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Abstract

In applications of egomotion estimation, such as real-time
vision-based navigation, one must deal with the double-
edged sword of small relative motions between images.
On one hand, tracking feature points is easier, while on
the other, two-view structure-from-motion algorithms are
poorly conditioned due to the low signal-to-noise ratio.
In this paper, we derive a multi-frame structure from mo-
tion algorithm for calibrated central panoramic cameras.
Our algorithm avoids the conditioning problem by explicitly
incorporating the small baseline assumption in the algo-
rithm’s design. The proposed algorithm is linear, amenable
to real-time implementation, and performs well in the small
baseline domain for which it is designed.

1. Introduction
In applications of structure from motion (SFM) such as
mobile robot navigation, camera frame rates are typically
high, which means that the relative motion between images
frames is small relative to the scene depth. This scenario is
a double-edged sword for the SFM problem: on one hand,
tracking feature points is easier because they are closer in
the image plane, while on the other hand, SFM algorithms
are poorly conditioned because the small baseline transla-
tion between images causes a low signal-to-noise ratio.

One approach to tackling this problem is to approximate
the camera motion as a velocity and recover the infinitesimal
camera motions from the optical flow in the image plane.
This approach has been taken for the two-view case in [8,
14, 12], and in the multiple view case in[10, 11].

Another approach is to track discrete feature points and
perform pairwise SFM for central panoramic cameras as
proposed in [3, 13, 6]. However, as noted above, the two-
view SFM algorithms are very sensitive to noise in appli-
cations such as outdoor navigation because the small base-
line motion makes the triangulation poorly conditioned. An
approach to overcoming the small baseline problem by us-
ing multiple central panoramic images was presented in [4].
However, their approach is not applicable to motion estima-
tion for navigation and discards much information because
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it chooses multiple image pairs for which the essential ma-
trix is well conditioned and then applies two-view SFM.

In this paper, following the approach of [9], we derive
the first multi-frame structure from motion (MFSFM) al-
gorithm for calibrated central panoramic cameras. Our al-
gorithm avoids the conditioning problem of small baseline
motion by using all the information available in a central
panoramic image sequence, and by explicitly incorporat-
ing the small baseline assumption in the algorithm’s design.
The proposed algorithm is linear, amenable to real-time im-
plementation, and through extensive simulation with syn-
thetic image sequences, we show that it performs well in
the small baseline domain for which it is designed.

2. Central Panoramic Cameras
A catadioptric realization of an omnidirectional camera
combines a curved mirror and a lens. In [1], an entire class
of catadioptric systems containing a single effective focal
point is derived. A single effective focal point is necessary
for the existence of epipolar geometry that is independent of
the scene structure [13]. Camera systems that have a unique
effective focal point are called central panoramic cameras.

2.1. Projection Model
It was shown in [5] that all central panoramic cameras can
be modeled by a mapping of a 3D point onto a sphere fol-
lowed by a projection onto the image plane from a point in
the optical axis of the camera. By varying two parameters
(ξ, m), one can model all catadioptric cameras that have a
single effective viewpoint, e.g. parabolic mirror with or-
thographic lens, or hyperbolic mirror with perspective lens.
The particular values of (ξ, m) in terms of the shape param-
eters of different types of mirrors are listed in [2].

According to the unified projection model [5], the im-
age point (x, y)T of a 3D point q = (X, Y, Z)T obtained
through a central panoramic camera with parameters (ξ, m)
is given by:

[

x
y

]

=
ξ + m

−Z + ξ
√

X2 + Y 2 + Z2

[

sxX
syY

]

+

[

cx

cy

]

, (1)

where 0 ≤ ξ ≤ 1, and (sx, sy) are scales that depend on the
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Figure 1: Showing the curved virtual retina in central
panoramic projection and back-projection ray b associated
with image point (x, y)T .

geometry of the mirror, the focal length and the aspect ratio
of the lens, and (cx, cy)

