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Abstract

Sensitivity analysis is an indispensable tool for studying the robustness and fragility

properties of biochemical reaction systems. In this thesis, we develop a probabilistic

approach to sensitivity analysis, by combining a thermodynamically consistent prob-

abilistic model of parameter fluctuations with an attractive decomposition scheme for

the response variance. This approach addresses many problems associated with ex-

tensively used derivative-based sensitivity analysis techniques. Most importantly, it

produces thermodynamically consistent sensitivity analysis results, allows different in-

put factors to simultaneously fluctuate within a wide range of the parameter space, and

can be effectively used to globally identify biochemical factors that influence selected

system responses.

Variance-based sensitivity analysis requires evaluation of indices that cannot be

done analytically. These are usually estimated by Monte-Carlo simulation, which is

computationally demanding. Motivated by this problem, we study four approximation

techniques that can be used to approximate the variance-based sensitivity indices. We

highlight important theoretical, numerical, and computational aspects of each method,

in an attempt to provide a comprehensive understanding of the advantages and disad-

vantages of each technique. It turns out that the computational cost of these techniques

are orders of magnitude smaller than that of Monte Carlo estimation.
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Experimental uncertainty about the true values of the kinetic parameters can

greatly affect the accuracy of sensitivity analysis results. It is therefore important

to develop a technique that minimizes the effects of this uncertainty. In this thesis,

we extend our previous probabilistic model for the kinetic parameters to account for

both biological and experimental variability and propose a new set of noise-reduced

variance-based sensitivity indices. These indices are most suitable for sensitivity analy-

sis of biochemical systems with poorly determined kinetic parameter values. We study

three numerical techniques that can be used to evaluate the new sensitivity indices

with appreciable computational savings.

By employing a computational model of mitogen-activated protein kinase signal-

ing cascade, we demonstrate that our approach is well-suited for sensitivity analysis

of biochemical reaction systems and can produce a wealth of information about the

sensitivity properties of such systems.

Advisor: Dr. John I. Goutsias

Second Reader: Dr. Pablo A. Iglesias
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Chapter 1

Introduction

Biological systems are more than simply a collection of molecules, cells, or organs. To

precisely describe, model, and simulate biological systems, we need to understand how

their individual components dynamically interact with each other to initiate, maintain,

or modify biological activities responsible for cellular function and fate. This area of

research is known as systems biology and requires effective integration of experimental

and computational tools [1, 2].

A fundamental problem in computational systems biology is the construction of

biochemical reaction system models that can effectively predict cellular behavior [1,

2]. Subsequent analysis of such models may reveal a wealth of biologically relevant

information, including a list of biochemical factors (e.g., biochemical reactions and

molecular species) that are most influential in shaping cellular responses. Determining

the most influential factors in a biochemical reaction system is an important problem

with many applications. For example, identifying influential biochemical factors and

targeting these factors with high specificity is a promising pharmacological intervention
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approach for treating human diseases [3].

A powerful tool for studying the properties of a biochemical reaction system is

sensitivity analysis [4, 5]. The objective of sensitivity analysis is to determine the bio-

chemical factors that produce no noticeable variations in system response and identify

those factors that are most influential in shaping that response. Sensitivity analysis

has been applied in many diverse fields of science and engineering, including mechani-

cal engineering [6, 7], environmental engineering [8, 9], pharmacology [3, 10], biochem-

istry [5,11,12], and finance [13–15]. In systems biology, sensitivity analysis has allowed

researchers to identify factors controlling biological behavior in cells [16–19], simplify

procedures for designing and optimizing genetic circuits [20], obtain insights into the

robustness and fragility tradeoff in cell regulation [21], and determine appropriate tar-

gets for pharmacological intervention [10,22].

The sensitivity analysis approaches available in the literature can be generally clas-

sified into two groups. The first group deals primarily with deterministic techniques

for sensitivity analysis, primarily based on derivatives of a response function of in-

terest with respect to system parameters. The second group deals with probabilistic

techniques, which quantify statistical variations in system response due to random

perturbations in factors of interest.

Derivative-based sensitivity analysis techniques are subject to several drawbacks,

which must be carefully considered before applying these techniques to problems in

systems biology. First of all, derivative-based sensitivity analysis is limited to evalu-

ating the effects of infinitesimal changes in parameter values on the system response.

It will most certainly fail to reveal important sensitivity properties due to appreciable
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parameter variations. In certain cases, we may be able to address this problem by

averaging derivative values calculated at appropriately selected points in the parame-

ter space [11]. It is expected however that, for appreciable parameter variations, such

averaging will not provide an accurate description of the sensitivity properties of a

biochemical reaction system. As a matter of fact, it has been pointed out by Saltelli

et al. [23] that, although derivative averaging leads to a useful method for sensitivity

analysis (known as elementary effect test), it should only be used to derive approximate

sensitivity information, since it may introduce appreciable errors in the analysis.

In addition to the above, the task of accurately calculating response derivatives is

not straightforward. One may easily express the response derivatives in terms of con-

centration sensitivities and analytically derive a system of differential equations that

govern the dynamic evolution of these sensitivities. Then, evaluation of response deriva-

tives will require simultaneous integration of the sensitivity equations together with the

differential equations governing the dynamic evolution of the underlying molecular con-

centrations. Most often, this step cannot be implemented in a reasonable time, due

to stiffness of the underlying differential equations [4]. As a consequence, most users

of derivative-based sensitivity analysis techniques resort to approximating derivatives

by finite-differences. However, the resulting approximations must be carefully used

in applications, since it is difficult to theoretically predict, control, and numerically

evaluate their accuracy [4, 11].

Finally, most derivative-based sensitivity analysis techniques in the literature use

first-order derivatives to quantify the influence of a single parameter on the system

response, while fixing the remaining parameters to their reference values. This is not
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an appropriate strategy in most problems of systems biology, since control of biological

behavior is usually exerted by the orchestrated influence of many biochemical factors.

In our opinion, sensitivity analysis of a biochemical reaction system should consider the

simultaneous influence of various biochemical factors on the system response. This is

of particular interest in pharmacological applications, since system-based drug design

techniques often consider the biological effects of targeting several biochemical factors

simultaneously [24]. Although sensitivities with respect to two or more factors can be

well-defined by means of second- and higher-order derivatives, accurate evaluation of

such derivatives is a much more difficult problem than calculating first-order deriva-

tives. Most importantly, due to their local nature, these derivatives cannot capture real

joint sensitivity effects, which often occur at appreciable levels of parameter variations.

Due to the above drawbacks, we believe that the general use of derivative-based sen-

sitivity analysis techniques in systems biology should be limited, despite their extensive

use in the literature. In this dissertation we demonstrate that probabilistic sensitivity

analysis, and more precisely the variance-based sensitivity analysis approach developed

by Sobol’, Saltelli, and their collaborators [23, 25–27], is better suited for biochemical

reaction system analysis. Variance-based sensitivity analysis can effectively address

the previous drawbacks associated with derivative-based techniques. It can easily ac-

commodate appreciable parameter variations, and allows for a systematic investigation

of interactions among different system components. Besides, variance-based sensitivity

analysis is independent from the additivity or linearity of the system model, and is

able to treat grouped factors as if they were single ones. The price to be paid how-

ever is a substantial increase in computational complexity, due to the high dimensional
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integrations required for the evaluation of variance-based sensitivity indices. This prob-

lem must be addressed by devising sufficiently accurate approximation techniques to

estimate the sensitivity indices efficiently.

Other probabilistic sensitivity analysis approaches have been introduced in the lit-

erature, such as a technique based on entropy and mutual information [7, 28]. Unfor-

tunately, entropy-based sensitivity analysis requires using histograms to approximate

continuous probability density functions, which is biased and prone to discretization

errors, thus making estimation of factor interactions very difficult. Although correc-

tions can be made to the biased entropy estimators, these corrections may not always

be satisfactory [29]. Besides, due to the increased computational complexity associ-

ated with this approach, it is very hard to devise accurate approximation techniques to

estimate entropy-based sensitivity indices efficiently. As a consequence, this approach

is impractical for large biochemical reaction systems.

A special requirement in sensitivity analysis of biochemical reaction systems is to

satisfy a number of necessary thermodynamic constraints, which may strongly limit the

space of valid kinetic parameter values. Unfortunately, traditional sensitivity analysis

approaches for biochemical reaction systems often ignore these important constraints,

and may generate misleading results since physically impossible parameter values are

also considered in the formulation [30]. Motivated by this issue, we propose in this

dissertation a biophysically derived probabilistic model for reaction rate constants, so

that randomly perturbed input factors can automatically satisfy the required thermo-

dynamic constraints.
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Variance-based sensitivity indices are usually estimated by Monte Carlo simula-

tion [23, 27, 31, 32], which requires evaluation of the system response at each sampled

parameter set. A major drawback of this approach is its slow rate of convergence. As

a matter of fact, the error produced by a naive Monte Carlo estimation approach de-

creases with an error rate of O(1/
√
L), where L is the number of Monte Carlo samples

used [33]. Hence, accurate estimation of the sensitivity indices requires a large number

of Monte Carlo samples and, therefore, a large number of system response evaluations.

This makes Monte Carlo estimation of variance-based sensitivity indices computation-

ally very expensive, especially in the case of biochemical reaction systems comprised

of many reactions and molecular species.

To reduce the computational burden of Monte Carlo simulations, it is imperative

that we develop techniques which can result in sufficiently accurate and efficiently im-

plementable estimators of sensitivity indices. In this dissertation, we present four such

techniques, derivative approximation (DA), polynomial approximation (PA), Gauss-

Hermite integration (GHI), and orthonormal Hermite approximation (OHA), and ap-

ply them to a well-known biochemical reaction model of the mitogen-activated protein

kinase (MAPK) signaling cascade. We use this model in this dissertation to compare

and assess the discussed sensitivity analysis techniques. DA is based on a second-

order Taylor series expansion of the response function and is an extension of the

first-order derivative-based approach for variance-based sensitivity analysis discussed

in [5, 23, 27, 34] by including second-order derivative terms. The other three approx-

imation techniques are based on the high-dimensional model representation (HDMR)

schemes developed by H. Rabitz and his coworkers [35–37]. We derive analytical for-
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mulas for the sensitivity indices generated by these four techniques, which allows to

estimate their values more accurately and efficiently.

As it is the case for derivative-based sensitivity analysis techniques, the application

of variance-based sensitivity analysis approaches requires specifying the nominal values

of kinetic parameters. Moreover, the sensitivity results may strongly depend on the

particular choice for these values. For the sensitivity results to be biologically relevant,

the nominal values must be the true values. However, the true parameter values of a

real biochemical reaction system are rarely known. Instead, they are substituted by

estimated values, whose accuracy is often affected by unpredictable experimental vari-

ability. The issue here is that different nominal parameter values may produce different

sensitivity analysis results. In many systems-biology applications, such as system-based

drug target selection [16–18, 22], the main objective of sensitivity analysis is to assess

how biological variability influences cellular behavior, in which case a great level of

experimental uncertainty in the nominal values of kinetic parameters can significantly

affect the variance-based sensitivity analysis results. Motivated by this problem, we

propose in this dissertation a set of noise-reduced variance-based sensitivity indices,

which can be used to exploit the effects of biological variability by appropriately aver-

aging experimental variability out of the problem. We derive the proposed indices by

extending the definitions of traditional variance-based sensitivity indices. It turns out

that the new indices are more robust to the choice of nominal kinetic parameter values,

can accommodate different levels of experimental uncertainty associated with different

tools used to generate systems-level data [38–42], and lead to a powerful sensitivity

analysis approach under experimental uncertainty.
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This dissertation is structured as follows.

In Chapter 2, we provide a mathematical description for biochemical reaction sys-

tems, modeled by classical chemical kinetics. Moreover, we identify appropriate system

response functions for sensitivity analysis based on a previously suggested model of the

MAPK signaling cascade model. By using basic thermodynamic principles, we develop

a probabilistic model for the rate constants of a biochemical reaction system. We em-

ploy this model to identify appropriate biochemical factors of interest to sensitivity

analysis and mathematically characterize their fluctuations.

In Chapter 3, we present a variance-based sensitivity analysis technique and dis-

cuss its applicability to biochemical reaction systems. By limiting our interest to first-

and second-order effects, we present a systematic methodology for classifying biochem-

ical factors (reactions and molecular species) based on how these factors influence the

system response. Then, we develop a set of Monte Carlo estimators for the quantities

required by the proposed variance-based sensitivity analysis approach. By using the re-

sults obtained by applying our probabilistic sensitivity analysis approach on the MAPK

signaling cascade, we identify the reactions and molecular species that are most impor-

tant for controlling appropriately chosen response characteristics of this cascade. Our

analysis agrees well with published experimental results and clearly demonstrates the

potential of variance-based techniques for sensitivity analysis of biochemical reaction

systems.

In Chapter 4, we develop four efficient methods that one can use to analytically

approximate the variance-based sensitivity indices. We highlight important theoretical,

numerical, and computational aspects of each method, in an attempt to provide a
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comprehensive understanding of their advantages and disadvantages. In order to clarify

the relative merits of each approximation technique and produce useful insights on when

these techniques can be used for sensitivity analysis, we compare the results obtained

by these methods with the results obtained by Monte Carlo estimation,

In Chapter 5, we extend the thermodynamically consistent probabilistic model for

the reaction rate constants in order to account for uncertainty in their nominal values.

This allows us to mathematically characterize fluctuations in biochemical factor values

under both biological and experimental variability. We propose a set of noise-reduced

variance-based sensitivity indices, which are designed to quantify the average relative

importance of each biochemical factor under random perturbations in nominal kinetic

parameter values. Experimental variability is accounted for and separated from bio-

logical variability, so that the results of sensitivity analysis are robust to variations in

nominal parameter values. We use a well-known variance decomposition formula to

derive Monte Carlo estimators for evaluating these noise-reduced variance-based sensi-

tivity indices by avoiding direct averaging. This produces substantial improvement of

numerical efficiency and stability. We also discuss two other numerical methods for es-

timating the proposed noise-reduced variance-based sensitivity indices more efficiently,

using derivative approximation and dimensionality reduction based on orthonormal

Hermite approximation. Again, we use the MAPK signaling cascade model to demon-

strate various aspects of the sensitivity analysis approach using the new sensitivity

indices.

