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Statistical Inference on Random Graphs:
Comparative Power Analyses via Monte Carlo

Henry PAO, Glen A. COPPERSMITH, and Carey E. PRIEBE

We present a comparative power analysis, via Monte Carlo, of various graph invari-
ants used as statistics for testing graph homogeneity versus a “chatter” alternative—the
existence of a local region of excessive activity. Our results indicate that statistical in-
ference on random graphs, even in a relatively simple setting, can be decidedly non-
trivial. We find that none of the graph invariants considered is uniformly most powerful
throughout our space of alternatives. Code for reproducing all the simulation results
presented in this article is available online.
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1. INTRODUCTION

Graphs are useful for representing a wide range of natural phenomena. Thus, detect-
ing anomalies within graphs may provide information relevant to making inferences for a
variety of applications, such as corporate email traffic analysis (Priebe et al. 2005), exami-
nations of turn-taking behavior (Grothendieck, Gorin, and Borges 2008), entity extraction
from text (Doddington et al. 2004), peer-to-peer application analysis (Sen, Spatschek, and
Wang 2004), or analysis of social networks (Leenders 1995). Specifically, we are interested
in being able to infer when a graph has a local region of excessive connectivity. In order to
detect such changes we consider seven graph invariants: size, maximum degree, maximum
average degree, scan statistic, number of triangles, clustering coefficient, and average path
length. We design an inferential setting in which we evaluate the statistical power of these
various graph invariants for detecting anomalies.

Our inference task is to differentiate homogeneous graphs from heterogeneous graphs.
Specifically, our null hypothesis (H0) is that all vertices have the same probability of con-
nection. The alternative hypothesis (HA) is that there exists a subset of vertices that are
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(probabilistically) more highly interconnected than the rest of the graph. In both cases, we
consider the simple scenario in which all edges are mutually independent. For example, if
the vertices represent the senders and recipients of email (actors) and each edge represents
an email between two actors, then H0 states that each actor communicates with each other
actor with equal probability while HA states that there is a subset of actors which share ex-
cessive email communication among each other—there is increased “chatter” among these
vertices. See, for instance, the works of Newman (2003) and Newman, Barabosi, and Watts
(2006) for a general discussion of related applications.

Our results indicate that no invariant among those considered herein is universally most
powerful for detecting increased local chatter.

1.1 RANDOM GRAPHS

To model these phenomena and the effectiveness of the graph invariants for detecting
anomalous behavior, we use undirected graphs G ∈ Gn, the collection of all graphs on the n

vertices V = {1, . . . , n}. We denote the vertex set V = V (G) and edge set E = E(G); thus
G = (V ,E). To denote edges in E, we use the notation euv for u,v ∈ V (it is said that
vertices u and v are adjacent). We will not consider weighted or parallel edges. We will
not consider loops, so if euv ∈ E, then u "= v. Our graphs are undirected, so there is no
distinction between euv and evu.

1.2 NULL HYPOTHESIS

Our null hypothesis (H0) is that the observed graph is drawn from an Erdős–Rényi
(ER) random graph model (Bollobás 2001); that is, each of the

(n
2

)
possible edges exists

independently with a given probability p ∈ [0,1). Again, V = {1, . . . , n}, so H0 : ER(n,p).

1.3 ALTERNATIVE HYPOTHESIS

Our alternative hypothesis (HA)—local chatter—is the κ random graph model,
κ(n,p,m,q). Again, V = {1, . . . , n}. A subset of m vertices (VA ⊂ V , |VA| = m,
m ∈ {2, . . . , n}) are connected with probability q where q > p. The remaining n − m

vertices are connected with probability p, just like the entire graph under H0, to represent
the portion of the population not “chattering.” Edges between a vertex in VA and a vertex in
V \VA occur with probability p. Again, all edges are independent of one another. We para-
meterize our alternative by θ ∈#A = {2, . . . , n} × (p,1]. This κ graph is referred to as the
“kidney and egg” graph as depicted in Figure 1. So, HA :κ(n,p,m,q) with (m,q) ∈#A.

Our comparative power investigation consists of quantifying the ability of various graph
invariants to distinguish a homogeneous ER(n,p) graph from our local “chatter” alterna-
tive κ(n,p,m,q).

1.4 GRAPH PRELIMINARIES

Graph theory preliminaries are available in many textbooks; see, for instance, the book
by West (2001). We present here the basics required for our analysis.
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Figure 1. HA: The “kidney and egg” graph, κ(n,p,m,q). The small “egg” represents the m vertices (VA) that
exhibit chatter (each edge occurring with probability q). The “kidney” is the population of n − m vertices which
are not exhibiting chatter (each edge occurring with probability p < q). Edges between a vertex in the kidney and
a vertex in the egg occur with probability p.

