collection of regressors that minimize a
certain objective function. Our solution only requires an
upper bound on the orders of each ARX model, which are
not constrained to be equal. Also the switching mechanism
can be arbitrary. In particular, the switching times need not
be separated by a minimum dwell time. We illustrate our
approach with an algebraic example of a switching circuit
and with simulation results in the presence of noisy data.



II. IDENTIFICATION OF LINEAR ARX HYBRID SYSTEMS

This section presents an algebraic geometric solution to
Problem 1. Sections II-A and II-B show how to decouple the
identification of the model parameters from the estimation
of the discrete state via a suitable embedding into a higher-
dimensional space, as proposed in [25]. Sections II-C and II-
D show how to identify the orders and the model parameters
from the derivatives of a polynomial whose coefficients
are obtained from a rank constraint on the embedded data.
Section II-E shows how to estimate the discrete state.

A. The hybrid decoupling constraint

Notice from equation (1) that if we let K
.
= 2na + 1,

xt =[ut−na
, yt−na

, · · · , ut−1, yt−1,−yt]
T ∈ R

K , and

bi =[0, · · ·, 0, cna(i)(i), ana(i)(i), · · ·, c1(i), a1(i), 1]
T∈R

K ,

for i = 1, . . . , n, then we have that for all t ≥ na there
exists a discrete state λt−1 = i ∈ {1, . . . , n} such that

bT
i xt = 0. (2)

Therefore, the following hybrid decoupling constraint
(HDC) [25] must be satisfied by the model parameters and
the input/output data regardless of the value of the discrete
state and regardless of the switching mechanism generating
the evolution of the discrete state (JLS, JMLS, or PWAS)

n
∏

i=1

(bT
i xt) = 0. (3)

B. The hybrid model parameters

The hybrid decoupling constraint is simply is a homoge-
neous polynomial of degree n in K variables

pn(z)
.
=

n
∏

i=1

(bT
i z) = 0, (4)

which can be written as

pn(z)
.
=

∑

hn1,...,nK
zn1

1 · · · znK

K = hT
nνn(z) = 0, (5)

where hI ∈ R represents the coefficient of the monomial
zI = zn1

1 zn2

2 · · · znK

K with 0 ≤ nj ≤ n for j = 1, . . . ,K,
and n1 + n2 + · · · + nK = n; νn : R

K → R
Mn is the

Veronese map of degree n which is defined as:

νn : [z1, . . . , zK ]T 7→ [. . . , zI , . . .]T , (6)

with I chosen in the degree-lexicographic order; and

Mn =

(

n + K − 1
K − 1

)

=

(

n + K − 1
n

)

(7)

is the total number of independent monomials. One can
show [24] that the vector of coefficients hn ∈ R

Mn is
simply a vector representation of the symmetric tensor
product of the individual model parameters {bi}

n
i=1, i.e.

∑

σ∈Sn

bσ(1) ⊗ bσ(2) ⊗ · · · ⊗ bσ(n), (8)

where Sn is the permutation group of n elements. Since
hn encodes the parameters of all the ARX models, we will
refer to it as the hybrid model parameters from now on.

C. Identifying the hybrid model parameters

Since the HDC (3)-(5) is satisfied by all the data points
{xt}

T
t=na

, we can use it to derive the following linear
system on the hybrid model parameters hn

Ln hn
.
=











νn(xna
)T

νn(xna+1)
T

...
νn(xT )T











hn = 0 ∈ R
T−na+1, (9)

where Ln ∈ R
(T−na+1)×Mn is the matrix of embedded

input/output data.
We are now interested in solving for hn from (9). In our

previous work [25] we considered ARX models of equal
and known orders na(1) = na(2) = · · · = na(n) = na and
showed that if the number of measurements is such that
T ≥ Mn+na−2 and at least 2na measurements correspond
to each discrete mode, then rank(Ln) = Mn−1. Therefore,
one can uniquely solve for hn from the nullspace of Ln,
because the last entry of hn is known to be equal to one.