Finally, we conclude the dissertation in Chapter 6, where we reiterate our findings

and suggest future research.
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Chapter 2

Biochemical Reaction Systems

2.1 Chemical Kinetics

In this dissertation, we consider a well-stirred (homogeneous) biochemical reaction

system at constant temperature and volume that consists of M coupled reversible

reactions:
N∑

n=1

νnmXn

k2m−1

k2m

N∑
n=1

ν ′nmXn, m = 1, 2, . . . ,M, (2.1)

where k2m−1, k2m are the rate constants of the forward and reverse reactions and

νnm, ν
′
nm ≥ 0 are the stoichiometry coefficients of the reactants and products. The sys-

tem contains N molecular species X1, X2, . . . , XN whose concentrations at time t ≥ 0

are denoted by x1(t), x2(t), . . . , xN(t), respectively. Here, we set the unit of concentra-

tion to be molecules/cell so that the units of the rate constants for monomolecular and

multimolecular reactions can be normalized to s−1. If we assume that the molecular

concentrations evolve continuously as a function of time and that all reactions are suffi-

ciently characterized by the mass action rate law, then we can characterize the dynamic
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evolution of molecular concentrations by the following chemical kinetic equations [43]:

dxn(t)

dt
=

M∑
m=1

snm

{
k2m−1

N∏
i=1

[
xi(t)

]νim − k2m

N∏
i=1

[
xi(t)

]ν′im} , t ≥ 0, n = 1, 2, . . . , N,

(2.2)

where

snm := ν ′nm − νnm (2.3)

is the net stoichiometry coefficient of the nth molecular species associated with the mth

reaction.

2.2 Example: MAPK Signaling Cascade

To illustrate various aspects of the sensitivity analysis techniques discussed in this

dissertation, we focus on a specific biochemical reaction system that models the well-

known mitogen-activated protein kinase (MAPK) signaling cascade. The MAPK sig-

naling cascade is an important signaling pathway that couples the binding of growth

factors to cell surface receptors with intracellular responses that control cellular growth,

proliferation, differentiation, and survival [44]. We use a rather detailed model of this

pathway, depicted in Fig. 2.1, introduced in the literature by Schoeberl et al. [45].

This model consists of N = 23 molecular species that interact with each other through

M = 21 reactions, of which 11 reactions are reversible, whereas, the remaining 10

reactions are irreversible. For an irreversible reaction, we set the rate constant of the

corresponding reverse reaction equal to zero. For simplicity, we have removed all re-

actions that characterize signal transduction from the epidermal growth factor (EGF)

receptor to Ras-GTP, which is the input to the MAPK signaling cascade.
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Figure 2.1: A biochemical reaction model of the MAPK signaling cascade.

The MAPK model begins with the synthesis of Ras-GTP, which interacts with Raf

kinase to produce an active version Raf* of Raf; see Fig. 2.1. Raf* is capable of pro-

ducing a doubly phosphorylated active version MEK-PP of the kinase MEK by two

successive phosphorylation steps, whereas, MEK-PP can produce a doubly phospho-

rylated active version ERK-PP of the extracellular signal-regulated kinase (ERK) by

two phosphorylation events as well. Each phosphorylation step is considered to be

irreversible, unless mediated by an inactivating phosphatase. In this case, Pho1, Pho2,

and Pho3 model inactivating phosphatases for Raf, MEK, and ERK, respectively.

12



0 20 40 60 80 100 120
0

1

2

3

4

5

6

7

8
x 10

4

time (minutes)

c
o

n
c
e

n
tr

a
ti
o

n
 (

m
o

le
c
u

le
s
/c

e
ll)

Ras-GTP

0

50

100

150

200

250

time (minutes)

Raf*

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

5

time (minutes)

MEK-PP

0

2

4

6

8

10

12
x 10

6

time (minutes)

ERK-PP

(a) (b)

(d)(c)

0 20 40 60 80 100 120

0 20 40 60 80 100 120 0 20 40 60 80 100 120

c
o

n
c
e

n
tr

a
ti
o

n
 (

m
o

le
c
u

le
s
/c

e
ll)

c
o

n
c
e

n
tr

a
ti
o

n
 (

m
o

le
c
u

le
s
/c

e
ll)

c
o

n
c
e

n
tr

a
ti
o

n
 (

m
o

le
c
u

le
s
/c

e
ll)

Figure 2.2: Concentration profiles of: (a) Ras-GTP, (b) Raf*, (c) MEK-PP, and
(d) ERK-PP, predicted by the MAPK signaling cascade model depicted in Fig. 2.1.

In Tables 2.1 and 2.2, we list the biochemical reactions associated with the MAPK

signaling cascade model and provide nominal values for the reaction rate constants.

For irreversible reaction, we set the rate of the corresponding reverse reaction equal

to zero. In Table 2.3, we provide values for the initial concentrations of the molec-

ular species involved. These data are adopted from Schoeberl et al. [45], with a few

rate constant values updated from the “JWS Online Cellular Systems Modeling” web

site (http://jjj.biochem.sun.ac.za). The first reaction in the model depicted in Fig. 2.1

compensates for Ras-GTP synthesis, which, in reality, is accomplished by a complex

epidermal growth factor (EGF)-induced signaling pathway [45]. We have set the reac-
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Table 2.1: Reactions in the MAPK model and nominal values of the rate constants.

No. Reaction Rate Constant (s−1)

1 ∅ → Ras-GTP k1 = 3

Ras-GTP → ∅ k2 = 0

2 Ras-GTP + Raf → Raf-Ras-GTP k3 = 1.66× 10−6

Raf-Ras-GTP → Raf + Ras-GTP k4 = 5.3× 10−3

3 Raf-Ras-GTP → Raf* + Ras-GTP* k5 = 1

Raf* + Ras-GTP* → Raf-Ras-GTP k6 = 1.16× 10−6

4 Raf* + Pho1 → Raf*-Pho1 k7 = 1.18× 10−4

Raf*-Pho1 → Raf* + Pho1 k8 = 0.2

5 Raf*-Pho1 → Raf + Pho1 k9 = 1

Raf + Pho1 → Raf*-Pho1 k10 = 0

6 MEK + Raf* → MEK-Raf* k11 = 1.94× 10−5

MEK-Raf* → MEK + Raf* k12 = 3.3× 10−2

7 MEK-Raf* → MEK-P + Raf* k13 = 3.5

MEK-P + Raf* → MEK-Raf* k14 = 0

8 MEK-P + Raf* → MEK-P-Raf* k15 = 1.94× 10−5

MEK-P-Raf* → MEK-P + Raf* k16 = 3.3× 10−2

9 MEK-P-Raf* → MEK-PP + Raf* k17 = 2.9

MEK-PP + Raf* → MEK-P-Raf* k18 = 0

10 MEK-PP + Pho2 → MEK-PP-Pho2 k19 = 2.37× 10−5

MEK-PP-Pho2 → MEK-PP + Pho2 k20 = 0.8

tion rate constant of Ras-GTP synthesis equal to 3s−1. This value results in an ERK-PP

concentration profile that is similar to the one reported by Schoeberl et al. [45], with

50ng/ml EGF; compare Fig. 2.2(d) with Fig. 2(F) in Schoeberl et al. [45].

Using the given nominal reaction rate constant values and the initial molecular

concentrations, we calculate the concentration profiles of all molecular species in the
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Table 2.2: Reactions in the MAPK model and nominal values of the rate constants
(cont.).

No. Reaction Rate Constant (s−1)

11 MEK-PP-Pho2 → MEK-P + Pho2 k21 = 5.8× 10−2

MEK-P + Pho2 → MEK-PP-Pho2 k22 = 0

12 MEK-P + Pho2 → MEK-P-Pho2 k23 = 4.48× 10−7

MEK-P-Pho2 → MEK-P + Pho2 k24 = 0.5

13 MEK-P-Pho2 → MEK + Pho2 k25 = 5.8× 10−2

MEK + Pho2 → MEK-P-Pho2 k26 = 0

14 ERK + MEK-PP → ERK-MEK-PP k27 = 8.87× 10−5

ERK-MEK-PP → ERK + MEK-PP k28 = 1.83× 10−2

15 ERK-MEK-PP → ERK-P + MEK-PP k29 = 16

ERK-P + MEK-PP → ERK-MEK-PP k30 = 0

16 ERK-P + MEK-PP → ERK-P-MEK-PP k31 = 8.87× 10−5

ERK-P-MEK-PP → ERK-P + MEK-PP k32 = 1.83× 10−2

17 ERK-P-MEK-PP → ERK-PP + MEK-PP k33 = 5.7

ERK-PP + MEK-PP → ERK-P-MEK-PP k34 = 0

18 ERK-PP + Pho3 → ERK-PP-Pho3 k35 = 2.34× 10−5

ERK-PP-Pho3 → ERK-PP + Pho3 k36 = 0.6

19 ERK-PP-Pho3 → ERK-P + Pho3 k37 = 0.25

ERK-P + Pho3 → ERK-PP-Pho3 k38 = 0

20 ERK-P + Pho3 → ERK-P-Pho3 k39 = 8.30× 10−6

ERK-P-Pho3 → ERK-P + Pho3 k40 = 0.5

21 ERK + Pho3 → ERK-P-Pho3 k41 = 0

ERK-P-Pho3 → ERK + Pho3 k42 = 0.25

MAPK signaling cascade. We depict four of these concentrations in Fig. 2.2.
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Table 2.3: Initial molecular concentrations in the MAPK model.

No. species molecules/cell

1 Ras-GTP 7.20× 104

2 Raf 4.00× 104

3 Raf-Ras-GTP 0

4 Raf* 0

5 Pho1 4.00× 104

6 Raf*-Pho1 0

7 MEK 2.10× 108

8 MEK-Raf* 0

9 MEK-P 0

10 MEK-P-Raf* 0

11 MEK-PP 0

12 Pho2 4.00× 104

13 MEK-PP-Pho2 0

14 MEK-P-Pho2 0

15 ERK 2.21× 107

16 ERK-MEK-PP 0

17 ERK-P 0

18 ERK-P-MEK-PP 0

19 ERK-PP 0

20 Pho3 1.00× 107

21 ERK-PP-Pho3 0

22 ERK-P-Pho3 0

23 Ras-GTP* 0

2.3 System Response Characteristics

Our objective is to use sensitivity analysis to quantify the relative importance of each

reaction or molecular species in influencing a response characteristic of a biochemical

reaction system. In general, different response characteristics will lead to different
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sensitivity analysis results. Therefore, choosing an appropriate response characteristic

is a very important issue. The response characteristic should not be chosen arbitrarily

but through careful consideration of the biological problem at hand. However, any

computable quantity that is thought to be important in influencing cellular function

can serve as a useful response characteristic. This could be the entire time-varying

concentration profile of a particular molecular species of interest (which leads to a

time-dependent sensitivity analysis approach similar to the one suggested by Leloup

and Goldbeter [21]), numerical features extracted from the profile, such as steady-state

concentration or some quantities measuring the dynamical features of a concentration

profile, or even numerical characteristics extracted from the flux of a selected reaction.

Here, we employ the MAPK signaling cascade as an example to demonstrate how

to determine appropriate system responses. In MAPK, the doubly phosphorylated

extracellular signal-regulated kinase (ERK-PP) is generally considered as the output

molecular species. This species enters the nucleus of a cell and regulates translation

of mRNA to proteins [46], as well as activities of transcription factors [47]. There-

fore, and in order to find appropriate system responses, we focus our attention on the

concentration profile of ERK-PP within an observation time interval [0, tmax].

It has been demonstrated in the literature that differences in the duration and

strength of ERK-PP activity, produced by the MAPK signaling cascade, may generate

distinct biological outcomes, such as cell differentiation, proliferation, and apopto-

sis [47–51]. Experimental evidence suggests that immediate early gene (IEG) products

function as sensors for ERK-PP signal duration and strength [47,49]. Moreover, it has

been experimentally demonstrated that the time-integrated ERK-PP response directly
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correlates with DNA synthesis [52,53].

A conceptually simple way to explain these results is to assume the presence of a

relatively unstable IEG product C, which is phosphorylated by ERK-PP resulting in

stable molecules C-P. If we use the reaction

C + ERK-PP
k→ C-P + ERK-PP

to model phosphorylation of C, then the concentration profile xC-P(t) of C-P will satisfy

the following differential equation:

dxC-P(t)

dt
= kxC(t)xERK-PP(t). (2.4)

As a consequence,

xC-P(t) = kc

∫ t

0

xERK-PP(τ) dτ, for t ≥ 0, (2.5)

where we assume for simplicity that the concentration of C remains constant for every

t ≥ 0. This shows that, at time t, the concentration of the stable phosphorylated

product C-P will be proportional to the cumulative concentration of ERK-PP within

the time interval [0, t], in agreement with previously published results [53].

The activity of C-P can induce distinct biological outcomes by influencing tran-

scriptional control. As a consequence, the integrated ERK-PP response is an impor-

tant signaling characteristic for sensitivity analysis. It has been observed however that,

due to certain biochemical factors (such as degradation and nuclear translocation), the

integrated response of C-P may not be the only factor affecting cellular response. As a

matter of fact, experimental evidence suggests that different biological outcomes may

be produced by an activated MAP kinase, such as ERK-PP, depending on whether its
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concentration remains above a critical level for a sufficient period of time [48, 52, 54].

Therefore, the duration and strength of ERK-PP activity are two additional signaling

characteristics of importance to sensitivity analysis.

Based on the above discussion, we consider the following three response characteris-

tics, namely the duration D, integrated response I, and strength S of ERK-PP, defined

by

D := t0,

I :=

∫ t0

0

x(t)dt, (2.6)

S :=
1

t0

∫ t0

0

x(t)dt,

where x(t) is the concentration profile of ERK-PP and t0 is the time at which x(t)

converges to zero. If convergence to zero does not occur within the observation time

interval [0, tmax], then we set t0 = tmax. Here, strength is the average concentration

during the time interval [0, t0]. A practical way to approximate the duration is to

determine the value of D such that∫ D

0

x(t) dt = (1− ε)

∫ tmax

0

x(t) dt, (2.7)

for a sufficiently small positive number ε.

We will take the system response to be the logarithm of the duration, integrated

response, or strength. The reason for this choice is that, typically, the probability den-

sity functions of these quantities are long-tailed. Consequently, there is an appreciable

probability for outliers, which may seriously compromise the numerical evaluation of

response variances. Since we evaluate sensitivity indices in this dissertation by calcu-

lating conditional and unconditional response variances, we need to reduce the effect
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of outliers. This objective can be achieved by considering log responses. We conjecture

that a biological system is not sensitive to the response value per se but to its log value.