T is the mirror center.
Since central panoramic cameras for ξ 6= 0 can be eas-

ily calibrated from a single image of three lines [7, 2], in
this paper, we assume that the camera has been calibrated,
i.e. we know the parameters (sx, sy, cx, cy, ξ, m). There-
fore, without loss of generality, we consider the following
calibrated central panoramic projection model:

[

x
y

]

=
1

λ

[

X
Y

]

, λ , −Z + ξ
√

X2 + Y 2 + Z2 (2)

which is valid for Z < 0. It is direct to check that ξ = 0
corresponds to the case of perspective projection, and ξ =
1 corresponds to paracatadioptric projection (a catadioptric
camera with a parabolic mirror and an orthographic lens).

2.2. Back-projection Rays
Since central panoramic cameras have a unique effective fo-
cal point, one can efficiently compute the back-projection
ray (a ray from the optical center in the direction of the 3D
point being imaged) associated with each image point.

We showed in [12] that one may consider the central
panoramic projection model in equation (2) as a simple pro-
jection onto an curved virtual retina whose shape depends
on the parameter ξ. We define the back-projection ray as
the lifting of the image point (x, y)T onto this retina. That
is, as shown in Figure 1, given an image (x, y)T of a 3D
point q = (X, Y, Z)T , define the back-projection rays as:

b , (x, y, z)T , (3)

where z = fξ(x, y) is the height of the virtual retina. We
construct fξ(x, y) in order to re-write the central panoramic
projection model as a simple scaling:

λb = q, (4)

where λ is the scale in (2) which is lost in the projection.
Using equations (4) and (2), it is direct to solve for the
height of the virtual retina as:

z , fξ(x, y) =
−1 + ξ2(x2 + y2)

1 + ξ
√

1 + (1 − ξ2)(x2 + y2)
. (5)

Then, we can re-write the central panoramic projection (2)
in terms of the back-projection ray as b = πξ(q), where:

πξ : R
3 → Rξ

q 7→ q

−eT
3 q + ξ‖q‖ , (6)

with e3 = (0, 0, 1)T ∈ R
3 and

Rξ = {(x, y, z)T ∈ R
3 | x2 + y2 ≤ 1, z = fξ(x, y)}. (7)

It is clear (and will be useful in Section 3) that for any
nonzero q ∈ R

3 and γ ∈ R we have πξ(γq) = πξ(q).
Notice also that when ξ = 0, Rξ is the (perspective) image
plane and πξ is simply perspective projection. Similarly,
when ξ = 1, Rξ is the parabolic surface of the mirror and
πξ is paracatadioptric projection.

3. Multi-frame Structure from Motion
In this section, we present a multiple frame structure from
motion (MFSFM) algorithm designed for central panoramic
image sequences. Using the back-projection ray defined in
Section 2.2, we give a natural generalization of the perspec-
tive MFSFM algorithm [9] to central panoramic projection.

We consider an image sequence containing N image
points in F frames taken by a moving central panoramic
camera with projection model (2). Consider a set of static
3D points qp ∈ R

3 for p = 1, . . . , N . If the camera un-
dergoes a rotation Ri ∈ SO(3) and translation T i ∈ R

3

between the base frame (i = 0) and the subsequent cam-
era frames i = 1, . . . , F − 1, then the coordinates of qp in
camera frame i are given by:

qi
p = Ri(qp + T i). (8)

By using (5), we compute the back-projection ray bp for
p = 1, . . . , N in the base frame such that λpbp = qp. We
call λp the structure since it is the scale term in (2) which
is lost in the projection, or equivalently, the scale by which
one multiplies the back-projection ray bp to recover the 3D
point qp. The corresponding back-projection rays b

i
p in the

image frames i = 1, . . . , F − 1 are given by:

b
i
p = πξ

(

Ri(qp + T i)
)

= πξ

(

Ri(bp + T i/λp)
)

. (9)

Our multi-frame structure from motion algorithm is de-
signed to work under the following assumptions.

Assumption 3.1. The baseline translation is small. Specif-
ically, we assume the ratio between the largest translation
and the smallest depth is small, i.e. τ , ‖T‖max/λmin < 1.