1.4.1 Size and Order

The size of a graph G, denoted size(G) = |E(G)|, is the number of edges. Likewise,
the order of a graph G, denoted order(G) = |V (G)|, is the number of vertices.

1.4.2 Distance

The distance between any two vertices is measured by the minimum number of edges
required to traverse between them. For vertices u and v, this is denoted by l(u, v). If euv ∈
E(G), then l(u, v) = 1; l(u,u) = 0 for all u; and if no path exists between u and v, then
l(u, v) = ∞.

1.4.3 Degree

The degree of vertex v, denoted d(v), is the number of edges incident to v. Since we
allow only a single edge between two vertices and no loops, d(v) is also the number of
vertices connected to v.

1.4.4 Adjacency Matrix

The adjacency matrix A = A(G) is an n×n symmetric, hollow (zeros on the diagonal),
binary matrix where n = order(G). If auv denotes the (u, v)th element of A, then auv = 1
if and only if euv ∈ E(G).
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1.4.5 Induced Subgraphs

Given a collection of vertices V ′ ⊂ V , the induced subgraph $(V ′;G) is defined to be
the graph (V ′,E′) where euv ∈ E′ if and only if u ∈ V ′, v ∈ V ′, and euv ∈ E. In essence,
$(V ′;G) is the collection of V ′ vertices and the edges from G connecting any pair of
those vertices.

1.4.6 Neighborhoods

To study local activity of a graph, we use neighborhoods to provide a notion of locality.
The kth-order neighborhood of v ∈ V is defined as Nk[v;G] = {u ∈ V (G) : l(v, u) ≤ k}.

2. GRAPH INVARIANTS

We examine the power of seven graph invariants, acting as test statistics, to detect ex-
cessive local activity. The statistics we examine are: size, maximum degree, maximum
average degree (both via a greedy approximation and via an eigenvalue approximation),
scan statistic, number of triangles, clustering coefficient, and average path length. In all
cases, a large value of the invariant is evidence in favor of HA.

2.1 DEFINITIONS

2.1.1 Size

The size of a graph is the number of edges in the graph, given by

size(G) = |E(G)|. (2.1)

This simplest graph invariant is a global measure of activity; as such, it would not be
expected to have good power characteristics against κ(n,p,m,q) for small values of m.

2.1.2 Maximum Degree

The maximum degree δ(G) is given by

δ(G) = max
v∈V

d(v) (2.2)

and is the simplest local graph invariant.

2.1.3 Maximum Average Degree

The maximum average degree over all subgraphs of G is denoted MAD(G). If d(v) is
the degree of vertex v, then the average degree of a graph G is given by

d̄(G) = 1
|V |

∑

v∈V

d(v) = 2 size(G)

order(G)
. (2.3)
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Thus the maximum average degree invariant is given by

MAD(G) = max
$⊂G

d̄($), (2.4)

where the maximum is over all induced subgraphs of G. (Notice that it suffices to consider
only induced subgraphs, since any subgraph with fewer edges than its related induced
subgraph will have a lower average degree.)

Since this invariant is difficult to compute exactly, we resort to consideration of two
approximations to the maximum average degree, MADg(G) and MADe(G), such that

MADg(G) ≤ MAD(G) ≤ MADe(G). (2.5)

Greedy MAD. We consider a primitive greedy algorithm MADg(G) to estimate the maxi-
mum average degree of a graph. The algorithm iteratively removes a vertex with the small-
est degree and calculates the average degree of the remaining induced subgraph. After
removing all vertices, the largest average degree encountered is returned. This provides an
approximation for the maximum average degree that is easy to implement (Ullman and
Scheinerman 1997) and is a lower bound for MAD(G).

Maximum Eigenvalue MAD. MAD(G) is bounded above by the largest eigenvalue of the
adjacency matrix, denoted MADe(G). As the Rayleigh–Ritz theorem (Horn and Johnson
1985) states, if A is Hermitian, λmax is the largest eigenvalue, and λmin is the smallest
eigenvalue, then

λminx
T x ≤ xT Ax ≤ λmaxx

T x for all x ∈ Rn, (2.6)

λmax = max
x "=0

xT Ax

xT x
, (2.7)

λmin = min
x "=0

xT Ax

xT x
. (2.8)

Now let A = [aij ] be the adjacency matrix for graph G, and consider x = [xi] to be any

nonzero binary vector. Then xT Ax
xT x

is the average degree of an induced subgraph, where the
ith vertex is present if the ith element of x is 1 (xi = 1). Note that MAD is also of this
form, implying

MAD(G) ≤ λmax, (2.9)

so MADe(G) ≡ λmax ≥ MAD(G).

