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Abstract
Central and subspace clustering methods are at
the core of many segmentation problems in com-
puter vision. However, both methods fail to give
the correct segmentation in many practical sce-
narios, e.g., when data points are close to the in-
tersection of two subspaces or when two clus-
ter centers in different subspaces are spatially
close. In this paper, we address these challenges
by considering the problem of clustering a set
of points lying in a union of subspaces and dis-
tributed around multiple cluster centers inside
each subspace. We propose a generalization of
Kmeans and Ksubspaces that clusters the data by
minimizing a cost function that combines both
central and subspace distances. Experiments on
synthetic data compare our algorithm favorably
against four other clustering methods. We also
test our algorithm on computer vision problems
such as face clustering with varying illumination
and video shot segmentation of dynamic scenes.

1. Introduction
Many computer vision problems require the efficient and
effective organization of huge-dimensional data for infor-
mation retrieval purposes. Unsupervised learning, mostly
clustering, provides a way to handle these challenges.

Central and subspace clustering are arguably the most stud-
ied clustering problems. In central clustering, data samples
are assumed to be distributed around a collection of cluster
centers, e.g., a mixture of Gaussians. This problem shows
up in many vision tasks, e.g., image segmentation, and can
be solved using techniques such as Kmeans (Duda et al.,
2000) or Expectation Maximization (EM) (Dempster et al.,
1977).
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In subspace clustering, data samples are assumed to be dis-
tributed in a collection of subspaces. This problem shows
up in various vision applications, such as motion segmen-
tation (Vidal & Ma, 2004), face clustering with varying il-
lumination (Ho et al., 2003), temporal video segmentation
(Vidal et al., 2005), etc. Subspace clustering can also be
used to obtain a piecewise linear approximation of a man-
ifold (Weinberger & Saul, 2004), as we will show in our
real data experiments. Existing subspace clustering meth-
ods include Ksubspaces (Ho et al., 2003) and Generalized
Principal Component Analysis (GPCA) (Vidal et al., 2005).
Such methods do not enforce a particular distribution of
the data inside the subspaces. Methods such as Mixtures
of Probabilistic PCA (MPPCA) (Tipping & Bishop, 1999)
further assume that the distribution of the data inside each
subspace is Gaussian and use EM to learn the parameters
of the mixture model and the segmentation of the data.

Unfortunately, there are many cases in which neither cen-
tral nor subspace clustering individually are appropriate.
For example, subspace clustering fails when the data set
contains points close to the intersection of two subspaces,
as shown by the example in Figure 1. Similarly, central
clustering fails when two clusters in different subspaces are
spatially close, as shown by the example in Figure 2.

In this paper, we propose a new clustering approach that
combines both central and subspace clustering. We obtain
an initial solution by grouping the data into multiple sub-
spaces using GPCA and grouping the data inside each sub-
space using Kmeans. This initial solution is then refined by
minimizing an objective function composed of both central
and subspace distances. This combined optimization leads
to improved performance of our method over four differ-
ent clustering approaches in terms of both clustering error
and estimation accuracy. Real examples on illumination-
invariant face clustering and video shot detection are also
performed. Our experiments also show that combined cen-
tral/subspace clustering can be effectively used to obtain a
piecewise linear approximation of complex manifolds.
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Figure 1. Left: A set of points in R
3 drawn from 4 clusters labeled as A1, A2, B1, B2. Clusters B1 and B2 lie in the x-y plane and

clusters A1 and A2 lie in the y-z plane. Note that some points in A2 and B2 are drawn from the intersection of the two planes (y-axis).
Center: Subspace clustering by GPCA assigns all the points in the y-axis to the y-z plane, thus it misclassifies some points in B2. Right:
Subspace clustering using GPCA followed by central clustering inside each plane using Kmeans misclassifies some points in B2.
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Figure 2. Left: A set of points in R
3 distributed around 4 clusters labeled as A1, A2 B1, B2. Clusters B1 and B2 lie in the x-y plane

and clusters A1 and A2 lie in the y-z plane. Note that cluster B2 (in blue) is spatially close to cluster A2 (in red). Center: Central
clustering by Kmeans assigns some points in A2 to B2. Right: Subspace clustering using GPCA followed by central clustering inside
each subspace using Kmeans gives the correct clustering into four groups.