In the case of ARX models of unknown and possibly
different orders, one may not be able to uniquely recover
the hybrid model parameters from the equation Lnhn = 0.
This is because in this case some of the entries of the vector
of model parameters bi associated with the ith ARX model
may be zero. Therefore, depending on the model orders and
on the switching sequence (see Example 1), there could be
a vector b 6= bi such that bT xt = 0 for all data points xt

generated by the ith ARX model. If such a b exists, then
there is a vector h 6= hn, defined as in (8) but with bi

replaced by b, which is also in the nullspace of Ln, thus
the solution of Lnhn = 0 is no longer unique.

Example 1 (Effect of na and λt on the nullspace of Ln):
Consider a PWARX model with orders na(1) = na(2) = 1
and assume that na = 2 so that the vectors of model
parameters are b1 = [0, 0, c1(1), a1(1), 1]

T and b2 =
[0, 0, c1(2), a1(2), 1]

T , respectively. If λt−2 = λt−1 = 1,
then the vector b = [c1(1), a1(1),−1, 0, 0]T 6= b1 satisfies
bT
1 xt = bT xt = 0. Therefore, if the switching sequence is

such that one of the discrete states is always visited for at
least two time instances, then the nullspace of Ln is at least
two-dimensional. On the other hand, if there is at least one
time instance t such that λt−3 6= λt−2 6= λt−1 = i, then
there is no b 6= bi such that bT xt = 0 for all xt generated
by the ith ARX model. If this is true for all i = 1, . . . , n,
hn can be uniquely obtained from the nullspace of Ln.

In practice, we would like to estimate hn uniquely,
regardless of what the model orders are and regardless of
the evolution of discrete state. To this end, recall from (4)
and (5) that hn is uniquely defined as the symmetric tensor
product of the vectors {bi}

n
i=1. Therefore, some of the

entries of hn must be zero, because they involve products
of entries of bi which are also zero. Since we have chosen
the entries of hn in the degree-lexicographic order and the
zero entries of each bi as the first 2(na − na(i)) entries,
the zero entries of hn must be the first m entries, where



m is a function of na and {na(i)}n
i=1. If m was known,

we could readily remove the first m entries of hn in (9)
and solve uniquely for the remaining (nonzero) entries from
the nullspace of the submatrix of Ln consisting of its
last Mn − m columns. The following theorem shows that,
although m is unknown, one can still estimate it from a
rank constraint on Ln and then uniquely solve for hn.

Theorem 1 (Identifying the hybrid parameters): Given
input/output data {ut, yt}

T
t=0 generated by the PWARX

model (1) with ana(i)(i) 6= 0 and cna(i)(i) 6= 0 for
i = 1, . . . , n, let Lj

n ∈ R
(T−na+1)×(Mn−j) be a matrix

whose columns are the last Mn − j columns of Ln as
defined in (9). If T ≥ Mn + maxi=1,...,n(na(i))− 2 and at
least 2na(i) measurements come from the ith ARX model,
for i = 1, . . . , n, then

rank(Lj
n)







≤ Mn − j − 1, j < m,
= Mn − j − 1, j = m,
= Mn − j, j > m.

(10)

Therefore, the number of leading zero entries of hn is

m = max{j : rank(Lj
n) = Mn − j − 1}, (11)

and the hybrid model parameters are given by

hn =
gn

eT
Kgn

, (12)

where gn = [0, . . . , 0,hmT
n ]T ∈ R

Mn , hm
n ∈ R

Mn−m is
the unique vector in the nullspace of Lm

n , i.e.

Lm
n hm

n = 0, (13)

and eK = [0, · · · , 0, 1]T ∈ R
K .

Remark 1: One of the assumptions of Theorem 1 is that
ana(i)(i) 6= 0 and cna(i)(i) 6= 0 for i = 1, . . . , n. This
assumption guarantees that the nullspace of Lj

n is not further
increased by having additional zeros on some bi.