MAD Comparison. When comparing the power of MADg and MADe using the inference
problem described in Section 3, the eigenvalue method appears to be strictly better at de-
tecting increased local activity than the greedy method, as evaluated by Monte Carlo exper-
iments. Henceforth, we shall consider only MADe and disregard MADg . Figure 2 shows
the superior performance on our inference problem of MADe for n = 1000, p = 0.1.
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Figure 2. Statistical power difference surface for MADe −MADg with n = 1000 and p = 0.1 over a range of
(m,q) ∈#A , via Monte Carlo. MADe dominates. (See Section 3 for details of the inference problem and Monte
Carlo experiment. This surface is based on Figure 10, (c) versus (d).)

2.1.4 Scan Statistic

Scan statistics (Priebe et al. 2005) are graph invariants based on local neighborhoods of
the graph. We will consider the scan statistic Sk(G) to be the maximum number of edges
over all kth-order neighborhoods. We will consider only k = 1, so S1(G) is given by

S1(G) = max
v∈V

size
(
$(N1[v;G])

)
. (2.10)

Notice that S1(G) considers only a subset of cardinality n of all induced neighborhoods.
The locality statistic size($(N1[v;G])) is an extension of degree d(v) which also counts
cross-talk among a vertex’s neighbors, which suggests the scan statistic S1 as more appro-
priate than maximum degree δ for our local chatter alternative; see the work of Rukhin and
Priebe (2009a) for an analytic investigation of this claim via asymptotics. For k > 1, Sk(G)

is conjectured to be valuable against more elaborate alternatives than the HA considered
herein, but will not be considered further in this article.

2.1.5 Number of Triangles

We consider the total number of triangles in G. If A is the adjacency matrix for graph
G, then the number of triangles is given by

τ(G) = trace(A3)

6
. (2.11)

(The vth diagonal element of A3 counts the number of paths of length 3 from v back to
itself. This counts triangles—in fact, it over-counts by a factor of six, since each triangle
has three vertices and each vertex can traverse the triangle-path two different ways.)
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2.1.6 Clustering Coefficient

We consider the global clustering coefficient in G. Consider all induced subgraphs H of
G with order(H) = 3 and size(H) ≥ 2; each such subgraph is either a triangle or an angle.
Let angles(G) be the total number of (non-triangle) angle induced subgraphs in G. Then
the global clustering coefficient is given by

CC = τ(G)

τ(G) + angles(G)
. (2.12)

2.1.7 Average Path Length

We consider the average path length in G. We define

APL = −
∑

u,v l(u, v)

n(n − 1)
. (2.13)

The negative sign in this definition allows large values of the invariant to provide evidence
in favor of HA, for compatibility with all the other invariants under consideration. If no
path exists between u and v, we use l(u, v) = 2 max l(u′, v′), where the maximum is taken
over all pairs of vertices that have an existing path between them. (Generally, the distance
between two nodes for which no path exists is defined as ∞; this modification is neces-
sary to make the average path length a meaningful test statistic in (possibly) disconnected
graphs.)

2.2 DISTRIBUTIONS

2.2.1 Size

Under ER(n,p), size(G) ∼ Binomial((n
2 ),p) so

P [size(G) = x] =
(

( n
2 )

x

)
px(1 − p)(

n
2)−x (2.14)

for x = 0,1, . . . , ( n
2 ).

Our modified κ(n,p,m,q) also has a probability mass function that is readily avail-
able: size(κ) is the sum of independent binomials, Binomial((m

2 ), q) for the egg and
Binomial((n

2 ) − (m
2 ),p) for the rest of the graph. Thus

P [size(κ) = x]

=
x∑

i=0

((
(m

2 )

x − i

)
qx−i (1 − q)(

m
2 )−x+i

(
( n

2 ) − (m
2 )

i

)
pi(1 − p)(

n
2 )−( m

2 )−i

)
(2.15)

for x = 0,1, . . . , ( n
2 ).

Limiting distributions based on normal approximation are also readily available.
Figure 3 presents Monte Carlo simulation results for size(G) for H0 : ER(n = 1000,p =

0.1) versus HA :κ(n = 1000,p = 0.1,m = 50, q = 0.5).