Naturally, this provides robustness, with noticeable changes occurring only with strong

and sustained variations in system response.

2.4 Probabilistic Modeling of Rate Con-

stants

We can develop a powerful methodology for sensitivity analysis of biochemical reaction

systems by recognizing that the rate constants of the underlying reactions may fluc-

tuate randomly (e.g., due to unpredictable environmental, biological, and biochemical

conditions) and by assessing how these fluctuations affect the system response. As it

will become clear in the following, the forward and backward rate constants are not

independent from each other. If these relationships among the system parameters are

not taken into consideration, sensitivity analysis may lead to infeasible perturbed rate

constants, which can easily break basic thermodynamic principles, such as detailed bal-

ance. This motivates us to express the rate constants by more fundamental parameters

until a set of independent input factors can be obtained for sensitivity analysis. Our

probabilistic model of rate constants is derived based on the classical Eyring theory,

which is also called transition state theory or activated-complex theory [55].

Consider a simple binding reaction

X1 +X2
k1→ X3. (2.8)
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According to Eyring theory, the reactants X1 and X2 form a hypothetical intermediate

complex (X1X2)
‡, known as the activated complex. This complex has a short lifetime

and can be either transformed to the product X3 or dissociate back to the reactants

X1 and X2. We can describe these steps by the following reactions:

X1 +X2

k‡1

k‡−1

(X1X2)
‡ k†1→ X3. (2.9)

A key assumption made in Eyring theory is that the reactants and the activated com-

plex reach dynamic equilibrium at a time scale that is much shorter than the overall

reaction time. In this case,

k‡1x1(t)x2(t) = k‡−1(x12)
‡(t), t ≥ 0 (2.10)

where x1(t), x2(t), and (x12)
‡(t) are the concentrations of X1, X2, and (X1X2)

‡ respec-

tively. The overall rate of product formation will be

dx3(t)

dt
= k†1(x12)

‡(t) =
kBT

h

k‡1

k‡−1

x1(t)x2(t), (2.11)

where k†1 = kBT/h is a universal constant for the activated complex given by statistical

mechanics, with kB being the Boltzmann constant (kB = 1.3806504 × 10−23JK−1), T

being the system temperature, and h being the Plank constant (h = 6.62606885 ×

10−34Js). In Eq. (2.11), the equilibrium constant can be further expressed by means of

capacities [30] as

k‡1

k‡−1

=
c‡

c1c2
, (2.12)

where c1, c2 are the capacities of the molecular species X1 and X2, respectively, and c
‡

is the capacity of the activated complex (X1X2)
‡. We can therefore express the overall
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rate constant of the binding reaction in Eq. (2.8) as

k1 =
kBT

h

c‡

c1c2
. (2.13)

Following a similar procedure for all forward and reverse reactions in the system, we

can express their rate constants in terms of capacities as

k2m−1 =
kBT

h

c‡m∏N
n=1 c

νnm
n

,

k2m =
kBT

h

c‡m∏N
n=1 c

ν′nm
n

.

(2.14)

These equations are known as Eyring-Polanyi equations [55]. The capacities are defined

by [30]

c‡m := xtotal exp

{
− µ‡0

m

kBT

}
, m = 1, 2, . . . ,M,

cn := xtotal exp

{
− µ0

n

kBT

}
, n = 1, 2, . . . , N,

(2.15)

where xtotal is the total concentration of all molecular species in the system that form

a homogeneous molecular mixture in solution. This concentration is assumed to be

constant, since for biochemical reaction systems, it normally contains a large fraction

of inert species, such as water, whose concentration does not vary with time [30]. The

quantity µ‡0
m is the standard chemical potential of the activated complex associated with

the mth reaction, whereas, µ0
n is the standard chemical potential of the nth molecular

species. The chemical potential of a molecular species is the Gibbs free energy per mole

of that species, and the standard chemical potential is the reference level of chemical

potential under specified standard conditions. For ideal mixtures, the relationship

between the chemical potential and the standard chemical potential of the nth molecular
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species in the system is given by

µn(t) = µ0
n + kBT ln

xn(t)

xtotal
, (2.16)

where xn(t) is the concentration of the nth molecular species.

Due to unpredictable biological variability, there is a great deal of uncertainty

regarding the exact value of the standard chemical potential of a reaction. We may

assume that the standard chemical potential of the activated complex associated with

the mth reaction is a random variable M ‡0
m , given by1

M ‡0
m = µ‡0

m + kBTY
‡
m, m = 1, 2, . . . ,M, (2.17)

where µ‡0
m is a nominal value and Y ‡

m is a zero mean random variable that accounts

for variations of the standard chemical potential about its nominal value. A possi-

ble source of variation for the standard chemical potential of the activated complex is

unpredictable fluctuations in the conformational states and concentrations of enzymes

responsible for catalyzing the reaction [56,57]. It is well known that enzymes enhance

the reaction rate by lowering the standard chemical potential of the activated com-

plex [58]. It is therefore expected that uncertainty in the conformational state and

concentration of an enzyme catalyzing a given reaction will produce uncertainty in the

value of the standard chemical potential of the activated complex of that reaction.

Similarly, we may assume that the standard chemical potential of the nth molecular

species is a random variable M0
n, given by

M0
n = µ0

n + kBTYn, n = 1, 2, . . . , N, (2.18)

1In this dissertation, we use capital letters to denote random variables and small letters to denote
their realizations (samples).
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where µ0
n is a nominal value and Yn is a zero mean random variable that accounts

for variations of the standard chemical potential about its nominal value. A possible

source of variation in the standard chemical potential of a molecular species, such as a

protein, is genetic point (single nucleotide) mutations, which may occur randomly and

may result in a small change of the amino acid sequence of the protein. Because of

redundancy of the genetic code (64 codons and only 20 amino acids) and the relative

closeness within the code of biochemically similar amino acids, most small changes

in proteins will not affect the stoichiometry of the underlying biochemical reaction

network but may alter the kinetic properties of the participating molecular species by

modifying the standard chemical potential (or capacity) values.

As a consequence of the previous discussion, we can now treat the rate constants

as random variables K2m−1 and K2m, given by

K2m−1 =
kBT

h

C‡
m∏N

n=1C
νnm
n

,

K2m =
kBT

h

C‡
m∏N

n=1C
ν′nm
n

,

(2.19)

where the (random) capacities C‡
m and Cn are defined by

C‡
m := xtotal exp

{
−M

‡0
m

kBT

}
, m = 1, 2, . . . ,M,

Cn := xtotal exp

{
−M0

n

kBT

}
, n = 1, 2, . . . , N.

(2.20)

From Eqs. (2.14), (2.15), and (2.17)–(2.20), we have that

K2m−1 = k2m−1 exp{−Y ‡
m} exp

{
N∑

n=1

νnmYn

}
,

K2m = k2m exp{−Y ‡
m} exp

{
N∑

n=1

ν ′nmYn

}
,

(2.21)
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where k2m−1 and k2m are given by Eqs. (2.14) and (2.15). Implicit in Eq. (2.21) is

the assumption that, once the values of the random variables {Y ‡
m, m = 1, 2, . . . ,M}

and {Yn, n = 1, 2, . . . , N} are determined, these values remain constant during a time

period of interest. It has been argued [59] that this is reasonable if we assume that the

biochemical reaction system exhibits only static (and not dynamic) disorder.

In the following, we assume that Y ‡
m is a zero-mean Gaussian random variable with

standard deviation λ‡m; i.e., Y
‡
m ∼ N (0, λ‡m), for m = 1, 2, . . . ,M . Then, Eq. (2.17)

implies that the standard chemical potential M ‡0
m of the activated complex of the mth

reaction is a Gaussian random variable with mean value µ‡0
m and standard deviation

kBTλ
‡
m. Similarly, we assume that Yn is a zero-mean Gaussian random variable with

standard deviation λn; i.e., Yn ∼ N (0, λn), for n = 1, 2, . . . , N . In this case, Eq. (2.18)

implies that the standard chemical potential M0
n of the nth molecular species is a

Gaussian random variable with mean value µ0
n and standard deviation kBTλn. Finally,

we assume that the random variables {Y ‡
m,m = 1, 2, . . . ,M} and {Yn, n = 1, 2, . . . , N}

are mutually independent.

The use of Gaussian distributions for modeling Y ‡
m and Yn cannot be easily justified

experimentally. However, it is a convenient choice that can be viewed as an effective

approximation of the actual distributions of Y ‡
m and Yn, obtained by setting all high-

order (≥ 3) statistical moments equal to zero. As a consequence, the probability

distributions of the forward and reverse reaction rates are log-normal. Interestingly,

it has been argued in the literature that log-normal distributions are natural choices

for modeling processes evolving by energy transduction mechanisms that reduce free

energy [60], which is the case in biochemical reaction systems.
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The assumption of statistical independence between the random variables {Y ‡
m,m =

1, 2, . . . ,M} and {Yn, n = 1, 2, . . . , N} can be justified by arguing that the primary

sources of variation in the standard chemical potentials of activated complexes and

molecular species are different (e.g., fluctuations in enzyme concentrations vs. genetic

point mutations) and do not influence each other. However, it is more difficult to justify

mutual independence within {Y ‡
m,m = 1, 2, . . . ,M} and {Yn, n = 1, 2, . . . , N}. We

simply view this as a convenient approximating assumption that allows us to proceed

with the sensitivity analysis approach discussed in Chapter 3.

Eq. (2.21) suggests that variations in the forward and reverse reaction rates may

occur due to variations in the standard chemical potential of the activated complex

associated with that reaction and variations in the standard chemical potentials of its

reactants. These variations are modeled by two Gaussian random variables

Gm := −Y ‡
m +

∑N
n=1 νnmYn,

G′
m := −Y ‡

m +
∑N

n=1 ν
′
nmYn,

(2.22)

for the forward and reverse reactions, respectively. Note that

E
[
Gm

]
= 0, Var

[
Gm

]
=
[
λ‡m
]2

+
∑N

n=1 ν
2
nmλ

2
n,

E
[
G′

m

]
= 0, Var

[
G′

m

]
=
[
λ‡m
]2

+
∑N

n=1

[
ν ′nm
]2
λ2n.

(2.23)

Therefore, and due to the dependence of Var
[
Gm

]
and Var

[
G′

m

]
on the stoichiome-

try coefficients νnm and ν ′nm, the size of variations in the reaction rates will not be

uniform in general, even if all standard deviations λ‡m and λn take the same values.

Note also that the probability distributions of K2m−1 and K2m are log-normal, with

median
[
K2m−1

]
= k2m−1 and median

[
K2m

]
= k2m.
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It has been recently pointed out in the literature that a serious issue associated

with existing sensitivity analysis techniques is lack of thermodynamic consistency [30].

However, an important consequence of Eqs. (2.14) and (2.21) is that

k2m−1

k2m
=

N∏
n=1

csnm
n and

K2m−1

K2m

=
k2m−1

k2m
exp

{
−

N∑
n=1

snmYn

}
, (2.24)

by virtue of Eq. (2.3), which are constraints thermodynamically imposed on the reac-

tion rate constants. Note that, if b is an M × 1 vector in the null space of the N ×M

stoichiometry matrix S =
[
snm
]
of the biochemical reaction system (i.e., if S b = 0),

then Eq. (2.24) implies that

M∏
m=1

(
K2m−1

K2m

)bm
=

M∏
m=1

(
k2m−1

k2m

)bm
= 1, (2.25)

which are known as Wegscheider conditions or detailed balance relations [30, 43].

Eq. (2.25) shows that the proposed probabilistic model for the reaction rate constants

automatically satisfies detailed balance, as long as these conditions are satisfied by the

nominal (median) reaction rate constants km. As a consequence, and in sharp contrast

to existing techniques, the sensitivity analysis approach we present in this dissertation

can produce thermodynamically consistent results.

To use Eq. (2.21) for sensitivity analysis, we need to make sure that the nominal

values of the reaction rate constants lead to a thermodynamically feasible biochemical

reaction system, in the sense that there exist capacities c‡m, m = 1, 2, . . . ,M , and

cn, n = 1, 2, . . . , N , such that the Eyring-Polanyi equations are satisfied. Using the

MAPK signaling cascade model described in the Section 2.2, we show here how to

check whether the nominal rate constant values are thermodynamically feasible. In

particular, we need to prove that there exist capacities c‡m, m = 1, 2, . . . ,M , and cn,
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n = 1, 2, . . . , N , so that Eq. (2.14) is satisfied. Note that

k2m−1

k2m
=

N∏
n=1

csnm
n , for every m ∈ Mr, (2.26)

from Eq. (2.24), where snm is given by Eq. (2.3) andMr denotes the set of all reversible

reactions in the MAPK signaling cascade (i.e., reactions 2–4, 6, 8, 10, 12, 14, 16, 18,

and 20). If we denote by Sr the N × Mr stoichiometry matrix associated with the

reversible reactions, by c theN×1 vector of the molecular capacities cn, n = 1, 2, . . . , N ,

and by r theMr×1 vector of the reaction rate ratios (equilibrium constants) k2m−1/k2m,

m ∈ Mr, then we can write Eq. (2.26) above in the following matrix-vector form:

ST

r ln c = ln r,

where lnu denotes a vector with elements lnui, where ui is the i
th element of vector u.

It turns out that, for the MAPK signaling cascade, the columns of the stoichiometry

matrix Sr are linearly independent; i.e., rank(Sr) =Mr. As a consequence, we can write

ST

r ln c =

 S∗

S∗∗


T  ln c1

ln c2

 = ST

∗ ln c1 + ST

∗∗ ln c2 = ln r, (2.27)

where S∗ is the Mr ×Mr matrix that contains all linearly independent rows of Sr, S∗∗

is the (N −Mr) ×Mr matrix that contains the remaining rows of Sr, and c1, c2 are

the corresponding sub-vectors of c. Note that S∗ is an invertible matrix. Therefore,

Eq. (2.27) above implies that

ln c1 = (ST

∗ )
−1 (ln r− ST

∗∗ ln c2) . (2.28)

We can now set ln c2 = 0, in which case ln c1 = (ST
∗ )

−1 ln r. Therefore, given the

reaction rate constants of the reversible reactions, we can find capacity values for all
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molecular species in the system. Subsequently, we can determine the capacities of the

activated complexes by setting

c‡m = k2m−1
h

kBT

N∏
n=1

cνnm
n , for m = 1, 2, . . . ,M. (2.29)

The previous discussion shows that the rate constant values we use in this dis-

sertation correspond to a thermodynamically feasible model for the MAPK signaling

cascade, since, given these values, we can find appropriate capacity values so that the

Eyring-Polanyi equations are satisfied.