Remark 2 (Identifying hn and m from noisy data): In
the presence of noise, we can still solve for hm

n in (13),
hence for the hybrid model parameters hn in (12), in
a least-squares sense: we let hm

n be the eigenvector of
LmT

n Lm
n associated with its smallest eigenvalue. However,

we cannot directly estimate m from (11), because the
matrix Lj

n may be full rank for all j. Instead, we compute
m from a noisy matrix Ln as

m = argmin
j=0,...,Mn−1

σ2
Mn−j(L

j
n)

∑Mn−j−1
k=1 σ2

k(Lj
n)

+ µ(Mn − j), (14)

where σk(Lj
n) is the kth singular value of Lj

n and µ is a
parameter. The above formula for estimating m is motivated
by model selection techniques [15] in which one minimizes
a cost function that consists of a data fitting term and
a model complexity term. The data fitting term measures
how well the data is approximated by the model – in this
case how close the matrix Lj

n is to dropping rank. The
model complexity term penalizes choosing models of high
complexity – in this case choosing a large rank. This model
selection technique has worked well in our experiments.

D. Identifying the model parameters

Theorem 1 allow us to determine the hybrid model
parameters hn from input/output data {ut, yt}

T
t=0. The rest

of the problem is to recover the model parameters {bi}
n
i=1

and the orders of the ARX models {na(i)}n
i=1 from hn.

In our previous work [25], which deals with the case of
ARX models of equal and known orders, we showed that
one can identify the model parameters directly from the
derivatives of pn(z) at a collection of n regressors {zi}

n
i=1

corresponding to each one of the n ARX models, i.e.

bi =
Dpn(zi)

eT
KDpn(zi)

, i = 1, . . . , n. (15)

However, since the value of the discrete state λt−1 is
unknown, we do not know which data points in {xt}

T
t=na

correspond to which ARX model, hence we do not know
how to choose the regressors {zi}

n
i=1. In [25] we proposed

a simple algebraic algorithm that obtains the regressors
{zi}

n
i=1 from the roots of a univariate polynomial as

follows. One first chooses a line, L = {z0+αv, α ∈ R}, in
R

K with base point z0 and direction v and uses it to build
a univariate polynomial qn(α) = pn(z0 + αv). Then one
chooses the regressors as zi = z0 + αiv, for i = 1, . . . , n,
where {αi}

n
i=1 are the n roots of qn(α). By construction

these points satisfy pn(zi) = 0 and bT
i zi = 0, as needed.

As it turns out, the above solution does not depend on
whether some entries of bi or hn are zero or not. Therefore,
in the case of ARX models with unknown and possibly
different orders, one may obtain the model parameters as
in (15). Furthermore, in the case of perfect data the first mi

entries of each bi will automatically be zero, hence we can
obtain the orders of each ARX model as

na(i) = na −
mi

2
, i = 1, . . . , n. (16)

In the case of noisy data, however, the performance of this
purely algebraic scheme will depend on the choice of the
parameters z0 and v that define the randomly chosen line.
Therefore, we now propose a new algorithm that chooses
the regressors {zi}

n
i=1 in a more robust fashion. The main

idea is to choose points from the data set {xt}
T
t=na

that
are “as close as possible” to one of the ARX models in
the sense of minimizing the distance |bT

i xt|. Notice that
in the case of zero-mean white Gaussian noise added to
the PWARX model in (1), minimizing the distance |bT

i xt|
corresponds to choosing a measurement that results in small
standard deviation. However, since we do not yet know the
model parameters bi, we do not know how to evaluate such
a distance in the first place. The following lemma allows us
to compute a first order approximation to such a distance,
without having to know the model parameters in advance.

Lemma 1: Let x̃ ∈ R
K be the projection of a point x ∈

R
K onto the algebraic variety V = {z : pn(z) = 0}. Then

the Euclidean distance from x to V is given by

‖x− x̃‖ =
|pn(x)|

‖(I − eKeT
K)Dpn(x)‖

+ O
(

‖x− x̃‖2
)

. (17)



Thanks to Lemma 1, we can now choose a point corre-
sponding to say the nth ARX model as

zn = argmin
x∈{xt}T

t=na

|pn(x)|

‖(I − eKeT
K)Dpn(x)‖

. (18)