402 H. PAO, G. A. COPPERSMITH, AND C. E. PRIEBE

Figure 3. Monte Carlo simulation (R = 1000 replicates) for size(G) for Erdős–Rényi(n = 1000, p = 0.1) in
blue and κ(n = 1000, p = 0.1, m = 50, q = 0.5) in purple, with their theoretical probability mass functions
overlayed. The critical value is denoted by the vertical dotted line (α = 0.05). The Monte Carlo power estimate
is β̂ = 0.775. Exact calculation shows that the true power for this case is β = 0.780.

2.2.2 Maximum Degree

The exact probability mass function of the maximum degree δ(G) of an Erdős–Rényi
random graph G is not available. However, there is a limit result with n → ∞. The limiting
distribution is Gumbel (Bollobás 2001):

a = pn +
√

2p(1 − p)n logn

(
1 − log logn

4 logn
− log(2

√
π)

2 logn

)
, (2.16)

b =
√

2p(1 − p)n logn

2 logn
, (2.17)

fδ(G)(d) → 1
b

exp
[
d − a

b
− exp

(
d − a

b

)]
. (2.18)

A Gumbel approximation is also available under HA (Rukhin 2008).
Figure 4 presents Monte Carlo simulation results for δ(G) for H0 : ER(n = 1000,p =

0.1) versus HA :κ(n = 1000,p = 0.1,m = 50, q = 0.5).

2.2.3 Maximum Average Degree

No approximations are currently available for MADe(G) under either H0 or HA.
Figure 5 presents Monte Carlo simulation results for MADe(G) for H0 : ER(n =

1000,p = 0.1) versus HA :κ(n = 1000,p = 0.1,m = 50, q = 0.5).
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Figure 4. Monte Carlo simulation (R = 1000 replicates) for maximum degree δ(G) for Erdős–Rényi(n = 1000,
p = 0.1) in blue, and κ(n = 1000,p = 0.1,m = 50, q = 0.5) random graphs in purple, with the theoretical
null Gumbel probability density function overlayed. The critical value is denoted by the vertical dotted line
(α = 0.05). The Monte Carlo power estimate is β̂ = 0.793. Exact calculations show that the true power for this
case is β = 0.715.

2.2.4 Scan Statistic

As with maximum degree, there is a limiting Gumbel approximation for our scan sta-
tistic for H0 : ER(n,p) (Rukhin 2008):

a = 1
2
p3n2 + p2

√
p(1 − p)n3

√
2 logn

(
1 − log logn − log(4π2)

4 logn

)
, (2.19)

b = p2
√

p(1 − p)n3
√

2 log(n)
, (2.20)

fS(s) → 1
b

exp
[
s − a

b
− exp

(
s − a

b

)]
. (2.21)

A Gumbel approximation is also available under HA (Rukhin 2008).
Figure 6 presents Monte Carlo simulation results for S1(G) for H0 : ER(n = 1000,p =

0.1) versus HA :κ(n = 1000,p = 0.1,m = 50, q = 0.5).

2.2.5 Number of Triangles

Under both H0 (Nowicki and Wierman 1988) and HA (Rukhin 2008) a U-statistic ap-
proach demonstrates that τ(G) (properly normalized) is asymptotically normal.

Figure 7 presents Monte Carlo simulation results for τ(G) for H0 : ER(n = 1000,p =
0.1) versus HA :κ(n = 1000,p = 0.1,m = 50, q = 0.5).
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Figure 5. Monte Carlo simulation (R = 1000 replicates) for maximum average degree MADe(G) for
Erdős–Rényi(n = 1000, p = 0.1) in blue, and κ(n = 1000,p = 0.1,m = 50, q = 0.5) random graphs in purple.
The critical value is denoted by the vertical dotted line (α = 0.05). The Monte Carlo power estimate is β̂ = 0.909.

Figure 6. Monte Carlo simulation (R = 1000 replicates) for scan statistic S1(G) for Erdős–Rényi(n = 1000,
p = 0.1) in blue and κ(n = 1000,p = 0.1,m = 50, q = 0.5) random graphs in purple, with the theoretical null
Gumbel probability density function overlayed. The critical value is denoted by the vertical dotted line (α = 0.05).
The Monte Carlo power estimate is β̂ = 0.999. Exact calculations show that the true power for this case is β = 1.0.
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Figure 7. Monte Carlo simulation (R = 1000 replicates) for number of triangles τ(G) for Erdős–
Rényi(n = 1000, p = 0.1) in blue and κ(n = 1000,p = 0.1,m = 50, q = 0.5) random graphs in purple with
theoretical null and alternate normal probability density functions overlayed. The critical value is denoted by the
vertical dotted line (α = 0.05). The Monte Carlo power estimate is β̂ = 0.962. Exact calculations show that the
true power for this case is β = 0.958.