Finally, we should note that some reactions in Eq. (2.1) may be “incomplete,” in the

sense that they are expressed without indicating every molecular species participating

in the reaction. For example, it is common to model phosphorylation of a protein A by

a kinase K using the following reaction: A+K
k→ A-P+K. However, phosphorylation

also includes the cleavage of adenosine triphosphate (ATP) into adenosine diphosphate

(ADP) and inorganic phosphate (P), which leads to the following more accurate reac-

tion: A+K+ATP
k′→ A-P+K+ADP. Note, however, that if we set k = k′xATP, then

the two reactions will be equivalent. Therefore, and in order to deal with an incom-

plete reaction, we will assume that its reaction rate is the actual rate multiplied by the

corresponding concentrations of the “missing” reactants. In this case, fluctuations in

the rate constant values may also be attributed to fluctuations in the concentrations

of these reactants.

The issue of thermodynamic consistency has also been discussed by Liebermeister

and Klipp [61], as well as by Schaber, Liebermeister and Klipp [62], who have proposed

an alternative approach to the one presented in this dissertation for modeling the

reaction rate constants of a biochemical reaction system. Their formulation is based
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on the assumption that the geometric mean of the forward and reverse reaction rate

constants is independent from the corresponding equilibrium constant, which may not

be valid in general. For this reason, we chose to work here with the Eyring-Polanyi

equations, which are derived by means of the well-known activated-complex theory,

one of the most commonly used theory in chemical kinetics [55].
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Chapter 3

Variance-Based Sensitivity Analysis

3.1 Definitions

In Section 2.4, we introduced a probabilistic model for the reaction rate constants of a

biochemical reaction system derived by modeling random fluctuations in the standard

chemical potentials of the activated complexes associated with the reactions and the

underlying molecular species. By assessing how these fluctuations affect the system re-

sponse, we can classify reactions (molecular species) into two groups, namely influential

reactions (molecular species) and non-influential reactions (molecular species). We say

that a reaction (molecular species) is influential if random fluctuations in the corre-

sponding standard chemical potential result in noticeable fluctuations in the system

response. Otherwise, the reaction (molecular species) is said to be non-influential.

In this chapter, we discuss a powerful approach to sensitivity analysis, known

as variance-based sensitivity analysis [5, 23, 27]. To simplify notation, we will use

U1, U2, . . . , UJ to denote the random variables Y ‡ and Y associated with the stan-
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dard chemical potentials. In general, we take J = M + N and set Uj = Y ‡
j , for

j = 1, 2, . . . ,M , and UM+j = Yj, for j = 1, 2, . . . , N . However, when the standard

chemical potentials of the molecular species are fixed, we take J =M and set Uj = Y ‡
j ,

for j = 1, 2, . . . ,M , whereas, when the standard chemical potentials of the activated

complexes are fixed, we take J = N and set Uj = Yj, for j = 1, 2, . . . , N . We will be

referring to U1, U2, . . . , UJ as “biochemical factors.”

Given a system response function R(u), we can easily verify that its variance sat-

isfies the following equation:

V =
J∑

j=1

Vj +
J∑

j=1

∑
j′>j

Vjj′ + · · ·+ V12···J , (3.1)

where

V := Var
[
R(U)

]
,

Vj := Var
[
E
[
R(U) | Uj

]]
,

Vjj′ := Var
[
E
[
R(U) | Uj, Uj′

]]
− Var

[
E
[
R(U) | Uj

]]
− Var

[
E
[
R(U) | Uj′

]]
,

(3.2)

with similar expressions for the remaining terms. If the biochemical factors U1, U2, . . . , UJ

are statistically independent (which we have assumed here to be true), then each term

on the right-hand-side of Eq. (3.1) will be nonnegative (the Vj terms are always non-

negative). This result was first shown by Sobol’ [25, 26], and serves as the basis for

constructing the sensitivity indices we discuss below.

Due to the well-known variance decomposition formula

Var
[
Y
]
= Var

[
E
[
Y |X

]]
+ E

[
Var
[
Y |X

]]
, (3.3)

Eq. (3.2) implies that

Vj = Var
[
R(U)

]
− E

[
Var
[
R(U) | Uj

]]
. (3.4)
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As a consequence, Vj quantifies the average reduction in response variance obtained by

keeping the jth biochemical factor fixed. Therefore, we may use Vj as a measure of the

singular contribution of the jth biochemical factor to the system response. Likewise,

from Eqs. (3.2)–(3.4), we obtain

Vj + Vj′ + Vjj′ = Var
[
R(U)

]
− E

[
Var
[
R(U) | Uj, Uj′

]]
. (3.5)

Clearly, the term Vjj′ quantifies the average reduction in the response variance due to

jointly fixing the two biochemical factors Uj and Uj′ , which is not accounted for by

summing the average reductions obtained by separately fixing these factors. Hence, we

may use Vjj′ as a measure of the joint contribution of the biochemical factors Uj and

Uj′ to the system response. Similar remarks apply for the higher-order terms on the

right-hand-side of Eq. (3.1). Clearly, Eq. (3.1) decomposes the response variance V

of a biochemical reaction system into a sum of individual terms, where each term

quantifies the singular or joint contribution of a particular biochemical factor to the

system response.

If the response function R(u) is sufficiently smooth around 0, so that its derivatives

of order ≥ 3 at 0 are negligible, then its Taylor series expansion about 0 is given by

R(U) ≃ R(0) +
J∑

j=1

∂R(0)

∂uj
Uj +

1

2

J∑
j=1

J∑
j′=1

∂2R(0)

∂uj∂uj′
UjUj′ . (3.6)

For a zero-mean Gaussian random variable Uj with standard deviation λj, we have that

E
[
U3
j

]
= 0 and E

[
U4
j

]
= 3λ4j . (3.7)

If the biochemical factors Uj have sufficiently small standard deviations λj, so that

λ2j λ
2
j′

[
∂2R(0)

∂uj∂uj′

]2
≃ 0, for every j, j′ = 1, 2, . . . , J, (3.8)
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we obtain

E
[
R(U)

]
≃ R(0), (3.9)

and

V ≃ V1 + V2 + · · ·+ VJ , (3.10)

where

Vj ≃ λ2j

[
∂R(0)

∂uj

]2
. (3.11)

See also the discussion in [34]. In this case, we can approximately decompose the

response variance into a sum of individual terms Vj, j = 1, 2, . . . , J . Then, the bio-

chemical factors Uj will mostly contribute to the response variance singularly. Note

that, if R(u) is linear, then Eqs. (3.10) and (3.11) will be exact, regardless of the sta-

tistical model assumed for the biochemical factors Uj. More generally, Eq. (3.10) (but

not necessarily Eq. (3.11)) is exact when the response function is additive.2 In both

cases, it implies that all joint contributions of the biochemical factors U1, U2, . . . , UJ to

the response variance in Eq. (3.1) will be zero.

In general, the total contribution of the jth biochemical factor to the response

variance is given by

Cj := Vj +
J∑

j′ ̸=j

Vjj′ + · · ·+ V12···J , (3.12)

which implies that V ≤
∑J

j=1Cj. Therefore, we cannot in general decompose the

response variance into a sum of individual contributions from each biochemical factor.

From Eq. (3.12), we have that

τj :=
Cj

V
=
Vj +

∑J
j′ ̸=jVjj′ + · · ·+ V12···J

V
. (3.13)

2Amultivariate function is said to be additive, if it can be decomposed into a sum of one-dimensional
functions of one variable.
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This index has been introduced as a tool for sensitivity analysis by Saltelli and his

collaborators [5, 23, 27, 63, 64]. It quantifies the fractional total (singular and joint)

contribution of the jth biochemical factor to the response variance. For this reason,

we refer to τj as the total-effect sensitivity index (TESI) of the jth biochemical factor.

Note that

0 ≤ τj ≤ 1, for every j = 1, 2, . . . , J, (3.14)

due to Eqs. (3.1) and (3.14). Moreover, it can be shown that

τj =
E
[
Var
[
R(U) | U(j)

]]
Var
[
R(U)

] = 1−
Var
[
E
[
R(U) | U(j)

]]
Var
[
R(U)

] , (3.15)

whereU(j) denotes the collection of all biochemical factors excluding Uj [23]. Therefore,

τj is the average fractional response variance obtained when all factors, except the jth

biochemical factor, are kept fixed.

An important objective of sensitivity analysis is to identify non-influential biochem-

ical factors (i.e., factors that do not appreciably influence the system response). This

is of fundamental theoretical and experimental interest, since the biochemical reaction

system will be robust to changes in the values of non-influential factors, which can be

fixed without appreciably affecting the system response. As a consequence, we may

be able to ignore non-influential biochemical factors, thus simplifying the complexity

of the biochemical system under consideration. It is intuitive to believe that, if a bio-

chemical factor is non-influential, fluctuations in its value will not appreciably affect

the system response. This observation motivates us to define a biochemical factor as

being non-influential if random fluctuations in its value does not generate noticeable

fluctuations of the system response when the remaining factors are kept fixed. Based

on this definition and Eq. (3.15), the jth biochemical factor is non-influential if and
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only if τj = 0. Therefore, we can identify non-influential biochemical factors as those

with TESI values close to zero.

After sorting out the non-influential biochemical factors, we would like to derive

an index that we can use to rank the remaining factors based on how much these

factors influence the system response. If we assume that Eq. (3.10) is satisfied, it

will be natural to rank influential biochemical factors based on their corresponding Vj

values, since Vj quantifies the contribution of the jth biochemical factor to the response

variance. This leads to ranking influential biochemical factors based on the following

index:

σj :=
Vj
V

=
Var
[
E
[
R(U) | Uj

]]
Var
[
R(U)

] . (3.16)

It is clear from this formula that σj quantifies the fractional singular contribution of

the jth biochemical factor to the response variance. Therefore, we will refer to this

quantity as the single-effect sensitivity index (SESI) of the jth biochemical factor.

This index has been originally introduced by Iman [65], used by Krewski et al. [10],

and then by Saltelli and his collaborators [5,23,27,64]. Note that 0 ≤ σj ≤ 1, for every

j = 1, 2, . . . , J , due to Eqs. (3.1) and (3.16). Thus, similar to the TESI’s, the SESI’s

are also normalized to take values between 0 and 1.

Subject to the assumptions that lead to Eqs. (3.10) and (3.11), we have that

τj ≃ σj ≃
λ2j [∂R(u)/∂uj]

2∑J
j′=1 λ

2
j′ [∂R(u)/∂uj′ ]

2
, (3.17)

which provides a direct link between derivative-based and variance-based sensitivity

analysis techniques and shows that derivative-based sensitivity analysis may be viewed

as a special and restrictive case of variance-based sensitivity analysis. The form of

SESI given by Eq. (3.17) has been proposed as a tool for sensitivity analysis by several
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investigators [5, 23, 27, 34]. However, its use requires verification of the assumptions

associated with Eqs. (3.10) and (3.11), which is clearly very difficult to do in practice.

From Eqs. (3.1), (3.13), and (3.16), note that σj ≤ τj, for every j = 1, 2, . . . , J ,

whereas,
J∑

j=1

σj ≤ 1 ≤
J∑

j=1

τj. (3.18)

The difference

δ := 1−
J∑

j=1

σj (3.19)

satisfies 0 ≤ δ ≤ 1. Moreover,

δ =
1

V

(
V −

J∑
j=1

Vj

)
=

1

V

(
J∑

j=1

J∑
j′>j

Vjj′ + · · ·+ V12···J

)
. (3.20)

This shows that δ quantifies the fractional joint contribution of all biochemical factors

to the response variance. Note that, if the response function is additive, then δ = 0.

If δ ≃ 0, all joint contributions to the response variance will be negligible, whereas,

appreciable values of δ indicate that these contributions may be significant. In the

former case, Eq. (3.10) will be approximately satisfied and we can thus justify ranking

the influential reactions by using the SESI’s.

When δ ̸≃ 0,3 we need to investigate whether a biochemical factor contributes to the

system response singularly, jointly, or both. To do so, we may calculate the difference

ηj := τj − σj, (3.21)

which, together with Eqs. (3.13) and (3.16), leads to

ηj =
1

V

(
J∑

j′ ̸=j

Vjj′ + · · ·+ V12···J

)
. (3.22)

3We use the notation x ̸≃ 0 to denote that x may take values that are sufficiently larger than zero.
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Eqs. (3.1) and (3.22) imply that 0 ≤ ηj ≤ 1, for every j = 1, 2, . . . , J . According

to Eq. (3.22), ηj quantifies the fractional contribution of the jth biochemical factor to

the response variance jointly with one or more other factors. For this reason, we refer

to ηj as the joint-effect sensitivity index (JESI). If ηj ≃ 0, these contributions will

be negligible, whereas, appreciable values of ηj indicate significant joint contributions.

In the former case, we have τj ≃ σj, by virtue of Eq. (3.21), which also implies that

δ ≃ 0, based on Eqs. (3.18) and (3.19). In this case, if σj ≃ 0, then τj ≃ 0, and

we may conclude that the jth biochemical factor does not appreciably influence the

system response (i.e., it is non-influential); whereas, if σj ̸≃ 0, then τj ̸≃ 0, and we may

conclude that the jth biochemical factor influences the system response but mostly

singularly. On the other hand, when ηj ̸≃ 0, the singular and joint contribution of

the jth biochemical factor to the response variance may be appreciable. In this case, if

σj ≃ 0, we may conclude that the system response is not appreciably influenced by the

jth factor alone, but mostly by the jth factor jointly with one or more other factors;

whereas, if σj ̸≃ 0, we may conclude that the jth biochemical factor influences the

response function both singularly and jointly with one or more other reactions. We

summarize these remarks in Table 3.1, which shows that the JESI’s and SESI’s are

sufficient for proper classification of biochemical factors.