Given zn, we can immediately compute the vector of
parameters bn as in (15). Given bn, we can divide the
polynomial of degree n, pn(z), by the polynomial of degree
1, bT

nz, to obtain a polynomial of degree n − 1

pn−1(z)
.
=

pn(z)

bT
nz

=
hT

nνn(z)

bT
nz

= hT
n−1νn−1(z). (19)

Notice that given hn ∈ R
Mn and bn ∈ R

K , solving for
hn−1 ∈ R

Mn−1 is simply a linear problem of the form
Dn(bn)hn−1 = hn, where Dn(bn) ∈ R

Mn×Mn−1 . Now,
by definition of pn−1, points {xt} such that pn−1(xt) = 0
must correspond to one of the remaining (n − 1) ARX
models. Thus we can choose a new point zn−1 from the
data set that minimizes |pn−1(x)|/‖(I−eKeT

K)Dpn−1(x)‖.
By repeating this procedure for the remaining ARX models,
we obtain the following algorithm for computing the points
{zi}

n
i=1 and the corresponding model parameters {bi}

n
i=1:

for i = n : 1,

zi = arg min
x∈{xt}

|pi(x)|

‖(I − eKeT
K)Dpi(x)‖

,

bi =
Dpi(zi)

eT
KDpi(zi)

,

hi−1 = Di(bi)
†hi, pi−1(x) = hT

i−1νi−1(x)

end
where A† is the pseudo-inverse of A.

Given the model parameters {bi}
n
i=1, the order of each

ARX model can be determined as in (16). However, in the
presence of noise, the first mi entries of each bi will not be
exactly zero. In this case, one may determine the number of
zero entries of bi as the first mi entries whose absolute value
is below a threshold ε > 0. Alternatively (see Remark 2),
we can use model selection techniques to determine mi as

mi = arg min
j=0,2,...,K−3

b2
ij

∑K

k=j+1 b2
ik

+ µ(K − j),

where bik is the kth entry if bi, bi0 = 0 by convention, and
µ is a parameter.

E. Estimation of the discrete state

Given the model parameters {bi}
n
i=1, the discrete state

can be estimated as [25]

λt−1 = arg min
i=1,...,n

(bT
i xt)

2, (20)

because for each time t ≥ na there exists a generally
unique1 i such that bT

i xt = 0.

1In principle, it is possible that a data point xt belongs to more than
one hyperplane b

T

i
z = 0. However, the set of all such points is a zero

measure set on the variety {z : pn(z) = 0}.

III. EXAMPLE: A SWITCHING CIRCUIT

In this section we present a numerical example that
illustrates the proposed algorithm in the absence of noise,
as well as simulation results with noisy data.

A. Algebraic example

We consider the switching circuit shown in Fig. 1 where
the input u is the voltage in the source and the output y is
the current in the inductance. The circuit can be modeled
as a continuous-time hybrid system with n = 2 discrete
states, corresponding to whether the switch is connected to
the capacitor or to the resistor. The dynamics in each state
are described by the linear differential equations

ÿ + 2ẏ + 4y =
1

2
u̇ and ẏ + 3y =

1

2
u, (21)

respectively. By discretizing the above differential equations
with a sampling time τ we obtain a PWARX model with
na(1) = 2 and na(2) = 1 consisting of the two ARX
models

yt = −2(τ −1)yt−1−(1−2τ +4τ2)yt−2+
τ

2
ut−1−

τ

2
ut−2

and
yt = (1 − 3τ)yt−1 +

τ

2
ut−1,

respectively. If we assume na = 2 and τ = 0.2, then we
have K = 5, Mn = 15 and

xt = [ut−2, yt−2, ut−1, yt−1,−yt] ∈ R
5

z = [z1, z2, z3, z4, z5]
T ∈ R

5

b1 = [−0.1,−0.76, 0.1, 1.6, 1]T ∈ R
5

b2 = [0, 0, 0.1, 0.4, 1]T ∈ R
5.