2. Combined Central-Subspace Clustering
Let {xi ∈ R

D}P
i=1 be a collection of P points lying ap-

proximately in n subspaces Sj = {x : B>
j x = 0} of

dimension dj with normal bases {Bj ∈ R
(D−dj)×D}n

j=1.
Assume that within each subspace Sj the data points are
distributed around mj cluster centers {µjk ∈ R

D}
k=1...mj

j=1...n .
In this paper, we consider the following problem:

Problem 1 (Combined central and subspace clustering)
Given {xi}

P
i=1, estimate {Bj}

n
j=1 and {µjk}

k=1...mj

j=1...n .

When n = 1, Problem 1 reduces to the standard central
clustering problem. A popular central clustering method is
the Kmeans algorithm, which solves for the cluster centers
µk and the membership of the ith point to the kth cluster
center wik∈{0, 1} by minimizing the within class variance

JKM
.
=

P
∑

i=1

m1
∑

k=1

wik‖xi − µk‖
2. (1)

Given the cluster centers, the optimal solution for the mem-
berships is to assign each point to the closest center. Given
the memberships, the optimal solution for the cluster cen-
ters is given by the means of the points within each group.

The Kmeans algorithm proceeds by alternating between
these two steps until convergence to a local minimum.

When mj = 1 and n > 1, Problem 1 reduces to the clas-
sical subspace clustering problem. This problem can be
solved with an extension of Kmeans, called Ksubspaces,
which solves for the subspace normal bases Bj and the
membership of the ith point to the jth subspace wij ∈
{0, 1} by minimizing the cost function

JKS
.
=

P
∑

i=1

n
∑

j=1

wij‖B
>
j xi‖

2 (2)

subject to the constraints B>
j Bj = I, for j = 1, . . . , n,

where I denotes the identity matrix. Given the normal
bases, the optimal solution for the memberships is to assign
each point to the closest subspace. Given the memberships,
the optimal solution for the normal bases is obtained from
the null space of the data matrix of each group using SVD.
The Ksubspaces algorithm proceeds by alternating between
these two steps until convergence to a local minimum.

In this section, we are interested in the more general prob-
lem of n > 1 subspaces and mj > 1 centers per sub-
space. In principle, we could also solve this problem us-
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ing Kmeans by interpreting Problem 1 as a central cluster-
ing problem with

∑

mj cluster centers. However, Kmeans
does not fully employ the data’s structural information and
can cause undesirable clustering results, as shown in Figure
2. Thus, we propose a new algorithm which combines the
objective functions (1) and (2) into a single objective. The
algorithm is a natural generalization of both Kmeans and
Ksubspaces to simultaneous central/subspace clustering.

For the sake of simplicity, let us first assume that the
subspaces are of co-dimension one, i.e. hyperplanes, so
that we can represent them with a single normal vector
bj ∈ R

D. We discuss the extension to subspaces of varying
dimensions in Remark 1. Our method computes the cluster
centers and the subspace normals by solving the following
optimization problem

min

P
∑

i=1

n
∑

j=1

mj
∑

k=1

wijk

(

(b>
j xi)

2 + ‖xi − µjk‖
2
)

(3)

subject to b
>
j bj = 1, j = 1, . . . , n, (4)

b
>
j µjk = 0, j = 1, . . . , n, k = 1, . . . ,mj , (5)
n

∑

j=1

mj
∑

k=1

wijk = 1, i = 1, . . . , P, (6)

where wijk ∈ {0, 1} denotes the membership of the ith
point to the jkth cluster center. Equation (3) ensures that
for each point xi, there is a subspace-cluster pair (j, k)
such that both |b>

j xi| and ‖xi − µjk‖ are small. Equa-
tion (4) ensures that the normal vectors are of unit norm.
Equation (5) ensures that each cluster center lies in its cor-
responding hyperplane and equation (6) ensures that each
point is assigned to only one of the

∑

mj cluster centers.

Using the technique of Lagrange multipliers to minimize
the cost function in (3) subject to the constraints (4)–(6)
leads to the new objective function

L =

P
∑

i=1

n
∑

j=1

mj
∑

k=1

wijk((b>
j xi)

2 + ‖xi − µjk‖
2)+

n
∑

j=1

mj
∑

k=1

λjk(b>
j µjk) +

n
∑

j=1

δj(b
>
j bj − 1).