Assumption 3.2. The translation is general. Specifically,
we assume the matrix of translations T = [T 1 · · ·T F−1] ∈
R

3×(F−1) is of rank 3.
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Assumption 3.1 is easily satisfied, for example, in out-
door navigation where the images are obtained by a camera
which moves slowly compared to the frame rate. Assump-
tion 3.2 is more restrictive. For example, it is violated in
applications such as mobile robot navigation in the X-Y
plane. In Section 3.3 we give a modified version of the gen-
eral algorithm for the case of estimating motion in the X-Y
plane. It is important to notice that we make no assumption
on the rotational motion of the camera.

3.1. Back-projection Displacements
When the translation baselines are small, the rotations are
easy to recover relatively accurately by standard linear tech-
niques. Specifically, one may compute estimates Ri

est of the
the rotations Ri by assuming zero translation and solving
linearly for Ri from1:

[bi
p]×Ri

bp ≈ 0, p = 1, . . . , N

and then projecting onto SO(3). It can be shown [9] that
if the baseline τ is small, then the error in rotation estimate
will be small as well (of order τ ). That is, to first order we
have Ri

est
T
Ri = exp([Ωi]×) ≈ I + [Ωi]×, where ‖Ωi‖ =

o(τ).
Given an estimate Ri

est for the camera rotation in frame
i, we compute the so-called back-projection displacement
between the un-rotated back-projection ray at frame i,
Ri

est
T
b

i (we drop the subscript p for simplicity), and its
corresponding back-projection ray in the base frame b as:

∆b
i , πξ(R

i
est

T
b

i) − b. (10)

Since both translation and the error in rotation estimate are
small, we make the following first order approximation:

πξ(R
i
est

T
b

i) = πξ

(

Ri
est

T
Ri(b + T i/λ)

)

= πξ

(

(I + [Ωi]×)(b + T i/λ)
)

+ o(τ2)

= πξ

(

b + [Ωi]×b + T i/λ
)

+ o(τ2)

= πξ(b) +
∂πξ

∂q

(

[Ωi]×b + T i/λ
)

+ o(τ2),

where and the Jacobian ∂πξ

∂q
in the Taylor series is evaluated

at b. Notice that by construction πξ(b) = b. It is direct to
show that the Jacobian of πξ evaluated at b is given by:

∂πξ

∂q
(b) =

(

I + beT
3 − ξ2

bb
T

1 + eT
3 b

)

, (11)

where e3 = (0, 0, 1)T . Therefore, under the small base-
line assumption, we have derived the following first order

1Here, [u]× ∈ so(3) represents the skew symmetric matrix generating
the cross product, i.e. for all u, v ∈

�
3 we have u × v = [u]×v.

approximation of the back-projection displacement:

∆b
i≈−(I+beT

3 )[b]×Ωi+
1

λ

(

I+beT
3 −

ξ2
bb

T

1+eT
3 b

)

T i. (12)

Then, if b = (x, y, z)T and ∆b
i = (∆xi, ∆yi, ∆zi)T , the

first two rows in (12) give the following approximation of
the image displacement:

[

∆xi

∆yi

]

≈
[

xy z − x2 −y
−(z − y2) −xy x

]

Ωi + (13)

1

λ

[

1 − ρx2 −ρxy (1 − ρz)x
−ρxy 1 − ρy2 (1 − ρz)y

]

T i,

where z = fξ(x, y) is given in (5) and

ρ ,
ξ2

1 + z
=

ξ
(

1 + ξ
√

1 + (1 − ξ2)(x2 + y2)
)

ξ(x2 + y2) +
√

1 + (1 − ξ2)(x2 + y2)
. (14)

The right hand side of (14) is numerically stable as ξ → 0
in which case z → −1 and ρ → 0. Now, given the back-
projection displacements ∆b

i
p for points p = 1, . . . .N and

frames i = 1, . . . , F − 1, we construct the image displace-
ment matrix D ∈ R

2N×(F−1):

D ,







∆x1
1 · · · ∆x1

N ∆y1
1 · · · ∆y1

N
...