As we mentioned before, when the system response is not appreciably influenced

by joint effects (i.e., when ηj ≃ 0, for j = 1, 2, . . . , J), Eq. (3.10) is satisfied and we

can use the SESI’s (or the TESI’s, since τj ≃ σj in this case) to rank the influential

biochemical factors. When this is not true, we must identify an appropriate sensitivity

index that we can use to rank the influential biochemical factors in the presence of joint
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Table 3.1: Rules for interpreting the variance-based sensitivity indices.

σj ≃ 0 σj ̸≃ 0

factor j does not factor j influences

ηj ≃ 0 appreciably influence the system response

the system response mostly singularly

factor j influences factor j influences

ηj ̸≃ 0 the system response the system response both

mostly jointly singularly and jointly

effects. To do so, we first need to determine the purpose of identifying a biochemical

factor as “more influential” than another factor, and mathematically formalize what

we mean by this comparison.

It is intuitive to believe that, to maintain robust behavior, a biochemical reaction

system must control the standard chemical potentials associated with influential re-

actions and molecular species in a precise manner in order to reduce variations in its

response. This observation motivates us to define a biochemical factor as being the

most influential if, by fixing its value, the system response variance is, on the average,

the smallest possible. Likewise, we may define the second most influential biochemical

factor, and so on. Now, if we go back to Eq. (3.4), we have that E
[
Var
[
R(U) | Uj

]]
= V − Vj. This implies that, on the average, the smallest response variance is ob-

tained by fixing the biochemical factor with the largest Vj value. As a consequence, we

can still use the SESI’s to rank the influential biochemical factors, even factors that
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jointly contribute to the response variance. This ranking can be useful even in cases

of appreciable joint effects, especially when the problem is to influence the response

of a biochemical reaction system by only targeting biochemical factors one at a time.

However, we must always keep in mind that a ranking based on SESI values considers

only the singular contribution of each biochemical factor to the response variance and

does not take into account joint effects.

When ηj ̸≃ 0, we may want to further investigate the joint influence of two bio-

chemical factors j and j′ on the system response. We can achieve this objective by

employing the following index:

υjj′ :=
Vjj′

V
, j′ ̸= j, (3.23)

which we refer to as the pairwise-effect sensitivity index (PESI). From Eq. (3.14) and

Eqs. (3.21)–(3.23), we have that 0 ≤ υjj′ ≤ ηj ≤ τj ≤ 1, for j′ ̸= j. If υjj′ ≃ 0,

we may conclude that the joint contribution of the biochemical factors j and j′ to

the system response is negligible, whereas, larger values of υjj′ indicate stronger joint

contributions.

In addition to ranking individual biochemical factors, it may also be desirable

to rank pairs of factors based on their contribution to the response variance. From

Eq. (3.5), we have that E
[
Var
[
R(U) | Uj, Uj′

]]
= V − (Vj + Vj′ + Vjj′). This implies

that, on the average, by fixing two factors, the smallest response variance is obtained

when fixing the factors with the largest Vj + Vj′ + Vjj′ value. As a consequence, we

can evaluate the influence of pairs of biochemical factors on the system response by
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employing the following index:

σjj′ :=
Vj + Vj′ + Vjj′

V
=

Var
[
E
[
R(U) | Uj, Uj′

]]
Var
[
R(U)

] , j′ ̸= j. (3.24)

We refer to σjj′ as the double-effect sensitivity index (DESI). This index quantifies the

average fractional reduction in the response variance when the two factors j and j′ are

fixed. From Eqs. (3.1) and (3.24), we have that 0 ≤ σjj′ ≤ 1, for j′ ̸= j. Thus, the

DESI’s are also normalized to take values between 0 and 1. Note also that

σjj′ = σj + σj′ + υjj′ , j′ ̸= j. (3.25)

Therefore, when υjj′ = 0, the DESI σjj′ is simply the sum of the SESI’s of the two

biochemical factors j and j′.

Finally, it is worthwhile noticing that, Eqs. (3.1), (3.16), and (3.23) imply that we

can quantify the fractional contribution of all joint effects of order ≥ 3 to the response

variance by means of

γ := 1−
J∑

j=1

σj −
J∑

j=1

J∑
j′>j

υjj′ . (3.26)

When γ ≃ 0, these effects are negligible, in which case the use of indices σj, τj, ηj, and

υjj′ for sensitivity analysis will be sufficient. However, when γ ̸≃ 0, we may want to

investigate higher-order joint effects of triplets, quadruples, etc. To do so, we would

have to evaluate higher-order sensitivity indices, which would require additional com-

putational resources (memory and CPU time). For this reason, we limit our analysis to

first- and second-order effects. We expect that, in most cases of interest, these effects

will provide a sufficient picture of the sensitivity properties of a biochemical reaction

system.
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We now summarize an algorithm for investigating the first- and second-order sensi-

tivity properties of a biochemical reaction system by variance-based sensitivity analysis:

Initialization

1. Calculate the TESI’s τj and the SESI’s σj.

2. Calculate the JESI’s ηj = τj − σj.

3. Set a small threshold θ ≪ 1.

Classification

For j = 1, 2, . . . , J :

4. If ηj ≤ θ and σj ≤ θ, conclude that the jth biochemical factor does not appreciably

influence the system response.

5. If ηj ≤ θ and σj > θ, conclude that the jth biochemical factor influences the

system response mostly singularly.

6. If ηj > θ and σj ≤ θ, conclude that the jth biochemical factor influences the

system response mostly jointly with other factors.

7. If ηj > θ and σj > θ, conclude that the jth biochemical factor influences the

system response both singularly and jointly with other factors.

Ranking

8. Use the SESI’s to rank the influential factors, with the most influential factor

being the one with the largest SESI value, the second most influential factor

being the one with the second largest value, and so on.

9. If desired, calculate the PESI’s and DESI’s. Use the PESI’s to investigate the

contribution to the response variance of biochemical factors that influence the

system response jointly with another factor. Use the DESI’s to rank pairs of
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biochemical factors, with the most influential pair being the one with the largest

DESI value, the second most influential pair being the one with the second largest

value, and so on.

3.2 Monte Carlo Estimation

The sensitivity indices derived in Section 3.1 cannot be computed analytically. How-

ever, a number of numerical techniques are available for their evaluation, with the most

prominent ones based on Monte Carlo simulation [23,27]. In this subsection, we present

a Monte Carlo method for estimating the variance-based sensitivity indices that uses a

Latin hypercube sampling scheme [34, 66–68] to efficiently sample the random factors

and reduce estimation variance. We will be referring to this technique as Monte Carlo

Latin Hypercube Sampling (MC-LHS).

The MC-LHS method starts by forming two groups

u
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1 u
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2 . . . u
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J

u
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1 u
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of 2L Latin hypercube samples of the statistically independent random factors U ={
U1, U2, . . . , UJ

}
, where L is a given sample size.4 The samples are drawn indepen-

dently from the Gaussian probability densities of Uj, j = 1, 2, . . . , J . In particular,

when Uj = Y ‡
j , the sample is drawn from a zero-mean Gaussian distribution with

standard deviation λ‡j, whereas, when Uj = Yj, the sample is drawn from a zero-mean

Gaussian distribution with standard deviation λj.

Subsequently, we group the samples together to form the following values for U:

u(l) =
{
u
(l)
1 , u

(l)
2 , . . . , u

(l)
J

}
, l = 1, 2, . . . , 2L

u
(l)
j =

{
u
(L+l)
1 , . . . , u

(L+l)
j−1 , u

(l)
j , u

(L+l)
j+1 , . . . , u

(L+l)
J

}
, j = 1, 2, . . . , J, l = 1, 2, . . . , L

u
(l)
(j) =

{
u
(l)
1 , . . . , u

(l)
j−1, u

(L+l)
j , u

(l)
j+1, . . . , u

(l)
J

}
, j = 1, 2, . . . , J, l = 1, 2, . . . , L.

We use these values, together with Eq. (2.21), to determine the reaction rate constants

of the biochemical reaction system and evaluate the corresponding 2L(J + 1) system

responses R(u(l)), R(u
(l)
j ), and R(u

(l)
(j)), by solving Eq. (2.2) and by using Eqs. (2.6)

and (2.7).

We use the evaluated responses to compute the following Monte Carlo estimators

of the response variances (see the Appendix at the end of this chapter for more details

4To draw a Latin hypercube sample {u(q)
k , k = 1, 2, . . . ,K}, q = 1, 2, . . . , Q, of K indepen-

dent random variables Uk, k = 1, 2, . . . ,K, of size Q, we first draw KQ samples {ξ(q)k , k =
1, 2, . . . ,K, q = 1, 2, . . . , Q} independently from the uniform distribution on [0, 1], and then set

u
(q)
k = F−1

k

[
(π

(q)
k − 1 + ξ

(q)
k )/Q

]
, where Fk [·] is the cumulative distribution function of random vari-

able Uk and {π(q)
k , q = 1, 2, . . . , Q} is an independent random permutation of {1, 2, . . . , Q}.
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on the derivation):

V̂arj
[
R(U)

]
=

1

4L

[ L∑
l=1

R2(u(l)) +
L∑
l=1

R2(u(L+l))

+
L∑
l=1

R2(u
(l)
j ) +

L∑
l=1

R2(u
(l)
(j))
]
− Ê

2

j

[
R(U)

]
, (3.27)

V̂arjj′
[
R(U)

]
=

1

4L

[ L∑
l=1

R2(u
(l)
j ) +

L∑
l=1

R2(u
(l)
(j))

+
L∑
l=1

R2(u
(l)
j′ ) +

L∑
l=1

R2(u
(l)
(j′))
]
− Ê

2

jj′

[
R(U)

]
, (3.28)

V̂ar
[
E
[
R(U) | Uj

]]
=

1

2L

[ L∑
l=1

R(u(l))R(u
(l)
j )

+
L∑
l=1

R(u(L+l))R(u
(l)
(j))
]
− Ê

2

j

[
R(U)

]
, (3.29)

V̂ar
[
E
[
R(U) | U(j)

]]
=

1

2L

[ L∑
l=1

R(u(l))R(u
(l)
(j))

+
L∑
l=1

R(u(L+l))R(u
(l)
j )
]
− Ê

2

j

[
R(U)

]
, (3.30)

V̂ar
[
E
[
R(U) | Uj, Uj′

]]
=

1

2L

[ L∑
l=1

R(u
(l)
j )R(u

(l)
(j′))

+
L∑
l=1

R(u
(l)
j′ )R(u

(l)
(j))
]
− Ê

2

jj′

[
R(U)

]
, (3.31)

where

Êj

[
R(U)

]
=

√√√√ 1

2L

[ L∑
l=1

R(u(l))R(u(L+l)) +
L∑
l=1

R(u
(l)
j )R(u

(l)
(j))
]
, (3.32)

Êjj′
[
R(U)

]
=

√√√√ 1

2L

[ L∑
l=1

R(u
(l)
j )R(u

(l)
(j)) +

L∑
l=1

R(u
(l)
j′ )R(u

(l)
(j′))
]
. (3.33)

Finally, we estimate the variance-based sensitivity indices by [recall Eqs. (3.15), (3.16),
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(3.21), (3.24), and (3.25)]

τ̂j = 1−
V̂ar
[
E
[
R(U) | U(j)

]]
V̂arj

[
R(U)

] , (3.34)

σ̂j =
V̂ar
[
E
[
R(U) | Uj

]]
V̂arj

[
R(U)

] , (3.35)

η̂j = τ̂j − σ̂j, (3.36)

σ̂jj′ =
V̂ar
[
E
[
R(U) | Uj, Uj′

]]
V̂arjj′

[
R(U)

] , j′ ̸= j, (3.37)

υ̂jj′ = σ̂jj′ − σ̂j − σ̂j′ , j′ ̸= j. (3.38)

The above estimators are modified versions of the ones proposed previously by

Saltelli [31]. These modifications are important in order to guarantee that the estimated

variances satisfy the following necessary conditions for any number of Monte Carlo

samples (whose proofs are provided in the Appendix at the end of this chapter):

C.1: V̂arj [R(U)] ≥ 0 and V̂arjj′ [R(U)] ≥ 0.

C.2: If Uj is fixed, then V̂ar [E [R(U) | Uj]] = 0, V̂ar
[
E
[
R(U) | U(j)

]]
= V̂arj [R(U)].

C.3: If U(j) is fixed, then V̂ar [E [R(U) | Uj]] = V̂arj [R(U)], V̂ar
[
E
[
R(U) | U(j)

]]
= 0.

C.4: V̂ar [E [R(U) | Uj]] + V̂ar
[
E
[
R(U) | U(j)

]]
≤ V̂arj [R(U)].

C.5: If Uj and Uj′ are fixed, then V̂ar [E [R(U) | Uj, Uj′ ]] = 0.

C.6: If U(j,j′) is fixed, then V̂ar [E [R(U) | Uj, Uj′ ]] = V̂arjj′ [R(U)].

C.7: V̂ar [E [R(U) | Uj, Uj′ ]] + V̂ar
[
E
[
R(U) | U(j,j′)

]]
≤ V̂arjj′ [R(U)].

Note that, in Conditions C.6 and C.7, U(j,j′) is the set of all factors excluding Uj and Uj′ .

Condition C.1 guarantees that the two estimators for the response variance are

nonnegative. Estimators for the conditional response variances Var
[
E
[
R(U) | Uj

]]
,

46



Var
[
E
[
R(U) | U(j)

]]
, and Var

[
E
[
R(U) | Uj, Uj′

]]
must also be nonnegative. However,

this is not necessarily true for the previous estimators. We could derive nonnegative

variance estimators by employing the standard Monte Carlo formulas

V̂ar [U ] =
1

L

L∑
l=1

(u(l) − Ê [U ])2, where Ê [U ] =
1

L

L∑
l=1

u(l), (3.39)

but using these formulas results in an unnecessarily large number of system response

evaluations [31]. Note however that, if the variance estimators are nonnegative, then

condition C.4 guarantees that 0 ≤ σ̂j ≤ 1, 0 ≤ τ̂j ≤ 1, and σ̂j ≤ τ̂j, as expected.

