
Omnidirectional Egomotion Estimation From Back-projection Flow∗
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Abstract

The current state-of-the-art for egomotion estimation with
omnidirectional cameras is to map the optical flow to the
sphere and then apply egomotion algorithms for spherical
projection. In this paper, we propose to back-project image
points to a virtual curved retina that is intrinsic to the ge-
ometry of the central panoramic camera, and compute the
optical flow on this retina: the so-called back-projection
flow. We show that well-known egomotion algorithms can
be easily adapted to work with the back-projection flow.
We present extensive simulation results showing that in the
presence of noise, egomotion algorithms perform better by
using back-projection flow when the camera translation is
in the X-Y plane. Thus, the proposed method is preferable
in applications where there is no Z-axis translation, such
as ground robot navigation.

1. Introduction
The panoramic field of view offered by omnidirectional
cameras makes them ideal candidates for many vision-
based mobile robot applications, such as autonomous nav-
igation [17], localization [14], and formation control [16].
The egomotion estimation problem (the task of recovering
the camera motion relative to the environment) is funda-
mental to most of these vision-based mobile robot applica-
tions.

The task of egomotion estimation typically consists of
first estimating the optical flow (the 2D motion field in the
image plane) and then extracting the 3D camera motion
from the optical flow. Previously, [7] studied the problem of
egomotion estimation using parabolic and hyperbolic cata-
dioptric cameras by mapping image points to the sphere and
mapping the optical flow to the sphere through the Jacobian
of the transformation, and then applying well-known ego-
motion algorithms adapted for spherical projection. In [15]
this approach was generalized by computing mapping of
image points to the sphere and its Jacobian as a function of
the parameters of the central panoramic projection model.

In this paper, we develop the notion of back-projection
flow as a natural generalization of optical flow for central
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panoramic cameras. We show that the unified projection
model for central panoramic cameras [5] can be considered
as a projection onto a virtual curved retina that is intrinsic
to the camera geometry. The so-called back-projection flow
is obtained by lifting the optical flow from the image plane
onto this retina. We show that egomotion algorithms [13]
can be applied directly to this back-projection flow.

We present extensive simulation results comparing
the performance of egomotion algorithms using back-
projection flow and spherical flow under varying camera
motions, central panoramic camera parameters, and noise
levels in the optical flow. Our results show that in the pres-
ence of noise, egomotion algorithms perform better when
using back-projection flow compared with spherical flow
when the camera translation is mostly in the X-Y plane.
Thus the proposed method is preferable in applications with
small Z-axis translation, such as ground robot navigation.

2. Central Panoramic Imaging Model

A catadioptric realization of an omnidirectional camera
combines a curved mirror and a lens. In [1], an entire class
of catadioptric systems containing a single effective focal
point is derived. A single effective focal point is necessary
for the existence of epipolar geometry that is independent of
the scene structure [12]. Camera systems that have a unique
effective focal point are called central panoramic cameras.

It was shown in [5] that all central panoramic cameras
can be modeled by a mapping of a 3D point onto a sphere
followed by a projection onto the image plane from a point
in the optical axis of the camera. By varying two parameters
(ξ, m), one can model all catadioptric cameras that have a
single effective viewpoint, e.g. parabolic mirror with or-
thographic lens, or hyperbolic mirror with perspective lens.
The particular values of (ξ, m) in terms of the shape param-
eters of different types of mirrors are listed in [2].

According to the unified projection model [5], the im-
age point (x, y)T of a 3D point q = (X, Y, Z)T obtained
through a central panoramic camera with parameters (ξ, m)
is given by:

[

x
y

]

=
ξ + m

−Z + ξ
√

X2 + Y 2 + Z2

[

sxX
syY

]

+

[

cx

cy

]

, (1)
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Figure 1: Showing the curved virtual retina in central
panoramic projection and back-projection ray b associated
with image point (x, y)T .

where 0 ≤ ξ ≤ 1, and (sx, sy) are scales that depend on the
geometry of the mirror, the focal length and the aspect ratio
of the lens, and (cx, cy)

T is the mirror center.
Since central panoramic cameras for ξ 6= 0 can be eas-

ily calibrated from a single image of three lines [6, 2], in
this paper, we assume that the camera has been calibrated,
i.e. we know the parameters (sx, sy, cx, cy, ξ, m). There-
fore, without loss of generality, we consider the following
calibrated central panoramic projection model:

[

x
y

]

=
1

−Z + ξ
√

X2 + Y 2 + Z2

[

X
Y

]

, (2)

which is valid for Z < 0. It is direct to check that ξ = 0
corresponds to the case of perspective projection, and ξ =
1 corresponds to paracatadioptric projection (a catadioptric
camera with a parabolic mirror and an orthographic lens).