(7)

Similarly to the Kmeans and Ksubspaces algorithms, we
minimize L using a coordinate descent minimization tech-
nique, as shown in Algorithm 1. The following subsections
describe each step of the algorithm in detail.

Initialization: Since the data points lie in a collection of
hyperplanes, we can apply GPCA to obtain an estimate
of the normal vectors {bj}

n
j=1 and segment the data into

n groups. Let Xj ∈ R
D×Pj be the set of points in the

jth hyperplane. If we use the SVD of Xj to compute a
rank D − 1 approximation of Xj ≈ UjSjVj , where Uj ∈

R
D×(D−1), Sj ∈ R

(D−1)×(D−1) and Vj ∈ R
(D−1)×Pj ,

then the columns of X
′
j = SjVj ∈ R

(D−1)×Pj are a
set of vectors in R

D−1 distributed around mj cluster cen-
ters. We can apply Kmeans to segment the columns of
X

′
j into mj groups and obtain the projected cluster cen-

ters {µ′
jk ∈ R

D−1}
mj

k=1. The original cluster centers are
then given by µjk = Ujµ

′
jk ∈ R

D.

Algorithm 1 (Combined Central and Subspace Clustering)

1. Initialization: Obtain an initial estimate of the normal
vectors {bj}

n
j=1 and cluster centers {µjk}

k=1...mj

j=1...n using
GPCA followed by Kmeans in each subspace.

2. Computing the memberships: Given the normal vectors
{bj}

n
j=1 and the cluster centers {µjk}

k=1...mj

j=1...n , compute the
memberships {wijk}.

3. Computing the cluster centers: Given the memberships
{wijk} and the normal vectors {bj}

n
j=1, compute the clus-

ter centers {µjk}
k=1...mj

j=1...n .

4. Computing the normal vectors: Given the memberships
{wijk} and the cluster centers {µjk}

k=1...mj

j=1...n , compute the
normal vectors {bj}

n
j=1.

5. Iterate: Repeat steps 2,3,4 until convergence of the mem-
berships.

Computing the memberships: Since the cost function L
is positive and linear in wijk, the minimum is attained at
wijk=0. However, since

∑

jkwijk=1, the wijk multiplying
the smallest

(

(b>
j xi)

2 + ‖xi − µjk‖
2
)

must be 1. Thus,

wijk =

{

1 if (j, k) = arg min
(

(b>
j xi)

2 + ‖xi − µjk‖
2
)

0 otherwise
.

Computing the cluster centers: From the first order con-
dition for a minimum we have

∂L

∂µjk

= −2
P

∑

i=1

wijk(xi − µjk) + λjkbj = 0. (8)

Left-multiplying (8) by b
>
j and recalling that b

>
j µjk = 0

and b
>
j bj = 1 yields

λjk = 2

P
∑

i=1

wijk(b>
j xi). (9)

Substituting (9) into (8) and dividing by two yields

−

P
∑

i=1

wijk(xi−µjk) +

P
∑

i=1

wijkbjb
>
j xi = 0

=⇒ µjk = (I − bjb
>
j )

∑P

i=1 wijkxi
∑P

i=1 wijk
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where I is the identity matrix in R
D. Note that the optimal

µjk has a simple geometric interpretation: it is the pro-
jection of the mean of the points associated with the jkth
cluster onto the jth hyperplane.

Computing the normal vectors: From the first order con-
dition for a minimum we have

∂L

∂bj

=2

P
∑

i=1

mj
∑

k=1

wijk(b>
j xi)xi +

mj
∑

k=1

λjkµjk + 2δjbj =0.

(10)

After left-multiplying (10) by b
>
j to eliminate λjk and re-

calling that b
>
j µjk = 0, we obtain

δj = −
P

∑

i=1

mj
∑

k=1

wijk(b>
j xi)

2. (11)

After substituting (9) into equation (10) and recalling that
b
>
j µjk = 0, we obtain

(

P
∑

i=1

mj
∑

k=1

wijk(xi + µjk)x>
i + δjI)bj = 0. (12)

Therefore, the optimal normal vector bj is the eigenvector
of (

∑P

i=1

∑m

k=1 wijk(xi +µjk)x>
i + δjI) associated with

its smallest eigenvalue, which can be computed via SVD.