This implies that 0 ≤ η̂j := τ̂j − σ̂j ≤ 1. Moreover, condition C.7 guarantees that

0 ≤ σ̂jj′ ≤ 1, which also implies that υ̂jj′ ≤ 1. On the other hand, conditions C.2

and C.3 guarantee that, when Uj is fixed, then σ̂j = τ̂j = 0, whereas, when U(j) is fixed,

then σ̂j = τ̂j = 1. Finally, conditions C.5 and C.6 guarantee that, when Uj and Uj′ are

fixed, then σ̂jj′ = 0, whereas, when U(j,j′) is fixed, then σ̂jj′ = 1. In our experience, by

using the previous estimators, instead of the ones suggested in [31], we obtain a more

efficient numerical implementation of the sensitivity analysis methodology discussed

in Section 3.1, which, with fewer Monte Carlo samples, produces estimates of the

underlying sensitivity indices consistent with all necessary conditions and constraints.

3.3 Numerical Results

We now use the MC-LHS technique discussed in the previous subsection to estimate the

variance-based sensitivity indices, given by Eqs. (3.34)–(3.38), for the logarithms of the

duration, integrated response and strength of the ERK-PP concentration profile in the

MAPK biochemical reaction model depicted in Fig. 2.1. We consider three strategies
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for sensitivity analysis: (a) reaction-oriented sensitivity analysis (ROSA), (b) species-

oriented sensitivity analysis (SOSA), and (c) reaction-oriented/species-oriented sensi-

tivity analysis (ROSOSA). ROSA investigates only the effects of fluctuations in the

standard chemical potentials of the activated complexes, whereas, SOSA investigates

only the effects of fluctuations in the standard chemical potentials associated with the

molecular species. On the other hand ROSOSA investigates the sensitivity behavior

of a biochemical reaction system under both types of fluctuations.

ROSA and SOSA can be useful in drug-design problems in which pharmacological

control of the response characteristics of a biochemical reaction system is of interest.

ROSA can be used when the objective is to modify the response of a biochemical reac-

tion system by pharmacologically targeting selected enzymes responsible for catalyzing

influential reactions, whereas, SOSA can be used when the objective is to modify the

system response by altering the kinetic properties of selected influential molecular

species. On the other hand, ROSOSA provides a more general approach to sensitivity

analysis. As a matter of fact, we can use ROSOSA to obtain a complete picture of

the sensitivity properties of a biochemical reaction system both with respect to the

underlying reactions and reactant molecular species. In this subsection, we illustrate

the use of ROSOSA for identifying the reaction rate constants responsible for influ-

encing the system response. This task is important in reverse engineering problems,

where the objective is to estimate the reaction rate constants of a biochemical reaction

system from available data. Use of ROSOSA may help us to focus our estimation effort

on “influential” reaction rate constants, whose values must be determined with high

accuracy, and ignore the remaining “non-influential” reaction rate constants, whose
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exact values are of no particular interest.

Although, in general, the standard deviations associated with the standard chem-

ical potentials of the activated complexes and molecular species depend on m and n,

respectively, this dependence may not be useful in practice, since it is difficult to obtain

information about the fluctuation level of each individual standard chemical potential.

For this reason, we assume here that λ‡m = λ‡, λn = λ, and consider λ‡ and λ as two

“user-defined” parameters that control the “scale” of sensitivity analysis. Small values

of λ‡ and λ correspond to “local” sensitivity analysis, associated with small fluctuations

in the standard chemical potentials about their nominal values, whereas, large values of

λ‡ and λ correspond to “global” sensitivity analysis, associated with large fluctuations

in the standard chemical potentials. Note that, even under this simplification, when

using SOSA (in which case λ‡ = 0, λ ̸= 0) or ROSOSA (in which case λ‡, λ ̸= 0), the

size of variations applied on the reaction rates will not be uniform, due to Eq. (2.23).

In this subsection, we investigate the sensitivity properties of MAPK by implement-

ing the classification/ranking steps presented in Section 3.1 with threshold θ = 0.1, for

the ROSA and SOSA, and θ = 0.05, for the ROSOSA, which corresponds to 10%

and 5% of the maximum attainable JESI and SESI values, respectively. We take the

ROSOSA threshold value to be half of the one used in ROSA and SOSA, since, in the

former case, the response variance is distributed among two types of biochemical fac-

tors (i.e., among the standard chemical potentials of the activated complexes and the

standard chemical potentials of the molecular species), as opposed to the latter cases in

which the response variance is distributed among only one type of biochemical factors.

Choosing a threshold value is a relatively easy task in variance-based sensitivity analy-

49



sis techniques, since the indices are normalized to take values between 0 and 1. In the

following, we estimate the variance-based sensitivity indices associated with the dura-

tion, integrated response, and strength of the ERK-PP concentration profile, as defined

by Eqs. (2.6) and (2.7). We do this by considering the dynamic behavior of MAPK

within a time frame of 6 hours (tmax = 360 min), by setting ε = 0.05 in Eq. (2.7), and

by employing the MC-LHS estimators presented in Section 3.2 with L = 6,000.

In Fig. 3.1, we depict the ROSA results for MAPK at three different fluctuation

levels of the standard chemical potentials of the activated complexes.5 In the case of

duration, the estimated values of γ turn out to be all zero, which implies that there is

no appreciable fractional contribution to the response variances from high-order (≥ 3)

joint effects. The same is true in the case of integrated response with λ‡ = 0.1, 0.2 and

strength with λ‡ = 0.1. However, when λ‡ = 0.2, the estimated γ value for strength is

0.06; when λ‡ = 0.4, the estimated γ values for integrated response and strength are

0.06 and 0.14, respectively, which indicate emergence of high-order (≥ 3) joint effects

for larger values of λ‡, although these effects are still relatively small. A closer look

at the results depicted in Fig. 3.1 indicates that the integrated response and strength

may be subject to second-order joint effects, since, when λ‡ = 0.4, some JESI values

associated with these response characteristics are above the threshold. As a matter of

fact the estimated value of δ for duration is relatively small (δ ≤ 0.15), but the value

associated with the integrated response when λ‡ = 0.4 and the value associated with

the strength when λ‡ = 0.2, 0.4 are both large. These values have been estimated to

5Eq. (2.22) implies that an increase in the chemical potential value of the activated complex of a
reaction one standard deviation from the (zero) mean produces a variation in the reaction rate constant

that amounts to 100eλ
‡
% of the nominal value. As a consequence, the values of λ‡ considered in this

chapter correspond to perturbing the reaction rate constants about 10%, 20%, and 50% of their
nominal values, when λ‡ = 0.1, λ‡ = 0.2, and λ‡ = 0.4, respectively.
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Figure 3.1: ROSA results for the MAPK signaling cascade at three different fluctuation
levels with λ‡ = 0.1, 0.2, 0.4.

be 0.30, 0.28 and 0.53, respectively.

In all three cases depicted in Fig. 3.1, the duration is singularly influenced by the

same three reactions 4 (Raf* + Pho1 
 Raf*-Pho1), 6 (MEK + Raf* 
 MEK-Raf*),

and 13 (MEK-P-Pho2 → MEK + Pho2), with reaction 4 being the most influential
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and reaction 13 being the least influential. As a matter of fact, the estimated SESI

values indicate that these three reactions account for about 72%, 67%, and 56% of

the duration variance when λ‡ = 0.1, 0.2, and 0.4, respectively. However, the results

depicted in Fig. 3.1 indicate more complex sensitivity behaviors for the integrated

response and strength.

When λ‡ = 0.1, 0.2, the ROSA results indicate that the integrated response is

influenced singularly by reaction 4 (Raf* + Pho1 
 Raf*-Pho1) and reaction 6 (MEK

+ Raf* 
 MEK-Raf*), with reaction 4 being the most influential and reaction 6 being

the second most influential. As a matter of fact, the estimated SESI values indicate

that these two reactions account for about 67% and 63% of the integrated response

variance when λ‡ = 0.1 and 0.2, respectively.

When λ‡ = 0.4, the integrated response is influenced both singularly and jointly by

reaction 4 (Raf* + Pho1 
 Raf*-Pho1) and reaction 6 (MEK + Raf* 
 MEK-Raf*),

with reaction 8 (MEK-P + Raf* 
 MEK-P-Raf*) influencing the integrated response

only jointly. Inspection of the estimated SESI values and the estimated PESI values

(data not shown) reveals that the singular and pairwise effects associated with these

three reactions account for about 77% of the integrated response variance, with 69% of

this amount being attributed to singular and pairwise effects solely among reactions 4

and 6.

When λ‡ = 0.1, the ROSA results indicate that the strength is influenced singularly

by reaction 4 (Raf* + Pho1 
 Raf*-Pho1), reaction 6 (MEK + Raf* 
 MEK-Raf*),

reaction 19 (ERK-PP-Pho3 → ERK-P + Pho3), and reaction 8 (MEK-P + Raf* 


MEK-P-Raf*), with reaction 4 being the most influential and reaction 8 being the
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least influential. As a matter of fact, the estimated SESI values indicate that these

four reactions account for about 80% of the strength variance.

When λ‡ = 0.2, the strength is being influenced both singularly and jointly by

reaction 4 (Raf* + Pho1 
 Raf*-Pho1) and reaction 6 (MEK + Raf* 
 MEK-Raf*),

with reaction 8 (MEK-P + Raf* 
 MEK-P-Raf*) influencing the strength only jointly.

Inspection of the estimated PESI values (data not shown) reveals that the pairwise

influence of reaction 4 on the strength is mostly with reactions 6, 19, 17, and 8. It

turns out that the singular and pairwise effects associated with reactions 4, 6, and

8 account for about 69% of the strength variance, with 86% of this amount being

attributed to singular and pairwise effects solely among reactions 4, 6, and 8. On the

other hand, inspection of the estimated DESI values (data not shown) reveals that the

pairs (4−6), (4−8), and (6−8) account for about 48%, 40%, and 21% of the strength

variance, respectively.

Finally, when λ‡ = 0.4, the strength is influenced both singularly and jointly only by

reaction 4 (Raf* + Pho1 
 Raf*-Pho1), with reaction 6 (MEK + Raf* 
 MEK-Raf*),

reaction 8 (MEK-P + Raf* 
 MEK-P-Raf*), reaction 15 (ERK-MEK-PP → ERK-P

+ MEK-PP), and reaction 21 (ERK-P-Pho3 → ERK + Pho3) influencing the strength

only jointly. Inspection of the estimated SESI values and the estimated PESI values

(data not shown) reveals that the singular and pairwise effects associated with reac-

tions 4, 6, and 8 account for about 74% of the strength variance, with 74% of this

amount being attributed to singular and pairwise effects solely among reactions 4, 6,

and 8. On the other hand, inspection of the estimated DESI values (data not shown)

reveals that the pairs (4 − 6), (4 − 8), and (6 − 8) account for about 38%, 37%, and
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Table 3.2: MAPK ROSA results obtained by MC-LHS.

No. Reaction D I S

4 Raf* + Pho1 
 Raf*-Pho1 • • •

6 MEK + Raf* 
 MEK-Raf* • • •

8 MEK-P + Raf* 
 MEK-P-Raf* •

13 MEK-P-Pho2 → MEK + Pho2 •

17% of the strength variance, respectively.

As a consequence of the previous results, we may conclude that the duration is

influenced by reactions 4, 6, and 13; the integrated response is predominantly influenced

by reactions 4 and 6; whereas, the strength is predominantly influenced by reactions 4,

6, and 8; see Table 3.2.

In Fig. 3.2, we depict the SESI values evaluated by means of Eq. (3.17), with the

response derivatives being approximated by symmetric finite-differences around the

nominal reaction rate values, as well as the SESI values estimated by MC-LHS. Note

that Eq. (3.17) provides a reasonable approximation of the estimated MC-LHS SESI

values when λ‡ = 0.1. The derivative-based SESI values correctly predict that, when

λ‡ = 0.1, reactions 4, 6, and 13 are influential for the duration, reactions 4 and 6 are

influential for the integrated response, whereas, reactions 4, 6, 19, and 8 are influential

for the strength. They predict that reactions 4, 6, and 13 account for 73% of the

duration variance, as compared to 72% predicted by MC-LHS. They also predict that

reactions 4 and 6 account for 66% of the integrated response variance, as compared
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to 67% predicted by MC-LHS. Moreover, these values predict that reactions 4, 6, 19,

and 8 account for 79% of the strength variance, as compared to 80% predicted by

MC-LHS. However, it is clear from the results depicted in Fig. 3.2 that the accuracy

of the derivative-based SESI values decreases as λ‡ increases. As a matter of fact,

the prediction that reactions 4, 6, and 13 account for 73% of the duration variance

is inaccurate when compared to 67% and 56% predicted by MC-LHS for λ‡ = 0.2

and λ‡ = 0.4, respectively. The same is true for the integrated response and strength

variances. Moreover, by using the derivative-based SESI values, we cannot detect the

diminishing role of reaction 19 and the emergence of reaction 8 as a key influential factor

for the integrated response. These deficiencies are expected, since the derivative-based

SESI approximation, given by Eq. (3.17), cannot account for joint effects, which become

prominent at increasing levels of standard chemical potential fluctuations. Therefore, it

becomes clear that special care should be exercised when employing the approximation

given by Eq. (3.17) for sensitivity analysis, whose use must be limited to problems with

negligible joint effects.6

In Fig. 3.3, we depict the SOSA results at three different fluctuation levels of the

standard chemical potentials of the molecular species. When λ = 0.1, the estimated

values of γ turn out to be zero for all the three response characteristics, which implies

that there is no appreciable fractional contribution to the response variances from

high-order (≥ 3) joint effects. The same is true in the case of duration and integrated

response with λ‡ = 0.2. However, when λ = 0.2, the estimated γ value for strength

6In this case, the TESI is approximately equal to the SESI and, therefore, the JESI is approximately
zero. Note also that Eq. (3.17) implies that the SESI is independent of the standard deviations λj ,
when their values are all equal.
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Figure 3.2: Derivative-based vs. MC-LHS estimation of SESI values associated with
ROSA, when λ‡ = 0.1, 0.2, 0.4.

is 0.06; when λ = 0.4, the estimated γ values are 0.07, 0.05, and 0.13, for duration,

integrated response, and strength, respectively, which indicate emergence of high-order

(≥ 3) joint effects for larger values of λ, although these effects are still relatively small.