...
...

...
∆xF−1

1 · · · ∆xF−1
N ∆yF−1

1 · · · ∆yF−1
N







T

(15)

which we will use as the input to our MFSFM algorithm.
It is important to remember that the image displacements
(∆xi, ∆yi)T are not simply computed from the given im-
age points, but from the “un-rotated” back-projection rays
as in equation (10). Notice that when ξ = 0, equation (13)
gives the perspective image displacements and our algo-
rithm reduces to the MFSFM algorithm of [9].

3.2. Algorithm Description
From equation (13), we have:

D ≈ ΨΩ + Φ({λ−1})T (16)

where Ψ ∈ R
2N×3, Φ({λ−1}) ∈ R

2N×3, and:

Ψ =

[

{xy} {z − x2} −{y}
−{z − y2} −{xy} {x}

]

, (17)

Φ =

[

{ 1−ρx2

λ
} {−ρxy

λ
} { (1−ρz)x

λ
}

{−ρxy
λ

} { 1−ρy2

λ
} { (1−ρz)y

λ
}

]

, (18)

T = [T 1 · · ·T F−1] ∈ R
3×(F−1)

Ω = [Ω1 · · ·ΩF−1] ∈ R
3×(F−1)

where, e.g. {xy} = (x1y1, · · · , xNyN )T ∈ R
N . Equa-

tion (16) depends on the residual error in rotation Ω which
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is of order τ . Therefore, if we solved for T from (16) by
neglecting the residual Ω, we would obtain translation es-
timates of order τ , i.e. the order of the translations them-
selves. In order to obtain translation estimates with an er-
ror of order τ2, we compute the matrix H ∈ R

(2N−3)×2N

which annihilates the rotational flows, i.e. HΨ = 0 (this
can be done conveniently with SVD). Therefore we have:

HD ≈ HΦ({λ−1})T.

We conclude that rank(HD) ≈ rank(T ), which, by As-
sumption 3.2, is rank(T ) = 3. In order to factorize HD =
SMT into its structure S = HΦ({λ−1}) ∈ R

(2N−3)×3 and
motion M = T T ∈ R

(F−1)×3 components, let us consider
its singular value decomposition (SVD) HD = UΣVT .
Letting S̃ = U , we have S = S̃A, M̃T = ΣVT and
M = M̃A−T for some nonsingular A ∈ R

3×3. One can
solve linearly for A and the inverse structure {λ−1} from:





Gx −S̃ 0 0

Gy 0 −S̃ 0

Gz 0 0 −S̃













{λ−1}
A1

A2

A3









= 0 (19)

where Ai ∈ R
3 is the ith column of A and





Gx

Gy

Gz



=





Hxdiag({1 − ρx2}) + Hydiag({−ρxy})
Hxdiag({−ρxy}) + Hydiag({1 − ρy2})

Hxdiag({(1 − ρz)x}) + Hydiag({(1 − ρz)y})





where Hx ∈ R
(2N−3)×N is the first N columns of H and

Hy ∈ R
(2N−3)×N is the last N columns of H such that

H = [Hx Hy]. Then, given A, one can obtain the transla-
tion vectors from T = A−1M̃T = A−1ΣVT .

Given the new estimates for the translations and struc-
ture, one can improve the estimates for rotation by solving
linearly for Ri from:

[bi
p]×Ri(bp + T i/λp) = 0, p = 1, . . . , N. (20)

Since the current translation estimate has an error of order
τ2, so does the improved rotation estimate. The algorithm
then iterates by updating the translation, structure and ro-
tation estimates until they converge. Under the small base-
line assumption τ < 1, one can show that the incremental
change in the unknowns between the kth and (k + 1)th it-
eration is approximately proportional to τ k , and hence the
algorithm has good convergence properties (see [9] for de-
tails). In our experiments, convergence took only 2 to 4
iterations.

The overall MFSFM algorithm can be summarized as
follows.