3. Back-projection Flow
In this section, we introduce the notion of back-projection
flow, which is the natural generalization of optical flow in
the case of central panoramic cameras. We also review and
discuss differences with an alternate approach [7, 15] which
maps the optical flow to the sphere.

3.1. Mapping Optical Flow to a Curved Retina
Since central panoramic cameras have a unique effective fo-
cal point, one can efficiently compute the back-projection
ray (a ray from the optical center in the direction of the 3D
point being imaged) associated with each image point.

One may consider the central panoramic projection
model in equation (2) as a simple projection onto an curved
virtual retina whose shape depends on the parameter ξ. We
define the back-projection ray as the lifting of the image
point (x, y) onto this retina. That is, as shown in Figure 1,
given an image (x, y)T of a 3D point q = (X, Y, Z)T , de-
fine the back-projection rays as:

b , (x, y, z)T , (3)

where z = fξ(x, y) is the height of the virtual retina. We
construct fξ(x, y) in order to re-write the central panoramic
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Figure 2: Showing cross sections (y = 0) of the virtual
retina for central panoramic camera parameters 0 ≤ ξ ≤ 1.

projection model in equation (2) as a simple scaling:

λb = q, (4)

where the unknown scale λ is lost in the projection. Using
equations (4) and (2), with λ = −Z + ξ

√
X2 + Y 2 + Z2,

it is direct to solve for the virtual retina as:

z , fξ(x, y) =
−1 + ξ2(x2 + y2)

1 + ξ
√

1 + (1 − ξ2)(x2 + y2)
. (5)

Figure 2 shows a cross section (y = 0) of the virtual retina
surface z = fξ(x, y) for different catadioptric camera pa-
rameters 0 ≤ ξ ≤ 1. Notice the retina becomes more planar
as the model approaches perspective projection (ξ → 0).

Now suppose we have measurements of the optical flow
(ẋ, ẏ)T induced by the camera motion. Then, using the def-
inition of the virtual retina surface in equation (5), the time
derivative of the back-projection ray ḃ , (ẋ, ẏ, ż)T is ob-
tained from the optical flow and the retina’s shape using:

ż ,
∂fξ

∂x
ẋ +

∂fξ

∂y
ẏ =

ξ(xẋ + yẏ)
√

1 + (1 − ξ2)(x2 + y2)
.

We call ḃ the back-projection flow. It is direct to see that
back-projection rays and back-projection flows are natural
generalization of image points and optical flow in the case
of perspective projection where ξ = 0.

3.2. Mapping Optical Flow to the Sphere
An alternative to the back-projection flow method was pro-
posed in [7, 15], and consists of mapping the image points
and their optical flow to the unit sphere.

The scene rays are described in spherical coordinates
(ρ, θ, φ) about the center of projection, where ρ is the mag-
nitude, θ is the azimuth angle in the X-Y plane, and φ is
the polar angle between the ray and the Z-axis. Therefore,
given an image point, we first compute its back-projection
ray b = (x, y, z)T using equation (5) and normalize it to
unit length s , b/‖b‖ = (xs, ys, zs)

T . The spherical co-
ordinates of the “unitized” back-projection ray are given by:

ρ = 1, θ = arctan
y

x
, φ = arctan

r

z
, (6)
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where r ,
√

x2 + y2. Using equation (5), we can de-
rive the following Jacobian which relates partial derivatives
from the image plane to the unit sphere:

J =

[

∂θ
∂x

∂θ
∂y

∂φ
∂x

∂φ
∂y

]

=

[

−y/r2 x/r2

xδ yδ

]

(7)

δ ,
z
√

1 + (1 − ξ2)r2 − ξr2

r(r2 + z2)
√

1 + (1 − ξ2)r2
. (8)

Now, we need one more transformation which takes the par-
tial derivatives on the sphere from spherical coordinates to
rectangular coordinates:

S =







∂xs

∂θ
∂xs

∂φ
∂ys

∂θ
∂ys

∂φ
∂zs

∂θ
∂zs

∂φ






=





− sin θ sinφ cos θ cosφ
cos θ sin φ sin θ cosφ

0 − sin φ



 . (9)

Thus, for any central panoramic camera, the following
equations define the mapping of an image point (x, y)T and
its optical flow (ẋ, ẏ)T to the unit sphere:

s = b/‖b‖, ṡ = SJ

[

ẋ
ẏ

]

. (10)

As in [15], the derived SJ , which maps optical flow from
the image plane to the sphere, is a generalization of the Ja-
cobian derived in [7], and is valid for all central panoramic
cameras. Our expression for SJ is simpler than the one
in [15] because of our use of the back-projection ray b.