A closer look at the results indicates that all three response characteristics may be

subject to second-order joint effects, since, when λ = 0.4, a JESI value associated with

the duration is above the 10% threshold, whereas, several JESI values associated with

the integrated response and strength are above the 10% threshold. As a matter of

fact the estimated values of δ for all response characteristics are small when λ‡ = 0.1

(δ ≤ 0.02), but when the factor fluctuation level increases, larger estimated δ values
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Figure 3.3: SOSA results for the MAPK signaling cascade at three different fluctuation
levels with λ = 0.1, 0.2, 0.4.

indicate emergence of substantial joint effects, especially for strength, whose δ values

have been estimated to be 0.32 and 0.44 when λ = 0.2 and λ = 0.4, respectively.

In all three cases depicted in Fig. 3.3, the duration is singularly influenced by

the same three molecular species, 5 (Pho1), 7 (MEK), and 14 (MEK-P-Pho2), with
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species 5 being the most influential and species 14 being the least influential. As a

matter of fact, the estimated SESI values indicate that these three species account

for about 78%, 73%, and 62% of the duration variance when λ = 0.1, 0.2, and 0.4,

respectively. When λ = 0.4, the duration is influenced by species 5 both singularly

and jointly. Inspection of the estimated PESI values (data not shown) reveals that

the pairwise influence of species 5 on the duration is mostly with species 7, 14, and

18 (ERK-P-MEK-PP). However, these pairwise influences contribute only 3.4% to the

duration variance. On the other hand, inspection of the estimated DESI values (data

not shown) reveals that the pairs (5−7), (5−14), and (7−14) account for about 50%,

45%, and 33% of the duration variance, respectively.

When λ‡ = 0.1, the SOSA results indicate that the integrated response is influenced

singularly by species 5 (Pho1), 7 (MEK), and 14 (MEK-P-Pho2), with species 5 being

the most influential and species 14 being the least influential. As a matter of fact, the

estimated SESI values indicate that these three species account for about 81% of the

integrated response variance when λ‡ = 0.1.

When λ‡ = 0.2, species 14 does not influence the integrated response anymore.

In this case, the integrated response is influenced singularly only by species 5 and 7.

Inspection of the estimated SESI values reveals that their singular effects account for

about 65% of the integrated response variance.

When λ‡ = 0.4, the integrated response is influenced both singularly and jointly

by species 5 and 7, with species 9 (MEK-P) influencing the integrated response only

jointly. Inspection of the estimated PESI values (data not shown) reveals that the

pairwise influence of species 5 on the integrated response is mostly with species 7, 9, 18
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(ERK-P-MEK-PP), and 22 (ERK-P-Pho3), whereas, species 7 influences the strength

jointly with species 22. It turns out that the singular and pairwise effects associated

with species 5, 7, and 9 account for about 84% of the integrated response variance,

with 73% of this amount being attributed to singular and pairwise effects solely among

species 5 and 7.

When λ = 0.1, the strength is being influenced singularly by species 5 (Pho1),

9 (MEK-P), and 7 (MEK), with species 5 being the most influential and species 7

being the least influential. The estimated SESI values indicate that these three species

account for 80% of the strength variance.

When λ = 0.2, the strength is being influenced both singularly and jointly by

species 5 and 9, whereas, species 7 influences the strength only jointly. Inspection

of the estimated PESI values (data not shown) reveals that the pairwise influence of

species 5 on the strength is mostly with species 7, 9, 16 (ERK-MEK-PP), 18 (ERK-P-

MEK-PP), and 22 (ERK-P-Pho3). It turns out that the singular and pairwise effects

associated with species 5 7, and 9 account for about 81% of the integrated response

variance, with 84% of this amount being attributed to singular and pairwise effects

solely among species 5, 7, and 9. On the other hand, inspection of the estimated DESI

values (data not shown) reveals that the pairs (5− 9), (5− 7), and (7− 9) account for

about 52%, 50%, and 23% of the strength variance, respectively.

Finally, when λ = 0.4, the strength is being influenced both singularly and jointly

only by species 5, with species 9, 7, 16 (ERK-MEK-PP), and 22 (ERK-P-Pho3), in-

fluencing the strength only jointly. Inspection of the estimated PESI values (data

not shown) reveals that the pairwise influence of species 5 on the strength is mostly
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Table 3.3: MAPK SOSA results by MC-LHS.

No. Molecular Species D I S

5 Pho1 • • •

7 MEK • • •

9 MEK-P •

14 MEK-P-Pho2 •

with species 7, 9, 16 (ERK-MEK-PP), 18 (ERK-P-MEK-PP), and 22 (ERK-P-Pho3),

whereas, species 9 influences the strength jointly with species 16, and species 7 influ-

ences the strength jointly with species 22. It turns out that the singular and pairwise

effects associated with species 5, 7, and 9 account for about 79% of the strength vari-

ance, with the singular and pairwise effects solely among species 5, 7, and 9 accounting

for about 82% of that amount. Inspection of the estimated DESI values (data not

shown) reveals that the pairs (5−7), (5−9), and (7−9), account for about 49%, 49%,

and 16% of the strength variance, respectively.

As a consequence of the previous results, we may conclude that the duration is

influenced by species 5, 7, and 14; the integrated response is predominantly influenced

by species 5 and 7; whereas, the strength is predominantly influenced by species 5, 7,

and 9.

The results obtained by ROSOSA, with λ‡ = λ = 0.1, 0.2, 0.4, perfectly agree with

the previous conclusions and reveal no additional sensitivity behavior (data not shown).

However, we can also use ROSOSA to identify the most influential reaction rates in
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a biochemical reaction system. Indeed, from Eq. (2.21), note that the reaction rate

constantsK2m−1 andK2m of themth forward and reverse reactions are influenced by the

biochemical factors Um and UM+n, n = 1, 2, . . . , N , through the zero-mean Gaussian

random variables Gm and G′
m, respectively, given by Eq. (2.22). As a consequence, we

can quantify the influence of the rate constants K2m−1 and K2m on the system response

by means of the net fractional contribution of the biochemical factors Um and UM+n,

n = 1, 2, . . . , N , on the system response. This leads to the following sensitivity indices:

g2m−1 = σm +
N∑

n=1

sgn(νnm)σn +
N∑

n=1

sgn(νnm)υmn +
N∑

n=1

N∑
n′=n+1

sgn(νnm)sgn(νn′m)υnn′

g2m = σm +
N∑

n=1

sgn(ν ′nm)σn +
N∑

n=1

sgn(ν ′nm)υmn +
N∑

n=1

N∑
n′=n+1

sgn(ν ′nm)sgn(ν
′
n′m)υnn′ ,

(3.40)

where σm is the SESI of the mth reaction, σn is the SESI of the nth species, υmn is

the PESI between reaction m and species n, υnn′ is the PESI between species n and

n′, and sgn(·) is the sign function [i.e., sgn(a) = 1, if a > 0, whereas, sgn(a) = 0, if

a = 0]. We refer to g2m−1 and g2m as the group-effect sensitivity indices (GESI) of the

forward and reverse mth reaction, respectively. By using these indices, we can say that

a reaction rate is most influential if the corresponding GESI value is the largest one.

Likewise, we may define the second most influential rate constant, and so on.

In Fig. 3.4, we depict the ROSOSA results for the reaction rate constants at three

different fluctuation levels of the standard chemical potentials. It is clear from these

results that only a small fraction of the reaction rate constants appreciably influence

the duration, integrated response, and strength of ERK-PP. We summarize these re-

actions in Table 3.4, which depicts only the reaction rates that, for a given response
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Figure 3.4: ROSOSA reaction rate results for the MAPK signaling cascade and for
three different fluctuation levels with λ‡ = λ = 0.1, 0.2, 0.4. The GESI values associated
with the reaction rate constants k2, k10, k14, k18, k22, k26, k30, k34, k38, and k41 are not
calculated, since these constants are zero (they correspond to the reverse portion of
the irreversible reactions 1, 5, 7, 9, 11, 13, 15, 17, 19, and 21).

characteristic, are consistently classified as being influential at all three fluctuation lev-

els. The results indicate that the duration is influenced by the reaction rate constants

k7, k8, k11, k12, k24, and k25. Four of these rate constants, namely k7, k8, k11, and k12,

influence the integrated response as well, and three of these rate constant, namely k7,

k8, and k11, influence the strength as well. The integrated response is also influenced

by k15, whereas, the strength is also influenced by k15 and k23. From Fig. 3.4, the most
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Table 3.4: MAPK ROSOSA results.

Rate Reaction D I S

k7 Raf* + Pho1 → Raf*-Pho1 • • •

k8 Raf*-Pho1 → Raf* + Pho1 • • •

k11 MEK+Raf* → MEK-Raf* • • •

k12 MEK-Raf* → MEK+Raf* • •

k15 MEK-P+Raf* → MEK-P-Raf* • •

k23 MEK-P+Pho2 → MEK-P-Pho2 •

k24 MEK-P-Pho2 → MEK-P+Pho2 •

k25 MEK-P-Pho2 → MEK+Pho2 •

influential rate constant for all the three characteristics is k7.

3.4 Discussion

Our ROSA sensitivity analysis results summarized in Table 3.2 indicate that the bind-

ing and unbinding of the active version Raf* of the Raf kinase with its inactivator

phosphatase Pho1 is the reaction that most influences the duration, integrated re-

sponse and strength of ERK-PP activity in the MAPK signaling cascade. The second

most influential reaction turns out to be the binding and unbinding of Raf* with MEK.

The duration is also influenced by the dephosphorylation of the phosphorylated version

MEK-P of MEK by the phosphatase Pho2, whereas, the strength is also influenced by
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the binding and unbinding of Raf* with MEK-P. On the other hand, the SOSA sensi-

tivity results summarized in Table 3.3 indicate that the phosphatase Pho1, associated

with Raf inactivation, and the kinase MEK are two very important molecular species

that are responsible for influencing the duration, integrated response and strength of

ERK-PP activity in MAPK signaling. Interestingly, the Food and Drug Administra-

tion (FDA) has recently approved the use of Sorafenib for the treatment of kidney and

liver cancer. This drug is a small molecular inhibitor that targets Raf (as well as other

kinases) and induces anti-proliferative and proapoptotic effects by influencing ERK

activity [69]. Another potent inhibitor of oncogenic B-Raf kinase activity, PLX4032,

is currently under clinical trials for the treatment of late-stage melanoma. It has been

demonstrated to selectively block the MAPK pathway in B-Raf mutant cells and to

cause programmed cell death in melanoma cell lines [70,71]. The importance of MEK

in regulating the response of the MAPK signaling cascade has been investigated by

Mansour et al. [72], who have reported that expression of genetically mutated con-

stitutively active MEK is sufficient to cause cellular transformation. In addition to

Pho1 and MEK, the SOSA results reveal two other influential species, namely MEK-

P-Pho2 and MEK-P, which influence the duration and strength of ERK-PP activity,

respectively. Both are key reactant species in the MEK dephosphorylation step of the

MAPK signaling cascade that leads to MEK inactivation. It has been reported by Orth

et al. [73] that the prevention of MEK activation may contribute to eventual apoptosis.

A number of investigators have recently studied sensitivity properties of the MAPK

signaling cascade by using derivative-based approaches. In particular, Mayawala et

al. [50] have considered three response characteristics associated with ERK-PP ac-
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tivity, namely decay time, peak time, and amplitude gain, and concluded that there

is no reaction that influences the peak time. We can relate decay time and ampli-

tude to the duration and strength of ERK-PP activity, respectively. Mayawala et

al. concluded that the decay time (duration) is very sensitive to phosphatase reac-

tions at the MEK level and that these reactions do not significantly influence the

amplitude gain (strength). These conclusions are in agreement with our results ob-

tained by variance-based sensitivity analysis. Mayawala et al. have also concluded

that the amplitude gain (strength) is most sensitive to phosphatase reactions at the

ERK level. Unfortunately, this conclusion is not supported by our study. Recall that,

for small fluctuations (i.e., when λ‡ = 0.1), the ROSA results indicate that reac-

tion 19 (ERK-PP-Pho3 → ERK-P + Pho3, dephosphorylation of ERK-PP) influences

the strength of ERK-PP activity, whereas, for large fluctuations (i.e., when λ‡ = 0.4),

reaction 21 (ERK-P-Pho3 → ERK + Pho3, dephosphorylation of ERK-P) influences

the strength of ERK-PP activity; see Fig. 3.1. However, our results (data not shown)

reveal that the influence of reaction 19 accounts for only 13%, for λ‡ = 0.1, of the

duration variance, whereas, the influence of reaction 21 accounts for only 18%, for

λ‡ = 0.4, of the strength variance.

On the other hand, Liu et al. [17] have identified the activation/inactivation of

Raf and several reactions associated with the phosphorylation and dephosphorylation

of MEK as being very influential in shaping system output. Their conclusions are in

agreement with our results obtained by variance-based sensitivity analysis.

Finally, Hornberg et al. [16] have concluded that most reactions in the MAPK

signaling cascade are not important for influencing the output ERK-PP profile, and
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they have noted that Raf inactivation and MEK phosphorylation by Raf are the most

influential processes for controlling the duration, integrated response, and amplitude

(related to the strength) of ERK-PP activity. Hornberg et al. have also noted that the

amplitude is also controlled by ERK phosphorylation and dephosphorylation, whereas,

the duration and integrated response are further controlled by MEK dephosphorylation.

In general, these results are in agreement with our results obtained by variance-based

sensitivity analysis, except for the integrated response, in which case MEK dephospho-

rylation reactions are identified as non-influential by variance-based sensitivity analysis.

Moreover, our results clearly indicate that reaction 4 (Raf* + Pho1 
 Raf*-Pho1) is

the most influential reaction and reaction 6 (MEK + Raf* 
 MEK-Raf*) is the second

most influential reaction for controlling the duration, integrated response and strength

of ERK-PP activity. In addition, they have studied how changes in the concentration

of the molecular species may influence the response characteristics. Alternatively, the

SOSA results presented in this dissertation show how the system response is affected

when the kinetic properties of molecular species are changed, for example, by genetic

variations. The Hornberg et al. concentration-based sensitivity analysis results indi-

cate the importance of MEK, ERK, Pho1, Pho2, and Pho3 for influencing the duration

and integrated response, as well as the importance of ERK and Pho3 for influencing

the amplitude, at small fluctuation levels. Moreover, their results indicate the impor-

tance of ERK, Pho1, Pho3, and MEK for influencing the amplitude at large fluctuation

levels. On the other hand, the SOSA results presented above clearly identify that Pho1

and MEK are two most influential species in shaping the response profile of ERK-PP,

which turns out to have a better specificity and be pharmaceutically more relevant.
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Finally, Hornberg et al. have noted a high correlation between the control of duration

and integrated response and very little correlation between the control of duration and

amplitude. Our results agree with their second conclusion, but do not fully agree with

the first one. Our results indicate that the integrated response has a larger correlation

with duration for small factor fluctuations, whereas, it has a larger correlation with

strength for large factor fluctuations. In fact, the sensitivity properties of the inte-

grated response could reflect the combined properties of the duration and strength,

since Eq. (2.7) in Section 2.3 implies that the integrated response is the product of

duration and strength.