2.2.6 Clustering Coefficient

For the clustering coefficient, E[CC(G)] = p under H0 : ER(n,p), since edges
are independent; P [size(H) = 3| size(H) ≥ 2,order(H) = 3] = p. Indeed, the ratio
τ(G)/(τ(G) + angles(G)) is asymptotically normal under H0. Under HA, one obtains
a convolution of normals by considering induced subgraphs H of G with order(H) = 3
and size(H) ≥ 2 conditionally, based on zero, one, two, or three of the vertices being
among the m anomalous vertices VA.

Figure 8 presents Monte Carlo simulation results for CC(G) for H0 : ER(n = 1000,p =
0.1) versus HA :κ(n = 1000,p = 0.1,m = 50, q = 0.5).

2.2.7 Average Path Length

As n → ∞, the probability that an ER(n,p) graph is connected goes to unity and as-
ymptotic distributions for APL are available via consideration of sums of dependent ran-
dom variables. However, for n = 1000, for example, the nontrivial probability that the
graph is not connected implies that the altered definition for distance l(u, v) when no path
exists comes into play, complicating matters. We make the conjecture that APL, properly
normalized, is approximately normal even for moderate n.

Figure 9 presents Monte Carlo simulation results for APL(G) for H0 : ER(n =
1000,p = 0.1) versus HA :κ(n = 1000,p = 0.1,m = 50, q = 0.5).
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Figure 8. Monte Carlo simulation (R = 1000 replicates) for clustering coefficient CC(G) for Erdős–
Rényi(n = 1000, p = 0.1) in blue and κ(n = 1000,p = 0.1,m = 50, q = 0.5) random graphs in purple. The
critical value is denoted by the vertical dotted line (α = 0.05). The Monte Carlo power estimate is β̂ = 0.986.

Figure 9. Monte Carlo simulation (R = 1000 replicates) for average path length APL(G) for Erdős–
Rényi(n = 1000, p = 0.1) in blue and κ(n = 1000,p = 0.1,m = 50, q = 0.5) random graphs in purple. The
critical value is denoted by the vertical dotted line (α = 0.05). The Monte Carlo power estimate is β̂ = 0.770.
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3. EXPERIMENTAL DESIGN

Figures 3–9 present Monte Carlo power results for our seven invariants for H0 : ER(n =
1000,p = 0.1) versus HA :κ(n = 1000,p = 0.1,m = 50, q = 0.5). We proceed now to de-
sign and execute a Monte Carlo experiment to generate comparative power results over#A.

3.1 WHY MONTE CARLO?

Distributions for random graph invariants are notoriously difficult to obtain—even for
the (conceptually) simple invariants considered herein. Exact finite-sample distributions
are unavailable for most invariants under HA (and even under H0) for all but extremely
small n = order(G). (And this is just for the simple, mutually independent edge case we
consider herein; these difficulties are compounded for generalizations to more elaborate
random graph models.) In addition, it has been demonstrated (Rukhin and Priebe 2009b)
that power comparisons based on limiting distributions can be misleading. For these rea-
sons, Monte Carlo is one of the few tools available for comparative power analysis. While
it is true that our Monte Carlo investigations provide only snapshots into test behavior,
these snapshots provide new and valuable understanding for statistical inference on ran-
dom graphs.

3.2 MONTE CARLO DESIGN

Our Monte Carlo experiment is performed with 1000 vertices (|V | = n = 1000), and the
null probability of an edge between any pair of vertices is p ∈ [0,1]. We fix p = 0.1 for
the experiments presented here; that is, H0 : ER(1000,0.1). A representative collection of
(m,q) ∈ #A is considered: m ∈ {5,10,15, . . . ,100} and q ∈ {0.10,0.15,0.20, . . . ,0.90}.
(For q = p = 0.1, H0 holds.) For each specified (m,q) we generate R = 1000 Monte Carlo
replicates, yielding statistical power estimates for each invariant. The result is comparative
power function estimates across #A, as shown in Figures 10 and 13 in Section 4.