Remark 1 (Extension from hyperplanes to subspaces)
In the case of subspaces of co-dimension larger than one,
each normal vector bj should be replaced by a matrix
of normal vectors Bj ∈ R

D×(D−dj), where dj is the
dimension of the jth subspace. Since the normal bases and
the means must satisfy B>

j µjk = 0 and B>
j Bj = I, the

objective function (3) should be changed to

L =
P

∑

i=1

n
∑

j=1

mj
∑

k=1

wijk(‖B>
j xi‖

2 + ‖xi − µjk‖
2)+

n
∑

j=1

mj
∑

k=1

λ>
jk(B>

j µjk) +
n

∑

j=1

trace
(

∆j(B
>
j Bj − I)

)

.

where λjk ∈ R
(D−dj) and ∆j ∈ R

(D−dj)×(D−dj) are,
respectively, vectors and matrices of Lagrange multipliers.
Given the normal basis Bj , the optimal solution for the
means is given by

µjk = (I − BjB
>
j )

∑P
i=1 wijkxi

∑P
i=1 wijk

.

One can show that the optimal solution for ∆j is
a scaled identity matrix whose jth diagonal entry is
δj = −

∑P

i=1

∑mj

j=1 wijk‖B
>
j xi‖

2. Given δj and
µjk, one can still solve for Bj from the null space of
(
∑P

i=1

∑mj

k=1 wijk(xi + µjk)x>
i + δjI), which now has

dimension D − dj .

Remark 2 (Maximum Likelihood Solution) Notice that
in the combined objective function (7) the term |b>

j xi| is
the distance to the jth hyperplane, while ‖xi − µjk‖ is
the distance to the jkth cluster center. Since the former is
mostly related to the variance of the noise in the orthogonal
direction to the hyperplane, σ2

b , while the latter is mostly
related to the within class variance, σ2

µ, the relative magni-
tudes of these two distances need to be taken into account.
One way of doing so is to assume that the data is gener-
ated by a mixture of

∑

mj Gaussians with means µjk and
covariances Σjk = σ2

bbjb
>
j + σ2

u(I − bjb
>
j ). This au-

tomatically allows the variances inside and orthogonal to
the hyperplanes to be different. Application of the EM al-
gorithm to this mixture model leads to the minimization of
the following normalized objective function

L =

P
X

i=1

n
X

j=1

mj
X

k=1

wijk

“ (b>j xi)
2

2σ2
+

‖xi − µjk‖
2

2σ2
µ

+ log(σb)+

(D − 1) log(σu)
”

+

n
X

j=1

mj
X

k=1

λjk(b>j µjk) +

n
X

j=1

δj(b
>

j bj − 1)

where wijk ∝ exp(−
(b>j xi)

2

2σ2 −
‖xi−µjk‖

2

2σ2
µ

) is now the prob-
ability that the ith point belongs to the jkth cluster center,
and σ−2 = σ−2

b − σ−2
µ . The optimal solution can be ob-

tained using coordinate descent, similarly to Algorithm 1,
with the following formulae for updating the parameters

λjk = 2

P
∑

i=1

wijk

b
>
j xi

σ2
µ

, δj = −

P
∑

i=1

mj
∑

k=1

wijk

(b>
j xi)

2

σ2

µjk = (I − bjb
>
j )

∑P

i=1 wijkxi
∑P

i=1 wijk

0 = (

P
∑

i=1

mj
∑

k=1

wijk(
xi

σ2
+

µjk

σ2
µ

)x>
i + δjI)bj

σ2
b =

∑P

i=1

∑n

j=1

∑mj

k=1 wijk(b>
j xi)

2

∑P

i=1

∑n

j=1

∑mj

k=1 wijk

σ2
u =

∑

ijk wijk

(

‖xi − µjk‖
2 − (b>

j xi)
2
)

(D − 1)
∑P

i=1

∑n

j=1

∑mj

k=1 wijk

.