Comment 3.1. In essence, both of the above methods map
optical flow to the surface of a curved virtual retina. The
difference is that the back-projection flow is on a virtual
retina that depends on ξ and is intrinsic to the central
panoramic camera, while the spherical flow is on the unit
sphere regardless of ξ. In the absence of noise, both meth-
ods are equally valid. However, as we will see in Section 5,
when there is noise in the optical flow measurements, the
performance of egomotion algorithms varies depending on
whether the input is back-projection flow or spherical flow,
as well as on the direction of camera motion.

4. Egomotion Estimation
Here, we show that the differential epipolar constraint at the
heart of egomotion algorithms is in fact a constraint on the
back-projection flow. Thus, one can use the back-projection
flow directly in well-known egomotion algorithms.

4.1. Differential Epipolar Constraint
If the camera undergoes a linear velocity v ∈ R

3 and an
angular velocity ω ∈ R

3, then the coordinates of a static 3D
point q ∈ R

3 evolve in the camera frame as q̇ = [ω]×q + v.

Assume that we measure the back-projection ray b and the
back-projection flow ḃ corresponding to the fixed point q.
Now, using equation (4) we have:

λ̇b + λḃ = λ[ω]×b + v. (11)

By taking the inner product of both sides of equation (11)
with [v]×b, we can eliminate the unknown scales (λ, λ̇),
and obtain the following bilinear constraint on the motion
parameters (v, ω), which is independent of scene structure:

ḃ
T [v]×b + b

T [ω]×[v]×b = 0. (12)

Equation (12) is the differential epipolar constraint, and is
the constraint at the heart of the well-known ego-motion
algorithms (see [13] for an overview).

It is clear that rather than being a constraint on image
points and optical flows as it was first derived, the differen-
tial epipolar constraint is more generally a constraint on the
back-projection rays and back-projection flows. In fact, be-
cause we eliminated λ and λ̇, the constraint is valid whether
b is on the curved retina as in Section 3.1 or on the unit
sphere as in Section 3.2. What is important is that the back-
projection flow is consistent with the back-projection ray:
ḃ must be in the tangent space of the virtual retina at b.

4.2. Egomotion Algorithms
Most egomotion algorithms were designed for perspective
cameras and explicitly use the fact that in perspective pro-
jection the back-projection ray b = (x, y, z)T has z = 1
and ż = 0. However, the algorithms can easily be adapted
to the general case where z and ż are arbitrary.

In this section, we give brief descriptions of the three
most successful egomotion algorithms (see [13, 9]).

Bruss-Horn. The Bruss-Horn algorithm (BH) [3] uses
the differential epipolar constraint in equation (12) to ob-
tain a least squares estimate of ω in terms of v. This esti-
mate of ω is substituted back into (12) resulting in a bilin-
ear constraint on v. An estimate of v is then obtained by a
numerical minimization, e.g. using Levenberg-Marquardt.
Given the estimate v, one can solve linearly for ω (see [3]
for details).

Heeger-Jepson. The Heeger-Jepson (HJ) algorithm [8]
begins by re-writing (12) as:

vT [b]×ḃ = vT ([b]×)2ω.

Then, given measurements of back-projection flows at n
points, it finds a linear combination of motion vectors that is
independent of depth and rotation and orthogonal to transla-
tion. By defining a vector of coefficients c = (c1, . . . , cn)T

and the vector τ (c) =
∑n

i=1
ci[bi]×ḃi, it follows that:

vT
τ (c) = vT

n
∑

i=1

ci([bi]×)2ω.
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One can solve linearly for coefficients c such that
∑n

i=1
ci([bi]×)2 = 0. With this choice of c, we have

vT
τ (c) = 0, which one can use to solve linearly for v.