3.2.1 Type I Error

To gauge the utility of the various graph invariants under consideration, we estimate
the statistical power β—the probability of detecting an increase in local activity at a given
test size α—for each invariant. The power of a test is the probability of rejecting the null
hypothesis when it is false, which is easy to estimate using Monte Carlo methods. If T (G)

is the graph invariant of interest calculated from observed graph G, we first generate R

independent, identically distributed (iid) graphs G1,G2, . . . ,GR under H0. We calculate
Tr = T (Gr), r = 1, . . . ,R, and consider the order statistics T(1) ≤ · · · ≤ T(R). H0 is re-
jected when T (G) > T(R(1−α)), yielding a test that is approximately size α for R large
(Bickel and Doksum 2001).
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3.2.2 Power

If T (κr) are the statistics generated based on graphs generated under the alternative
hypothesis, r = 1, . . . ,R, then the estimated power β̂ is given by

β̂ = 1
R

R∑

r=1

I
{
T (κr) > T(R(1−α))

}
. (3.1)

We use test size α = 0.05 for all experiments. When q = p = 0.1, G is homogeneous,
as under H0, and the power is β = α for all invariants.

3.2.3 Randomization

Since our statistics (graph invariants) are discrete random variables, we compensate for
ties in the Monte Carlo tests via randomization (Bickel and Doksum 2001). To account for
the case T (κr) = T(R(1−α)), a percentage of these are rejected in calculating β̂ .

Specifically, the null hypothesis is rejected not only when T (κr) > T(R(1−α)) but also,
probabilistically, when T (κr) = T(R(1−α)). The quantity

α − α̂d

1
R

∑
r I {T (Gr) = T(R(1−α))}

(3.2)

is the randomization probability. The nominal size without randomization is denoted here
by

α̂d = 1
R

∑

r

I
{
T (Gr) > T(R(1−α))

}
.

4. EXPERIMENTAL RESULTS

Notice that Figures 3–9 together demonstrate that for H0 : ER(n = 1000,p = 0.1)

versus HA :κ(n = 1000,p = 0.1,m = 50, q = 0.5) the invariant S1(G) is the most
powerful statistic among those under consideration: Monte Carlo power estimates
yield β̂S1(G) = 0.999 > max{β̂size(G) = 0.775, β̂δ(G) = 0.793, β̂MADe(G) = 0.909, β̂τ(G) =
0.962, β̂CC(G) = 0.986, β̂APL(G) = 0.770}. (The scan statistic’s superiority is statistically
significant, with R = 1000; paired analysis provides much stronger significance.) In this
section we generalize this point investigation to a comparative power analysis over #A.

4.1 POWER SURFACE PLOTS

In order to determine the values of (m,q) ∈ #A for which the invariants are effective
for detecting increased local activity, we test over the previously specified range of values
for m and q (m ∈ {5,10,15, . . . ,100}, q ∈ {0.10,0.15,0.20, . . . ,0.90}) with α = 0.05,
using R = 1000 Monte Carlo replicates each. The collection of Monte Carlo experiments
provide the data used to generate the statistical power surface plots shown in Figure 10.
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Figure 10. Power surface plots for the various graph invariants, as obtained from the Monte Carlo simula-
tions for n = 1000, p = 0.1, m ∈ {5,10,15, . . . ,100}, q ∈ {0.10,0.15,0.20, . . . ,0.90}, α = 0.05, and R = 1000.
(a) Number of edges, size(G). (b) Maximum degree, δ(G). (c) Greedy maximum average degree approxima-
tion, MADg(G). (d) Eigenvalue maximum average degree approximation, MADe(G). (e) Scan statistic, S1(G).
(f) Number of triangles, τ(G). (g) Global clustering coefficient, CC(G). (h) Average path length, APL(G). Pow-
ers range from approximately α for small m or q to approximately 1 for large m and q for all invariants. Substan-
tial differences exist, but may not be apparent, between the various invariants for moderate m,q; these differences
are readily apparent in the pairwise comparisons (Figure 13).

The power surface plots for the invariants are superficially similar to one another, which
makes determining the relative effectiveness of each invariant difficult. Powers for all in-
variants range from β ≈ α for small m or q to β ≈ 1 for large m and q . Substantial differ-
ences exist, but may not be apparent, between the various invariants for moderate m,q .

4.2 POWER DIFFERENCE PLOTS

In order to better analyze the comparative statistical power of our invariants, we examine
the difference between pairs of statistical power surfaces. These plots allow comparative
power analyses across #A.