By generating data in discrete time for the switching circuit,
we obtain rank(L2) = 14, rank(L1

2) = 13, rank(L2
2) =

12 and rank(Lj
2) = 15 − j for j ≥ 3. Therefore the

number of zeros of h2 is m = 2, and we can obtain
h2 from the nullspace of L2

2. Notice that in this particular
example one can also obtain h2 from the nullspace of Ln

or L1
n, which are also one-dimensional. This is predicted

by Theorem 1, since rank(Lj
n) ≤ Mn − j when j ≤ m

(See also Example 1). However, in general we will have
rank(Lj

n) < Mn − j, hence it is preferable to remove the
zeros before computing h2.

Given h2, we can build the polynomial pn(z), as
pn(z) = (−0.1z1 − 0.76z2 + 0.1z3 + 1.6z4 + z5)(0.1z3 + 0.4z4 + z5)

= −0.01z1z3 − 0.04z1z4 − 0.1z1z5 − 0.076z2z3 − 0.304z2z4

− 0.76z2z5 + 0.01z2
3 + 0.2z3z4 + 0.2z3z5 + 0.64z2

4 + 2z4z5 + z2
5

= [0, 0,−0.01,−0.04,−0.1, 0,−0.076,−0.304,−0.76,

0.01, 0.2, 0.2, 0.64, 2, 1]T ν2(z)

= h
T

2 ν2(z),

and obtain its partial derivatives as

Dp2(z) =













−0.01z3 − 0.04z4 − 0.1z5

−0.076z3 − 0.304z4 − 0.76z5

−0.01z1 − 0.076z2 + 0.02z3 + 0.2z4 + 0.2z5

−0.04z1 − 0.304z2 + 0.2z3 + 1.28z4 + 2z5

−0.1z1 − 0.76z2 + 0.2z3 + 2z4 + 2z5













.



Fig. 1. A switching first and second order circuit

Assuming y0 = y1 = 0, u0 = 10, u1 = 5, u1 = 0, λ1 = 1
and λ2 = 2 we obtain y2 = −0.5 and y3 = −0.2. Thus
we obtain the data points x2 = [10, 0, 5, 0, 0.5]T and x3 =
[5, 0, 0,−0.5, 0.2]T . Evaluating Dp2 at z1 = x2 and z2 =
x3 we obtain

[Dp2(z1) Dp2(z2)] = [b1 − 1.1b2], (22)

which shows how we can effectively recover the model
parameters b1 and b2 and the dimensions na(1) and na(2)
from the derivatives of p2.

B. Simulation results

We now present simulation results showing the perfor-
mance of the proposed algorithm when the output mea-
surements are corrupted with zero-mean white Gaussian
noise with standard deviation σ ∈ [0, 0.01]. The input u
is chosen as a zero-mean white Gaussian noise with unit
standard deviation. The discrete state starts at λ1 = 1 and
then switches periodically between the two discrete states
a) every 10 seconds, b) every 5 seconds, c) every second,
or d) every 0.4 seconds. Recall that the sampling time is
τ = 0.2 seconds.

Table I shows the mean error over 10,000 trials for the
estimation of the number of zeros of the hybrid model
parameters, m, the model orders {na(i)}n

i=1, the model
parameters {bi}

n
i=1 and the discrete state {λt−1}

T
t=na

as
a function of the level of noise σ. The error Em between
the estimated number of zeros2 m̂ and the true number
of zeros m was computed as the percentage of trials for
which m̂ 6= m. The error Ena(i) between the estimated
order n̂a(i) and the true order na(i) was estimated as the
percentage of trials for which n̂a(i) 6= na(i). The error
Eb between the estimated model parameters (ĉ2, â2, ĉ1, â1)
and the true model parameters (c2, a2, c1, a1) was computed
as ‖(ĉ2, â2, ĉ1, â1) − (c2, a2, c1, a1)‖, averaged over the
number of models and the number of trials. The error Eλ

between the estimated discrete state λ̂t and the true discrete
state λt was computed as the percentage of times in which
λ̂t 6= λt, averaged over the number of trials.

2The number of zeros was estimated as described in Remark 2, with
the weight of the complexity term chosen as µ = 2 × 10−8.