Algorithm 3.3 (Central Panoramic MFSFM Algorithm).
Given N corresponding image points across F image
frames of a central panoramic camera, estimate the motion
(Ri, T i) and inverse structure {λ−1} as follows:

� � �
� � �
� � �
� � �

� �
� �
� �
� �
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Figure 2: A catadioptric camera attached to a mobile robot.

1. Initialize T = 0, {λ−1} = 1.

2. Compute back-projection rays {bi
p} using (7). Then

compute Ψ from (17) and H such that HΨ = 0.

3. Solve for Ri
est linearly from (20), given T and {λ−1}.

4. Given Ri
est compute D as in (15). Then using SVD

factorize HD = UΣVT = UAA−1ΣVT .

(a) Solve for {λ−1} and A linearly from
HΦ({λ−1}) = UA.

(b) Solve for T = A−1ΣVT .

5. Goto 3. until (R, T, {λ−1}) converge.

3.3. MFSFM for Motion in the X-Y Plane
Consider the special case where the omnidirectional cam-
era is attached to a mobile robot (see Figure 2) whose mo-
tion is restricted to the X-Y plane. Since in this case
rank(T ) = 2, the factorization method of the general algo-
rithm will break down. However, if the camera is mounted
such that the optical axis is aligned normal to the ground
plane, then the general algorithm can be easily modified
by simply reducing the dimensionality of the factorization.
Since with this setup, T i

z = 0, simply consider the transla-
tions as two-dimensional T ∈ R

2×(F−1) and drop the third
column of Ψ in (17) such that Ψ ∈ R

2N×2. Then the re-
mainder of the algorithm follows, only with smaller dimen-
sions.

4. Experiments
In this section we evaluate the performance of proposed lin-
ear MFSFM algorithm on sequences of synthetic images.
By way of comparison, we implemented the maximum like-
lihood estimator (MLE) which minimizes the re-projection
error in the image plane:

F (R, T, q) =

N
∑

p=1

F−1
∑

i=0

∥

∥

∥

∥

∥

[

xi
p − πξ(R

i(qp + T i))x

yi
p − πξ(R

i(qp + T i))y

]
∥

∥

∥

∥

∥

2

(21)

using the Levenberg-Marquardt nonlinear optimization rou-
tine in MATLAB. We compared the proposed algorithm

4



against two runs of the MLE: one initialized by the ground
truth, while the other initialized by the output of the linear
MFSFM algorithm.

We compare the linear and MLE algorithm as a func-
tion of the baseline of translation, the noise in the image
plane, and the parameter ξ of the central panoramic cam-
era. Each experiment consists of 1000 trials for a given set-
ting of parameters. In our comparison, we use the follow-
ing error measures between the estimates Rest ∈ SO(3),
Test ∈ R

3, λest ∈ R
N and the ground truth Rtrue ∈ SO(3),

Ttrue ∈ R
3, λtrue ∈ R

N , averaged over the number of trials
(and frames where appropriate):

Rotation error = acos
((

trace(RT
trueRest) − 1

)

/2
)

Translation error = acos
(

T T
trueTest

)

/ (‖Ttrue‖‖Test‖)
Structure error = acos

(

λT
trueλest

)

/ (‖λtrue‖‖λest‖).

4.1. Experimental Setup

We consider a central panoramic camera given by (1) with
sx = sy and define (ξ + m)sx as the focal length. The di-
ameter of the image disk was considered to be 512 pixels.
We assume a fixed CCD size for all camera parameters ξ,
which corresponds to fixing the image disk to unit radius
for all cameras. Since the field of view (FOV) of a central
panoramic camera is determined by the back-projection ray
at the perimeter of the image disk, the FOV is determined
by ξ. Figure 3 shows the experimental setup, from which
it is clear that FOV(ξ) = π + 2atan(fξ(1, 0)). Notice that
FOV = 90◦ when ξ = 0, and FOV = 180◦ when ξ = 1.
As Figure 3 shows, we also model the fact that catadioptric
cameras have a blind spot in the center of the image disk
due to the reflection of the CCD in the mirror. In these ex-
periments, we do not image any 3D point whose projection
is at a distance less than rmin = 0.25 from the image center.