Given v, one can solve linearly for ω (see [8] for details).
Ma-Kosecka-Sastry. The Ma-Kosecka-Sastry algo-

rithm (MKS) [9] is a linear geometric algorithm in the spirit
of the well-known “8-point algorithm” for discrete egomo-
tion estimation. It is shown in [9] that the differential epipo-
lar constraint (12) is equivalent to (ḃT ,bT )Eb = 0, where:

E ,

[

[v]×
1

2
([ω]×[v]× + [v]×[ω]×)

]

∈ R
6×3 (13)

is the differential essential matrix. The algorithm continues
by linearly estimating E from the optical flow of at least 8
points using (ḃT

i ,bT
i )Ebi = 0, then projecting E onto the

space of differential essential matrices, and finally decom-
posing E into parameters ω and v (see [9] for details).

5. Experiments
In this section, we present simulation results on synthetic
data, comparing the performance of egomotion algorithms
using our proposed back-projection flow and spherical flow
of [7, 15] under different motions, central panoramic cam-
era parameters, and levels of noise in the optical flow.

5.1. Simulation Setup
We generated synthetic optical flow by adapting the method
described in [13] to the case of omnidirectional cameras.
We consider a central panoramic camera given by (1) with
sx = sy and define (ξ + m)sx as the focal length. The
diameter of the image disk was considered to be 512 pixels.

We assume a fixed CCD size for all camera parameters
ξ, which corresponds to fixing the image disk to unit radius
for all cameras. Since the field of view (FOV) of a central
panoramic camera is determined by the back-projection ray
at the perimeter of the image disk, the FOV is determined
by ξ. Figure 3 shows the experimental setup, from which
it is clear that FOV(ξ) = π + 2atan(fξ(1, 0)). Notice that
FOV = 90◦ when ξ = 0, and FOV = 180◦ when ξ = 1.
As Figure 3 shows, we also model the fact that catadioptric
cameras have a blind spot in the center of the image disk
due to the reflection of the CCD in the mirror. In these ex-
periments, we do not image any 3D point whose projection
is at a distance less than rmin = 0.25 from the image center.

A cloud of 400 points was scattered uniformly within the
camera field of view at random depths which varied from
Zmax = −10 to Zmin = −400 focal lengths (see Figure 3).

The 3D points were projected onto the image plane
through the central panoramic projection (2). In each exper-
iment, we computed the optical flow induced by a camera
translation of 5 focal lengths per frame and rotation of 1◦

per frame about the specified translation and rotation axes.

PSfrag replacements
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Figure 3: Showing the experimental setup for the simula-
tions. The field of view is determined by ξ through the
back-projection ray at the perimeter of the image disk.

For a focal length of 8mm and a frame rate of 30Hz, this
corresponds to translation of 1.2m/s and rotation of 30◦/s.
This camera motion amounted to an average motion in the
image plane of about 7 pixels. The true optical flow was
corrupted by adding zero-mean Gaussian noise in the im-
age plane where the standard deviation σ was specified in
terms of pixel size and was independent of camera motion.

5.2. Performance Metrics

We compare the performance of the egomotion algorithms
when using as input back-projection flow or spherical flow
computed from the synthetic optical flow data. Each exper-
iment consists of 1000 trials for a given setting of parame-
ters. The translational and rotational bias are computed as
the average angle between the estimated and the true direc-
tion of translation and axis of rotation, respectively.

Motion dependency. Figure 4 shows the motion depen-
dency of translational and rotational bias for the three ego-
motion algorithms. The optical flow had σ = 1 pixel stan-
dard deviation noise, and the camera parameter was ξ = 1.

The BH algorithm outperforms the HJ and MKS algo-
rithms because it uses nonlinear minimization. In the sub-
sequent experiments, we only show the results of the BH
algorithm, since the other two algorithms have the same
behavior, but with a larger bias. Notice that the MKS al-
gorithm has large rotation bias when v and ω are aligned.
This is because the decomposition of the differential essen-
tial matrix (13) is numerically less accurate when v and ω
coincide [9].

From Figure 4, we observe that when the camera trans-
lates in the X-Y plane, using back-projection flow in the
egomotion algorithms gives more accurate motion estimates
than using spherical flow, and vice versa when the transla-
tion is in the Z axis. For the same noise and camera param-
eters as above, Figure 5 shows the bias of the BH algorithm
as a function of the polar angle φ between the camera ve-
locity and the Z-axis. Due to symmetry, performance of
egomotion algorithms does not depend on the direction of
camera velocity in X-Y plane. Hence, in this and all subse-
quent experiments, a velocity along the X axis was chosen
to represent a velocity in the X-Y plane.
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Figure 4: Bias dependency on the camera motion. “XY”
means translation along X-axis and rotation about Y -axis.