For many pairs of invariants, there exists a range of m and q for which each of the
two invariants has a higher power; neither invariant has greater power over all of #A.
However, Figure 11 demonstrates that S1(G) dominates δ(G), rendering the latter “inad-
missible.” (This inadmissibility claim is supported by the Monte Carlo results of Figure 11
for H0 : ER(n = 1000,p = 0.1) versus HA :κ(n = 1000,p = 0.1,m,q) only. However, the
scan statistic is specifically designed to improve upon maximum degree for “chatter” alter-
natives of the type represented by our κ random graph model, and we conjecture that this
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Figure 11. Comparative power surface for β̂δ(G) − β̂S1(G) for H0 : ER(n = 1000,p = 0.1) versus
HA :κ(n = 1000,p = 0.1,m,q) for the range of m,q investigated. S1(G) has equal or superior power to δ(G)

for all of #A .

domination holds more generally. An asymptotic version of this result is available (Rukhin
and Priebe 2009a).) Figure 12 demonstrates, again for H0 : ER(n = 1000,p = 0.1) ver-
sus HA :κ(n = 1000,p = 0.1,m,q), that size(G) and APL(G) are indistinguishable in
terms of power over all of #A.

The comparative power surface plots shown in Figure 13 provide pairwise comparison
of the remaining four invariants, excluding the inadmissible δ(G) and including size(G)

but not the then-superfluous APL(G). Since powers are approximately α for small m or q

and approximately 1 for large m and q for all invariants, power differences are approxi-

Figure 12. Comparative power surface for β̂size(G) − β̂APL(G) for H0 : ER(n = 1000,p = 0.1) versus
HA :κ(n = 1000,p = 0.1,m,q) for the range of m,q investigated. The statistics size(G) and APL(G) have
nearly identical power for all of #A .
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mately 0 for these extremes. Substantial differences are readily apparent between the var-
ious invariants for moderate m and q in these comparative power surfaces. No invariant
dominates any other over all of #A. Figure 14 presents in more detail the interesting case
of S1(G) versus τ(G). When m is large and q is small β̂τ (G) > β̂S1(G), while when m

is small and q is large β̂S1(G) > β̂τ(G), and the power differences are large in both cases.
Neither invariant dominates the other throughout #A.

4.3 MOST POWERFUL STATISTIC

When the powers of all the invariants are examined together, the range of values for m

and q for which each has the greatest power is shown in Figure 15(a). Only S1(G), CC(G),
and τ(G) show best power at least somewhere in #A. The scan statistic S1(G) is best for
moderate m,q; CC(G) dominates when m is small and q is large; and τ(G) dominates for
large m and small q .

We have presented detailed results for (m,q) ∈ #A, but for just one choice of n,p –
n = 1000, p = 0.1. Figure 15, (b) and (c), presents “most powerful statistic over #A,”
analogous to Figure 15(a), for other choices of n,p. In the case n = 100,p = 0.1 we see
S1(G) as dominate for the large q small m region and MADe(G) as dominate for the
small q large m region. (Notice that we consider m much larger as a percentage of n in
Figure 15, (b) and (c).) For the case n = 100,p = 0.4 the clustering coefficient CC(G)

dominates. Some of the smattering effects in these figures is due to artifacts of the Monte
Carlo; the basic structure of the plots is real. The fundamental result is that there does not
necessarily exist a single uniformly most powerful statistic, across all of #A.

We have performed extensive Monte Carlo analysis generalizing Figure 15 for numer-
ous n,p cases. The suggestive results seen in Figure 15 seem to hold generally: the scan
statistic and the clustering coefficient are often most powerful, and τ(G) and MADe(G)

occasionally come into play; rarely if ever are the other invariants recommended.

5. CONCLUSIONS

Analytics are preferable to Monte Carlo. However, finite-sample comparative power
analytics for random graphs are challenging even in this relatively simple setting, and as-
ymptotic analytics can be at odds with finite-sample truths even for extraordinarily large n

(Rukhin and Priebe 2009b). The snapshots into comparative test behavior available via
Monte Carlo analysis provide new and valuable understanding for statistical inference on
random graphs, and will form the foundation for comparative power investigations for
larger graphs and more complex models.

From the statistical power surface plots, we observe that all the graph invariants we ex-
amined have power β ≈ 1 for large m and q and power β ≈ α for small m or q , as expected.
For moderate m and q , the comparative behavior of the various invariants is quite compli-
cated; different invariants dominate in different regions. In particular, there is in general a
ridge/trough phenomenon running (nonlinearly) from large q small m to small q large m

which seems to differentiate invariants—some invariants are recommended in the small q

large m region and others are recommended in the large q small m region. There does not
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Figure 14. Comparative power surface β̂S1(G) − β̂τ (G) for H0 : ER(1000,0.1) versus HA :κ(1000,0.1,m,q)

with α = 0.05 and R = 1000, from Figure 13. Since powers are approximately α for small m or q and approxi-
mately 1 for large m and q for both invariants, power differences are approximately 0 in these regions. Substantial
differences are readily apparent for moderate m,q: when m is large and q is small β̂τ (G) > β̂S1(G); when m is
small and q is large β̂S1(G) > β̂τ(G) . Neither invariant dominates the other throughout #A .