A set of N = 20 points was scattered uniformly within
the camera field of view at random depths which varied
from Zmax = −10 to Zmin = −400 focal lengths as
shown in Figure 3. The points were projected onto the
image plane of the base camera frame through the central
panoramic projection (2). In each experiment, we used
F = 7 image frames, where the translation between each
camera frame and the base frame was a uniform random
variable in the unit sphere, so that the simulation parameter
τ = ‖T‖max/λmin is constant over the trials. The rota-
tion between each frame and the base frame was the ran-
dom variable exp([ω]×) where ω ∈ R

3 was uniform in the
unit sphere. The image points in each camera frame were
computed using (2) and then adding zero mean Gaussian
noise where the standard deviation σ was specified in terms
of pixel size and was independent of camera motion. We do
not consider the effect of correspondence errors.

PSfrag replacements
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Figure 3: Showing the experimental setup for the simula-
tions. The field of view is determined by ξ through the
back-projection ray at the perimeter of the image disk.
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Figure 4: Showing the performance of the linear MFSFM
algorithm as a function of baseline. The noise level was
σ = 1 pixel and the camera was paracatadioptric ξ = 1.

4.2. Simulation Results
Baseline Dependency. Figure 4 shows the performance the
linear MFSFM and the MLE algorithms as a function of the
baseline ‖T‖max/λmin. The noise level was σ = 1 pixel
and the camera was paracatadioptric (ξ = 1). We observe
that the MFSFM algorithm has very good performance for
motion estimation for 0.1 ≤ τ ≤ 0.4. When τ < 0.1
the signal-to-noise ratio is too small, causing an increase
in the estimation error. When τ > 0.4, the small baseline
assumption is violated hence the estimation error increases.
Notice that we still get good results for τ = 0.4, which
corresponds to a relatively large translational motion.

Noise Dependency. Figure 5 shows the performance of
the linear MFSFM algorithm compared with the MLE algo-
rithms for different levels of noise. The baseline was fixed
at τ = 0.2 and the camera parameter was ξ = 1 (para-
catadioptric). Notice that rotation estimates were the least
sensitive to noise, while structure estimates were the most
sensitive. Also, notice that the average error for the MFSFM
algorithm appears to grow faster than linearly as a function
of the noise level. This is different than the behavior of
the corresponding MFSFM algorithm for perspective pro-
jection [9, 15] and is a result of the fact that the large field
of view in omnidirectional cameras comes at the price of
lower image resolution and higher noise sensitivity, due to
nonlinear distortion.

Camera Dependency. Figure 6 shows the performance
of the linear MFSFM algorithm compared with the MLE al-
gorithm for different camera parameters ξ. The noise level

5



0 1 2
0

0.2

0.4

0.6

0.8

Noise std (pixels)

Rotation error

de
gr

ee
s

Linear algorithm
MLE (init Linear)
MLE (init Truth)

0 1 2
0

1

2

3

4

5

Noise std (pixels)

Translation error

de
gr

ee
s

0 1 2
0

2

4

6

8

10

12

Noise std (pixels)

Structure error

de
gr

ee
s

Figure 5: Comparing the performance of the linear MFSFM
algorithm and the nonlinear MLE algorithm as a function of
noise level. The baseline was τ = 0.2 and the camera was
paracatadioptric ξ = 1.
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Figure 6: Comparing the performance of the linear MFSFM
algorithm and the nonlinear MLE algorithm as a function of
camera parameter ξ. The noise level was σ = 1 pixel and
the baseline was τ = 0.2.

was σ = 1 pixel and the baseline was τ = 0.2. Notice that
while the MLE algorithm is relatively insensitive to varying
ξ, the linear MFSFM algorithm is much more sensitive to
noise as ξ → 1, or equivalently, the FOV increases. Look-
ing carefully at the plots in Figure 6, we see that the optimal
central panoramic camera which minimizes motion estima-
tion error is around ξ∗ ≈ 0.2.