3. Experiments
3.1. Clustering performance on simulated data
We randomly generate P = 600 data points in R

3 lying in
2 intersecting planes {Sj}

2
j=1 with 3 clusters in each plane

{µjk}
k=1,2,3
j=1,2 . 100 points are drawn around each one of

the six cluster centers according to a zero-mean Gaussian
distribution with standard deviation σµ = 1.5 within each
plane. The angle between the two planes is randomly cho-
sen from 20o ∼ 90o, and the distance among the three clus-
ter centers is randomly selected in the range 2.5σµ ∼ 5σµ.
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Zero-mean Gaussian noise with standard deviation σb is
added in the direction orthogonal to each plane. Using sim-
ulated data, we compare 5 different clustering methods:

• Kmeans clustering in R
3 using 6 cluster centers, then

merging them into 2 planes1 (KM),

• MPPCA2 clustering in R
3 using 6 cluster centers, then

merging them into 2 planes1 (MP),

• Ksubspaces clustering in R
3 using 2 planes, then

Kmeans using 3 clusters within each plane (KK),

• GPCA clustering in R
3 using 2 planes, then Kmeans

using 3 clusters within each plane (GK),

• GPCA-Kmeans clustering for initialization followed
by combined central and subspace clustering (JC) as
described in Section 2 (Algorithm 1).

Figure 3 shows a comparison of the performance of these
five methods in terms of clustering error ratios and the er-
ror in the estimation of the subspace normals in degrees.
The results are the mean of the errors over 100 trials. It can
be seen in Figure 3 that the errors in clustering and normal
vectors of all five algorithms increase as a function of noise.
MP performs better than KM and KK for large levels of
noise, because of its probabilistic formulation. The two
stage algorithms, KK, GK and JC, in general perform bet-
ter than KM and MP in terms of clustering error. The ran-
dom initialization based methods, KM, MP and KK, have
non-zero clustering error even with noise-free data. Within
the two stage algorithms, KK begins to experience sub-
space clustering failures more frequently with more severe
noises, due to its random initialization, while GPCA in GK
and JC employ an algebraic solution of one-shot subspace
clustering, thus avoiding the initialization problem. The
subspace clustering errors of KK can cause the estimate of
the normals to be very inaccurate, which explains why KK
has worse errors in the normal vectors than KM and MP.
In summary, GK and JC have smaller average errors in
clustering and normal vectors than KM, MP and KK . The
combined optimization procedure of JC converges within
2 ∼ 5 iterations according to our experiments, which fur-
ther advocates JC’s clustering performance.

1In order to estimate the plane normals, we group the 6 clusters
returned by KM or MP into 2 planes. The idea is that 3 clusters
which lie in the same plane have the dimensionality of 2 instead
of 3. A brute-force search with

`

6

3

´

/2 selections is employed to
find the 2 best fitting planes, by considering the minimal strength
of the data distributed in the third dimension via Singular Value
Decomposition (Duda et al., 2000).

2Software available at www.ncrg.aston.ac.uk/netlab/
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Figure 3. Top: Clustering error as a function of noise in the data.
Bottom: Error in the estimation of the normal vectors (degrees)
as a function of the level of noise in the data.

3.2. Applications with real data
3.2.1. ILLUMINATION-INVARIANT FACE CLUSTERING

The Yale face database B (see http://cvc.yale.edu/projects/
yalefacesB/yalefacesB.html ) contains a collection of face
images Ij ∈ R

K of 10 subjects taken under 576 viewing
conditions (9 poses × 64 illumination conditions). Here
we only consider the illumination variation for face clus-
tering in the case of frontal face images. Thus our task is
to sort the images taken for the same person by using our
combined central/subspace clustering algorithm. As shown
in (Ho et al., 2003), the set of all images of a (Lambertian)
human face with fixed pose taken under all lighting con-
ditions forms a cone in the image space which can be well
approximated by a low dimensional subspace. Thus images
of different subjects live in different subspaces. Since the
number of pixels K of each image is in general much larger
than the dimension of the underlying subspace, PCA (Duda
et al., 2000) is first employed for dimensionality reduction.
Successful GPCA clustering results have been reported by
(Vidal et al., 2005) for a subset of 3x64 images of subjects
5, 8 and 10. The images in (Vidal et al., 2005) are cropped
to 30x40 pixels and 3 PCA components are used as image
features in homogeneous coordinates.