From Figure 5, we observe that it is preferable to use
back-projection flow in the egomotion algorithms when the
translation direction is roughly in the X-Y plane. Further,
we see that the cross-over point where it is preferable to use
back-projection flow over spherical flow is a function of ξ.
The cross-over point is consistently 45◦ for rotation for both
ξ ∈ {0.75, 1}, and shifts to smaller angles for translation as
ξ decreases.

It can be shown that the curvature of the sphere is greater
than the curvature of the virtual retina everywhere, and for
all 0 ≤ ξ ≤ 1. Thus, the Jacobian of the mapping to spher-
ical flow has larger singular values than the Jacobian of the
mapping to back-projection flow. This implies that camera
velocities in the X-Y plane induce a larger back-projection
flow than spherical flow, while camera velocities along the
Z-axis induce a larger spherical flow than back-projection
flow. Thus, as shown in the above experiments, for a given
noise level in the image plane, egomotion algorithms per-
form better using back-projection flow if the camera trans-
lation is mostly in the X-Y plane. Thus, we conclude that
our proposed back-projection flow method is preferable in
important special cases where there is little or no Z-axis
translation, such as in ground robot navigation.

Noise dependency. Figures 6 and 7 shows the bias de-
pendency on the noise level in the optical flow for a trans-
lation in the X-Y plane, and along the Z axis, respectively,
for the camera ξ = 1. As expected, we observe that when
the camera translates in the X-Y plane, the back-projection
flow method gives slightly better motion estimates as the
noise in the optical flow increases, and spherical flow gives
improved estimates when the translation is along the Z axis.

Camera dependency. Figures 8 and 9 show the bias de-
pendency on the camera parameter for translations in the
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Figure 5: Bias dependency on the translation direction. φ is
the polar angle between v and the Z-axis.

X-Y plane and in the Z axis, respectively. The optical flow
data had 1 pixel standard deviation noise. As expected from
the previous experiments, we observe that for every central
panoramic camera, using back-projection flow gives bet-
ter motion estimates if the translation is in the X-Y plane,
while the spherical flow gives better estimates when the
translation is in the Z-axis.

From Figure 8, we observe the interesting phenomenon
that as ξ increases, translation errors increase while rota-
tion errors decrease. This is due to the following interest-
ing interplay which occurs as the FOV increases. An in-
creased FOV should improve the motion estimates because
it is easier to distinguish between translational and rota-
tional flows [7, 12]. However, as the FOV increases, the
spacial resolution (the infinitesimal solid angle of the world
viewed by an infinitesimal pixel) of the camera increases ra-
dially in the image plane [1]. Thus, for a fixed noise level in
the image plane, higher FOV cameras have larger errors in
the computed back-projection rays, and hence larger errors
in the triangulation angles for egomotion estimation.

6. Conclusions and Future Work
We have developed the notion of back-projection flow as a
natural generalization of optical flow for central panoramic
cameras, and showed that well-known egomotion algo-
rithms can be applied directly to this back-projection flow.
Finally, through extensive simulation results, we showed
that using back-projection flow gives better egomotion esti-
mation results than using spherical flow in important special
cases such as applications in ground robot navigation.

This work suggests many directions for future research:
(1) Find a proper noise model for optical flow with central
panoramic cameras; (2) Do a detailed analysis of the sta-
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Figure 6: Bias dependency on noise in the optical flow. The
translation was in the X-Y plane.
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Figure 7: Bias dependency on noise in the optical flow. The
translation was along the Z-axis.
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Figure 8: Bias dependency on type of catadioptric camera.
The translation was in the X-Y plane.
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Figure 9: Bias dependency on type of catadioptric camera.
The translation was along the Z-axis.

tistical correlation between back-projection flow and spher-
ical flow, and the dependency of the corresponding signal-
to-noise ratios on the camera motion; (3) Apply the back-
projection flow to the recent algorithms for multi-frame and
multi-body infinitesimal motion estimation and segmenta-
tion [10, 11]; (4) Investigate the computation of optical flow
for central panoramic cameras. In [4], the sphere is sug-
gested as the natural underlying space for image processing
for omnidirectional cameras because of the significant ra-
dial distortion. Our work suggests that the correct space for
image processing may depend on the camera motion. For
example, the proposed virtual retina is more appropriate for
motion in the X-Y plane.
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