exist a uniformly most powerful statistic across all of #A. That is, the specific alternative—
how many anomalous vertices (m) and by how much are they anomalous (q)—determines
the most powerful statistic. If a recommendation is required, without knowledge of the spe-
cific alternative m,q , we suggest (based on Figure 13 and related results) using scan statis-
tic and clustering coefficient together, since the best of those two is rarely out-performed
by much but there exist regions of #A where each out-performs the other substantially.
This requires two tests, and multiple-testing correction, but if no information is available
regarding m and q , then this seems a good course of action.

The “statistical inference on random graphs” considered herein is hypothesis testing. Of
course, once one rejects in favor of κ(n,p,m,q), the question of estimating m and q , as
well as identifying the anomalous vertex set VA, naturally arises. The more general infer-
ential tasks are of substantial interest, but involve complicating issues best addressed after
gaining solid understanding from our simpler comparative power analysis. For instance:
we have treated p as known throughout this manuscript. Treating p as unknown both is
more realistic and presents a confounding issue. Consideration of estimating p under HA

begins with assuming the anomalous m vertices are known—that is, we know the set VA.

Figure 13. Comparative power surfaces for the various graph invariants, as obtained from Monte Carlo simula-
tions for n = 1000, p = 0.1, m ∈ {5,10,15, . . . ,100}, q ∈ {0.10,0.15,0.20, . . . ,0.90}, α = 0.05, and R = 1000.
Each surface plot is representative of the power of the row invariant minus the power of the column invariant
(e.g., the upper left corner depicts β̂size(G) − β̂MADe(G)) from Figure 10. Since powers are approximately α for
small m or q and approximately 1 for large m and q for all invariants, power differences are approximately 0
in these regions. Substantial differences are readily apparent between the various invariants for moderate m,q in
these comparative power surfaces. This phenomenon can be seen in more detail in Figure 14.
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Figure 15. Most powerful statistic over #A for selected n and p for H0 : ER(n,p) versus HA :κ(n,p,m,q)

with α = 0.05 and R = 1000. The dark blue region is where no test is statistically significantly superior. For
large m and q (relative to n and p), this is because all tests have β̂ ≈ 1; for small m or small q , this is because
all tests have β̂ ≈ α. (a) n = 1000, p = 0.1, m ∈ {5,10,15, . . . ,100}, q ∈ {0.10,0.15,0.20, . . . ,1.0} as in Fig-
ures 10 and 13. (b) n = 100, p = 0.1, m ∈ {2,4,6, . . . ,40}, q ∈ {0.10,0.15,0.20, . . . ,1.0}. (c) n = 100, p = 0.4,
m ∈ {2,4,6, . . . ,40}, q ∈ {0.40,0.45,0.50, . . . ,1.0}.
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Then

p̂ = size($(V \ VA))
/(

n − m

2

)
.

Thus the problem is to find VA. One approach is to let V̂A = N1[v∗]—that is, the ver-
tex of maximum degree or maximum locality statistic size($(N1[v])) together with
all its neighbors. This yields a reasonable first estimator for p (and |N1[v∗]| and
size($(N1[v∗]))/( |N1[v∗]|

2 ) provide reasonable estimators for m and q). There are, how-
ever, many potential improvements available regarding the estimation of p, involving re-
sampling or iteration or bias correction based on asymptotic alternative distribution mo-
ments. In any event, we see that estimating p requires identifying V̂A, which is clearly
harder than the testing problem considered herein. Thus, while it is true that power analy-
ses are affected by unknown p, we feel that full-scale consideration of this issue at this
time would obscure the simpler, basic comparative power issues which can be elucidated
by considering known p.

In summation, no one invariant is uniformly most powerful at detecting increases in
local “chatter”; even in this relatively simple setting, our investigation suggests that finite-
sample statistical inference on random graphs poses significant complexities. Our Monte
Carlo investigation provides useful insight into the comparative behavior of various invari-
ants.

SUPPLEMENTARY MATERIALS

Readme: system software requirements and usage instructions. (README.txt)
Code for graphs: the source code for simulating Erdös–Rényi random graphs, calculating

graph invariants, and calculating power. (UtilHLTCOE.py)
Code for Monte Carlo simulations: the source code for producing the Monte Carlo sim-

ulations and measuring the resulting power for the invariants. (ER_KE_Theoretic_
Simulations.py)
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