Notice that the number of zeros, the model orders,
the model parameters and the discrete state are perfectly
estimated when σ = 0. For σ > 0, the model selection
based algorithm for estimating the rank of noisy matrices
gives an estimate of the number of zeros m which is correct
over 97% of the times. The model orders are correctly
estimated over 90% of the times for system 1 and over
70% of the times for system 2. This suggests that, as
expected, it is harder to estimate the orders na(i) for which
na−na(i) is larger. On the other hand, the estimation errors
Eb and Eλ increase approximately linearly with the amount
of noise, as shown in Fig. 2. Notice also that the errors tend
to increase when the switching times are either too close
or too far. Indeed, the best performance is obtained when
the switches are separated by 1 second. Intuitively, one
would expect that it is easier to identify a slowly switching
PWARX model. However, as shown by Example 1, data
points at the switching times provide independent equations
that typically increase the rank of Ln. In the presence of
noise, this makes the linear system Lm

n hm
n = 0 better

conditioned, especially when m is incorrectly estimated. A
deeper theoretical understanding of the effect of fast versus
slow switching in the algorithm’s performance is part of our
future work.

TABLE I

Error in the estimation of the number of zeros Em, the model orders

Ena(1), Ena(2), the model parameters Eb and the discrete state Eλ for

different levels of noise with standard deviation σ and for different dwell

times: a) 10 seconds, b) 5 seconds, c) 1 second and d) 0.4 seconds.

σ 0.000 0.002 0.004 0.006 0.008 0.010
a) 0.00 0.00 0.00 0.00 0.05 2.05

Em b) 0.00 0.00 0.00 0.00 0.04 2.46
c) 0.00 0.00 0.00 0.00 0.00 1.09
d) 0.00 0.00 0.00 0.06 0.19 0.47
a) 0.00 0.00 0.13 0.16 0.08 0.09

Ena(1) b) 0.00 0.00 0.00 0.00 0.00 0.01
c) 0.00 0.00 0.00 0.00 0.05 0.55
d) 0.00 0.00 0.00 0.38 3.10 8.23
a) 0.00 0.00 0.01 0.22 1.93 7.38

Ena(2) b) 0.00 0.00 0.00 0.20 2.33 9.02
c) 0.00 0.00 0.00 0.00 0.14 1.36
d) 0.00 0.00 0.04 3.84 14.96 29.41
a) 0.000 0.0176 0.0442 0.0772 0.1092 0.1422

Eb b) 0.000 0.0193 0.0491 0.0809 0.1123 0.1444
c) 0.000 0.0191 0.0382 0.0619 0.0837 0.1162
d) 0.000 0.0266 0.0544 0.0814 0.1077 0.1408
a) 0.000 3.744 8.187 13.464 18.777 23.174

Eλ b) 0.000 5.710 12.404 17.951 22.531 25.983
c) 0.000 4.499 7.739 10.893 14.159 17.243
d) 0.000 4.747 10.050 15.358 19.299 23.120

IV. CONCLUSIONS AND OPEN ISSUES

We have proposed an algebraic geometric solution to the
identification ARX hybrid models of unknown and possibly
different orders. By representing the number of discrete
states n as the degree of a polynomial p and encoding
the orders and the model parameters as factors of p, we
showed that one can solve the identification problem using
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Fig. 2. Error in the estimation of the model parameters Eb and the
discrete state Eλ for different levels of noise with standard deviation σ

and for different dwell times: a) 10 seconds, b) 5 seconds, c) 1 second
and d) 0.4 seconds.

simple linear-algebraic techniques: the coefficients of p
can be obtained from a linear system, and the orders and
parameters of each ARX model from the derivatives of p.
We presented simulation results evaluating the performance
of the algorithm on a switching circuit with noisy data.

Open issues include a detailed analysis of the robustness
of the algorithm with noisy data, relaxing the assumptions
that some of the parameters may not be zero (see Remark 1),
and a deeper theoretical understanding of the effect of
fast versus slow switching in the algorithm’s performance.
Extensions include imposing stability constraints on the
estimation of the model parameters, developing recursive
algorithms for the on-line identification of the model pa-
rameters, and dealing with PWARX systems with multiple
inputs and multiple outputs (MIMO) by exploring connec-
tions with recent developments on subspace clustering [23].
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