In this subsection, we further explore the performance
of combined central/subspace face clustering under more
complex imaging conditions. We keep 3 PCA components
for 4x64 (240x320 pixels) images of subjects 5, 6, 7, and
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8, which gives more background details (as shown in Fig-
ure 4). Figures 5 (a,b) show the imperfect clustering re-
sult of GPCA due to the intersection of the subspace of
subject 5 with the subspaces of subjects 6 and 7. GPCA
assigns all the images on the intersection to subject 5. Mix-
tures of PPCA is implemented in Netlab as a probabilistic
variation of subspace clustering with one spatial center per
subspace. It can be initialized with Kmeans (originally in
Netlab) or GPCA, both of which result in imperfect cluster-
ing. We show one example of the subspaces of subjects 6
and 7 mixed (Kmeans initialization) in Figure 5 (c,d). Our
combined subspace-central optimization process success-
fully corrects the wrong labels for some images of subjects
6 and 7, as demonstrated in Figure 5 (e,f). In the opti-
mization, the local clusters in the subspaces of subjects 6
and 7 contribute with smaller central distances to their mis-
classified images, which re-classifies them to the correct
subspaces using our combined subspace-central clustering
algorithm. In this experiment, 4 subspaces with 2 clusters
per subspace are used. Compared with the results in (Vidal
et al., 2005), we obtain perfect illumination-invariant face
clustering for a more complex data distribution.

3.2.2. VIDEO SHOT SEGMENTATION

Unlike face images under different illumination conditions,
video data provides continuous visual signals. Video struc-
ture parsing and analysis applications need to segment the
whole video sequence into several video shots. Each video
shot may contain hundreds of image frames which are ei-
ther captured with a similar background or have a similar
semantical meaning.

Figure 6 shows 2 sample videos, mountain.avi and
drama.avi, containing 4 shots each. Archives are publicly
available from http://www.open-video.org. For the moun-
tain sequence, 4 shots are captured. The shots display
different backgrounds and show either multiple dynamic
objects and/or severe camera motions. In this video, the
frames between each pair of successive shots are gradually
blended from one to another. Because of this, the correct
video shot segmentation is considered to split every two
successive shots at their blending frames. In order to ex-
plore how the video frames are distributed in feature space,
we plot the first 3 PCA components for each frame in Fig-
ure 7 (b, d, f). Note that a manifold structure can be ob-
served in Figure 7 (f), where we manually label each por-
tion of the data as shots 1 through 4 (starting from red dots
to green, black and ending in blue) according to the re-
sult of our clustering method. The video shot segmenta-
tion results of the mountain sequence by Kmeans, GPCA
and GPCA-Kmeans followed by combined optimization
are shown in Figure 7 (a,b), (c,d) and (e,f), respectively.
Because Kmeans is based on the central distances among
data, it segments the data into spatially close blobs. There

Figure 4. Sample images of subjects 5, 6, 7 and 8.
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Figure 5. Illumination-invariant face clustering by GPCA (a-b),
Mixtures of PPCA (c-d), and our method (e-f). Plots on the right
show 3 principal components with proper labels and color-shapes.
The colors match the colors of subjects 5, 6, 7 and 8 in Figure 4.

is no guarantee that these spatial blobs will correspond
to correct video shots. Comparing Figure 7 (b) with the
correct segmentation in (f), the Kmeans algorithm splits
shot 2 into clusters 2 and 3, while it groups shots 1 and
4 into cluster 1. By considering the data’s manifold nature,
GPCA provides a more effective approximation with multi-
ple planes to the manifold in R

3 than the spatial blobs given
by central clustering. The essential problem for GPCA is
that it only deploys the co-planar condition in R

3, with-
out any constraint relying on their spatial locations. In the
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structural approximation of the data’s manifold, there are
many intersecting data points among 4 planes. These data
points represent video frames with the clustering ambigu-
ity solely based on the subspace constraint. Fortunately
this limitation can be well tackled by GPCA-Kmeans with
combined optimization. Combining central and subspace
distances provides correct video shot clustering results for
the mountain sequence, as demonstrated in Figure 7 (e,f).