The results of this experiment show a very interesting
phenomenon in structure and motion estimation as a func-
tion of the FOV of omnidirectional cameras. One one
hand, the large FOV of an omnidirectional camera implies
that one can more easily distinguish between translational
and rotational motion, which should make SFM algorithms
more robust in the presence of noise [13]. On the other
hand, the effective resolution of the camera decreases as the
FOV increases, and hence for a given noise level in the im-
age plane, a larger FOV camera will have larger errors in
the triangulation angles and hence larger 3D motion and
structure errors. The results of this experiment show that
the optimal central panoramic camera which balances these
competing factors is achieved around ξ∗ ≈ 0.2.

However, one should not forget that the large FOV in
omnidirectional cameras comes with many other benefits,
such as being able to track feature points across many more
frames than with a small FOV camera.

5. Conclusions
To the best of our knowledge, we have presented the first
multi-frame structure from motion algorithm for discrete
measurements with central panoramic cameras. Simulation
results show that the algorithm performs well in the domain
for which it was designed, namely when the translation be-
tween image frames is small relative to the scene depth.
This assumption is easily satisfied in applications such as
outdoor navigation.

Future work will consider relaxing the general motion
assumption that the translation be fully three dimensional.
While the case of translation in the X-Y plane was easily
handled with minor modifications of the general algorithm,
the case of planar motion in an arbitrary plane is much more
complex as demonstrated in [15]. We will also compare our
algorithm with the method of first unwarping the omnidi-
rectional image into a perspective image and then applying
algorithm [9]. We suspect that as in [12], the accuracy of re-
construction using the two methods will depend on the type
of camera motion.

References
[1] S. Baker and S. Nayar. A theory of single-viewpoint catadioptric

image formation. IJCV, 35:175–196, 1999.

[2] J. Barreto and H. Araujo. Geometric properties of central catadioptric
line images. In ECCV, pages 237–251, 2002.

[3] P. Chang and M. Hebert. Omni-directional structure from motion. In
OMNIVIS, pages 127–133, 2000.

[4] P. Doubek and T. Svoboda. Reliable 3d reconstruction from a few
catadioptric images. In OMNIVIS, pages 71–78, 2002.

[5] C. Geyer and K. Daniilidis. A unifying theory for central panoramic
systems and practical implications. In ECCV, pages 445–461, 2000.

[6] C. Geyer and K. Daniilidis. Structure and motion from uncalibrated
catadioptric views. In CVPR, pages 279–286, 2001.

[7] C. Geyer and K. Daniilidis. Paracatadioptric camera calibration.
IEEE Transactions on PAMI, 4(24):1–10, 2002.

[8] J. Gluckman and S. Nayar. Ego-motion and omnidirectional cameras.
In ICCV, pages 999–1005, 1998.

[9] J. Oliensis. A multi-frame structure-from-motion algorithm under
perspective projection. IJCV, 34(2-3):163–192, 1999.

[10] O. Shakernia, R. Vidal, and S. Sastry. Infinitesimal motion estima-
tion from multiple central panoramic views. In IEEE Workshop on
Motion and Video Computing, pages 229-234, 2002.

[11] O. Shakernia, R. Vidal, and S. Sastry. Multi-body motion estimation
and segmentation from multiple central panoramic views. To appear:
ICRA, 2003.

[12] O. Shakernia, R. Vidal, and S. Sastry. Omnidirectional egomotion
estimation from back-projection flow. In OMNIVIS, 2003.

[13] T. Svoboda, T. Pajdla, and V. Hlavac. Motion estimation using
panoramic cameras. In IEEE Conference on Intelligent Vehicles,
pages 335–350, 1998.

[14] R.F. Vassallo, J. Santos-Victor, and J. Schneebeli. A general ap-
proach for egomotion estimation with omnidirectional images. In
OMNIVIS, pages 97–103, 2002.

[15] R. Vidal and J. Oliensis. Structure from planar motions with small
baselines. In ECCV , pages 383–398, 2002.

6