The second video sequence shows a drama scenario which
is captured with the same background. The video shots
should be segmented by the semantic meaning of the per-
formance of the actor and actress. In Figure 6 Right, we
show 2 sample images for each shot. This drama video
sequence contains very complex actor and actress’ mo-
tions in front of a common background, which results in
a more complex manifold data structure3 than that of the
mountain video. For better visualization, the normal vec-
tors of data samples recovered by GPCA or the combined
central/subspace optimization, are drawn originating from
each data point in R

3 with different colors for each cluster.
For this video, the combined optimization process shows
a smoother clustering result in Figure 8 (c,d), compared
with (a,b). In summary, GPCA can be considered as an
effective way to group data in a manifold into multiple
subspaces or planes in R

3 which normally better represent
video shots than central clustering. GPCA-Kmeans with
combined optimization can then associate the data at the
intersection of planes into the correct clusters by optimiz-
ing combined distances. Subspace clustering seems to be a
better method to group the data on a manifold by somehow
preserving their geometric structure. Central clustering,
such as Kmeans4, provides a piecewise constant approxi-
mation; while subspace clustering shows a piecewise linear
approximation. On the other hand, subspace clustering can
meet severe clustering ambiguity problems when the shape
of the manifold is complex, as shown in Figure 8 (b,d). In
this case, there are many intersections of subspaces so that
subspace clustering results can be very sparse, without con-
sidering the spatial coherence. Combined optimization of
central and subspace distances demonstrates superior clus-
tering performance with real video sequences.

3.2.3. DISCUSSION ON MODEL SELECTION

Throughout the paper we have assumed that the number of
subspaces n, their dimensions dj and the number of clus-
ters within each subspace mj are known. In practice, these
quantities may not be known beforehand.

3Because there are image frames of transiting subject motions
from one shot to another, the correct video shot segmentation is
considered to split successive shots at their transiting frames.

4Due to space limitation, we do not provide the clustering re-
sult using Kmeans for this sequence which is similar with Figure
7 (a,b).

Figure 6. Sample images used for video shot segmentation. Left:
mountain sequence. Right: drama sequence.
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Figure 7. Video shot segmentation of mountain sequence by
Kmeans (a-b), GPCA (c-d) and our algorithm (e-f). Plots on the
right show 3 principal components of the data grouped in 4 clus-
ters shown by ellipses with proper color-shapes. In (f), three ar-
rows show the topology of the video manifold.
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Figure 8. Video shot segmentation of drama sequence by GPCA
(a-b), and our algorithm (c-d). Plots on the right show 3 principal
components of the data with the normal to the plane at each point.
Different normal directions illustrate different shots.

When the number of subspaces is n = 1, the estimation
of the dimension of the subspace d1 is essentially equiv-
alent to the estimation of the number of principal compo-
nents of the data set. This problem can be tackled by com-
bining PCA with existing model selection techniques, such
as minimum description length, Akaike information crite-
rion, or Bayesian information criterion (Duda et al., 2000).
Given d1, the number of clusters m1 can be determined by
combining the Kmeans cost functional with the aforemen-
tioned model selection criteria.

When the number of subspaces is n > 1, the problem is
much more challenging. One possible solution is to em-
ploy model selection algorithms for subspace and central
clustering separately in a sequential manner, to determine
n first, then dj and then mj . As shown in (Vidal et al.,
2005), GPCA provides a way of determining n from a rank
constraint on a polynomial embedding of the data. Given n,
one may cluster the data using GPCA, and then determine
the dimension of each subspace as the number of principal
components of the data points that belong to each subspace.
Given n and dj , one can use the model selection procedure
mentioned earlier to determine the number of clusters mj

in Kmeans. However, this three-stage solution is clearly
not optimal. Ideally one would like a model selection cri-
teria that integrates both types of clustering into one joint
or combined process. This is obviously more difficult than
combining the clustering algorithms, and is under current
investigation.

4. Conclusions and Future Work
We have proposed an intuitive and easy to implement algo-
rithm for clustering data lying in a union of subspaces with
multiple clusters within each subspace. By minimizing a
cost function that incorporates both central and subspace
distances, our algorithm can handle situations in which
Kmeans and Ksubspaces/GPCA fail, e.g., when data are
close to the intersection of two subspaces, or when cluster
centers in different subspaces are spatially close. Future
work includes using model selection to automatically de-
termine the number of subspaces and cluster centers. Also,
we believe it should be possible to extend the proposed
combined central and subspace clustering formulation to
recognize multiple complex curved manifolds. An example
application is to find which movie a given images appear
in. Each manifold will be composed of multiple subspaces
where each subspace is spatially constrained by central dis-
tances among data samples. Once the movie models are
learned (similarly to shot detection), the likelihood evalua-
tion for a new data sample is based on computing its com-
bined central and subspace distances to the given models.
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