Differences between the previous results and the sensitivity analysis results pre-

sented in this dissertation are partly due to the fact that various studies use different

choices for the input factors and response characteristics. We also believe that another

source of discrepancy is the use of derivatives for sensitivity analysis by the previously

mentioned methods. But the most serious problem seems to be the fact that these

methods do not employ a thermodynamically consistent approach to sensitivity anal-

ysis. It has been recently pointed out by Ederer and Gilles [30] that thermodynamic

inconsistencies may lead to erroneous sensitivity analysis results, which may in turn

lead to misleading biological conclusions. The method presented in this dissertation

effectively addresses this important problem.

We should finally point out that experimental evidence may suggest that a partic-

ular cellular behavior of interest is controlled by the combined influence of the con-

centration profiles of two (or more) molecular species (e.g., Raf* and ERK-PP in the

MAPK signaling cascade). A simple way to deal with this case is to separately cal-
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culate the SESI’s σ
(1)
j and σ

(2)
j , the TESI’s τ

(1)
j and τ

(2)
j , and the JESI’s η

(1)
j and η

(2)
j ,

corresponding to the concentration profiles of two molecular species, say 1 and 2, and

set σj = max{σ(1)
j , σ

(2)
j } and ηj = max{η(1)j , η

(2)
j }. It is not difficult to see that the

rules for interpreting the variance-based sensitivity indices summarized in Table 3.1

can be applied here as well. For example, if ηj ≃ 0 and σj ≃ 0, then we may say that

factor j does not appreciably influence system behavior. On the other hand, if ηj ≃ 0

and σj ̸≃ 0, we may say that factor j influences system behavior mostly singularly. In

this case however we can get additional information about the actual source of influ-

ence by considering the individual SESI values. For example, if ηj ≃ 0 and σj ̸≃ 0,

with σ
(1)
j ̸≃ 0 and σ

(2)
j ≃ 0, then we can say that factor j influences system behavior

mostly singularly through the activity of only the first molecular species, whereas, if

σ
(1)
j ̸≃ 0 and σ

(2)
j ̸≃ 0, then we can say that factor j influences system behavior mostly

singularly through the activity of both molecular species.

3.5 Appendix

3.5.1 Monte Carlo Estimation

LetX and Y be two statistically independent random variables with probability density

functions fX(x) and fY (y), respectively, and Z = g(X,Y ) be another random variable,

which is a function of X and Y . The kth-order moment E
[
Zk
]
of Z is given by

E
[
Zk
]
=

∫ ∞

−∞

∫ ∞

−∞
[g(x, y)]kfX(x)fY (y) dxdy. (3.41)
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We can derive a Monte Carlo estimator Ê
[
Zk
]
for this quantity by independently

drawing samples {x(l), l = 1, 2, . . . , L} of X and {y(l), l = 1, 2, . . . , L} of Y from the

probability density functions fX(x) and fY (y), respectively, and by setting

Ê
[
Zk
]
=

1

L

L∑
l=1

[g(x(l), y(l))]k. (3.42)

As a special case, we can estimate the mean and variance of Z by

Ê [Z] =
1

L

L∑
l=1

g(x(l), y(l)), (3.43)

V̂ar [X] =
1

L

L∑
l=1

g2(x(l), y(l))− Ê
2
[Z] , (3.44)

since Var [Z] = E [Z2]− E2 [Z].

To derive a Monte Carlo estimator for the variance Var
[
E
[
g(X, Y ) | Y

]]
, note that

Var
[
E
[
g(X,Y ) | Y

]]
=

∫ ∞

−∞
E2
[
g(X, Y ) | Y

]
fY (y) dy −

{
E
[
E
[
g(X, Y ) | Y

]]}2
=

∫ ∞

−∞

[∫ ∞

−∞
g(x1, y)fX(x1) dx1

] [∫ ∞

−∞
g(x2, y)fX(x2) dx2

]
fY (y) dy − E2

[
g(X, Y )

]
=

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
g(x1, y)g(x2, y)fX(x1)fX(x2)fY (y) dx1dx2dy − E2 [Z] . (3.45)

This leads to the following Monte Carlo estimator:

V̂ar
[
E
[
g(X,Y ) | Y

]]
=

1

L

L∑
l=1

g(x
(l)
1 , y

(l))g(x
(l)
2 , y

(l))− Ê
2
[Z] , (3.46)

where {x(l)1 , l = 1, 2, . . . , L}, {x(l)2 , l = 1, 2, . . . , L} are two sets of samples of X drawn

independently from the probability density function fX(x), and {y(l), l = 1, 2, . . . , L} is

a set of samples of Y drawn independently from the probability density function fY (y).
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3.5.2 Proof of Conditions C.1–C.7

In this subsection, we show that conditions C.1-C.7 are indeed satisfied by the Monte

Carlo variance estimators introduced in Section 3.2.

Condition C.1 is a direct consequence of the fact that

V̂arj [R(U)] =
1

4L

{ L∑
l=1

[
R(u(l))−R(u(L+l))

]2
+

L∑
l=1

[
R(u

(l)
j )−R(u

(l)
(j))
]2}

, (3.47)

and

V̂arjj′ [R(U)] =
1

4L

{ L∑
l=1

[
R(u

(l)
j )−R(u

(l)
(j))
]2

+
L∑
l=1

[
R(u

(l)
j′ )−R(u

(l)
(j′))
]2}

. (3.48)

Conditions C.2, C.3, C.5, and C.6 can be shown from Eq. (3.47) and Eq. (3.48) above,

the fact that

V̂ar [E [R(U) | Uj]] =
1

2L

{ L∑
l=1

[
R(u(l))−R(u

(l)
(j))
][
R(u

(l)
j )−R(u(L+l))

]}
, (3.49)

V̂ar
[
E
[
R(U) | U(j)

]]
=

1

2L

{ L∑
l=1

[
R(u(l))−R(u

(l)
j )
][
R(u

(l)
(j))−R(u(L+l))

]}
, (3.50)

V̂ar [E [R(U) | Uj, Uj′ ]] =
1

2L

{ L∑
l=1

[
R(u

(l)
j )−R(u

(l)
j′ )
][
R(u

(l)
(j′))−R(u

(l)
(j))
]}
, (3.51)

and the facts that fixing Uj implies that u(l) = u
(l)
(j) and u(L+l) = u

(l)
j , fixing U(j) implies

that u(l) = u
(l)
j and u(L+l) = u

(l)
(j), whereas, fixing U(j,j′) implies that u

(l)
j = u

(l)
(j′) and

u
(l)
(j) = u

(l)
j′ . To show Condition C.4, we define

h1(l) := R(u(l))

h2(l) := R(u(L+l))

h3(l) := R(u
(l)
j )

h4(l) := R(u
(l)
(j)).
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Then, by using some straightforward algebra, we can show that

{[h1(l) + h2(l)]− [h3(l) + h4(l)]}2 ≥ 0

implies

1

4

[
h21(l) + h22(l) + h23(l) + h24(l)

]
− 1

2
[h1(l)h2(l) + h3(l)h4(l)]

≥ 1

2
[h1(l)h3(l) + h2(l)h4(l)]−

1

2
[h1(l)h2(l) + h3(l)h4(l)]

+
1

2
[h1(l)h4(l) + h2(l)h3(l)]−

1

2
[h1(l)h2(l) + h3(l)h4(l)] , (3.52)

which in turn implies that V̂arj
[
R(U)

]
≥ V̂ar

[
E
[
R(U) | Uj

]]
+ V̂ar

[
E
[
R(U) | U(j)

]]
.

Condition C.7 can be shown similarly.
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Chapter 4

Approximation Techniques

4.1 Motivation and Background

In the previous two chapters, we have proposed a probabilistic sensitivity analysis ap-

proach for biochemical reaction systems that uses the standard chemical potentials of

the activated complexes of the underlying reactions and the standard chemical poten-

tials of molecular species as the biochemical factors of interest, and propagates factor

uncertainty to a given system response in a thermodynamically consistent manner.

Moreover, we have adopted a formal statistical approach to sensitivity analysis, known

as variance-based sensitivity analysis [5,23,25,27], which uses a set of indices to quan-

tify the contribution of individual biochemical factors to the variance of the system

response.

Unfortunately, it is not in general possible to analytically evaluate variance-based

sensitivity indices. As a consequence, these indices are estimated by Monte Carlo

sampling [23,27,31,32], which requires evaluation of the system response at each sample.
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A major drawback of this approach is its slow rate of convergence. As a matter of fact,

the error produced by a naive Monte Carlo estimation approach decreases with an

error rate of O(1/
√
L), where L is the number of Monte Carlo samples used [33].

Hence, accurate estimation of the sensitivity indices requires a large number of Monte

Carlo samples and, therefore, a large number of system response evaluations. This

makes Monte Carlo estimation of variance-based sensitivity indices computationally

very expensive, especially in the case of biochemical reaction systems comprised of a

large number of reactions and molecular species.

To reduce the computational load of Monte Carlo estimation, it is imperative that

we develop techniques which can produce sufficiently accurate estimates of the sensitiv-

ity indices in a fraction of the time required by Monte Carlo sampling. In this chapter,

we present four such techniques and apply them to the MAPK signaling cascade. We

use analytical derivations and sensitivity analysis results, generated by the four meth-

ods, to clarify the relative merits of each approximation technique and produce useful

insights on when these techniques can be used for sensitivity analysis of biochemical

reaction systems.

The first technique is based on a second-order Taylor series expansion, which is

an extension of the first-order derivative-based approach for variance-based sensitivity

analysis discussed in [5,23,27,34] by including second-order derivative terms. The other

three approximation techniques are based on the high-dimensional model representa-

tion (HDMR) schemes developed by H. Rabitz and his coworkers [35–37]. Two types of

HDMR’s have been proposed in the literature: finite-difference (or cut) HDMR (FD-

HDMR) [35–37, 74] and analysis-of-variance HDMR (ANOVA-HDMR) [35–37]. An
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attractive property of these schemes, which is important in the context of sensitivity

analysis, is the fact that the basis functions provide an exact hierarchical decomposition

of the system response. Each term in the decomposition encapsulates the contribu-

tion of an input biochemical factor to the system response singularly or jointly with

other factors. It has been argued in [35–37] that, for most physical systems of interest,

the response function can be well approximated by a truncated HDMR that uses only

low-order basis functions. As a consequence, it is natural to approximate the response

function of a biochemical reaction system with a truncated HDMR that includes only

first- and second-order basis functions.

A number of alternative approximation techniques for variance-based sensitivity

analysis have been proposed in the literature [75–78]. In these techniques, the original

response function is approximated by a surrogate function that can be evaluated much

more efficiently, and the sensitivity indices are then estimated by Monte Carlo sampling

based on the surrogate function. The computational cost of these techniques includes

two parts. The first part is on building the surrogate function by a sufficient number

of training points, where the original response function values must be evaluated. The

second part is on estimating the sensitivity indices by Monte Carlo sampling based

on the surrogate function. Computational savings are due to less time required for

computing the surrogate function at each Monte Carlo sample than using the original

response function (whose evaluation requires solving a system of ordinary differential

equations). To estimate the variance-based sensitivity indices, a large number of sam-

ples are required to sufficiently reduce the Monte Carlo estimation error, especially

when an approximation error already exists by using a surrogate function to replace
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the original response function. For large biochemical reaction systems, the entire esti-

mation process can still be very slow, even when evaluation of the surrogate function

at each sample point is fast. By contrast, the main advantage of the techniques dis-

cussed in this chapter is that they lead to analytical formulas for the sensitivity indices

in terms of certain parameters, and thus avoid Monte Carlo estimation of sensitivity

indices. As a consequence, the computational cost for calculating the variance-based

sensitivity indices reduces to that of estimating the underlying parameters, which leads

to appreciable computational savings over the techniques proposed in [75–78].

4.2 Second-Order Sensitivity Indices

In Chapter 2, we used variance-based sensitivity analysis technique to assess how un-

certainty in the rate constants of a biochemical reaction system can affect the system

response. In most practical situations, it is difficult to evaluate the high-order terms

(≥ 3) in the response variance decomposition scheme given by Eq. (3.1). Although

these terms are usually negligible at low to moderate levels of biochemical factor un-

certainty, they may take substantial values at high levels [32]. Unfortunately, it is

difficult to deal in practice with high-order variance terms. For this reason, it is quite

convenient to base our sensitivity analysis effort only on the first- and second-order

terms Vj and Vjj′ . Then, instead of using the total system response variance V , we base

our sensitivity analysis on its second-order portion V (2), given by

V (2) =
J∑

j=1

Vj +
J−1∑
j=1

J∑
j′=j+1

Vjj′ . (4.1)

By using the probabilistic model given by Eq. (2.21) and the variance decomposition
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scheme in Eq. (4.1), we can develop a powerful (second-order) methodology for sensitiv-

ity analysis of biochemical reaction systems, similar to the one discussed in Chapter 3,

which was based on the total response variance V . The method requires evaluation

of two indices, namely the (second-order) single-effect sensitivity index (SESI) σ
(2)
j ,

defined by

σ
(2)
j :=

Vj
V (2)

, (4.2)

and the (second-order) joint-effect sensitivity index (JESI) η
(2)
j , defined by

η
(2)
j :=

Tj
V (2)

, (4.3)

where

Tj :=
J∑

j=1,j′ ̸=j

Vjj′ . (4.4)

Clearly, σ
(2)
j quantifies the fractional singular contribution of the jth biochemical factor

to the second-order portion V (2) of the total response variance V , whereas, η
(2)
j quanti-

fies the fractional contribution of the jth biochemical factor to V (2) jointly with another

factor. It turns out that, if σ
(2)
j = η

(2)
j = 0, then we can conclude that factor j does

not influence the system response singularly or jointly with another factor (although,

it may influence the system response jointly with two or more factors). On the other

hand, if σ
(2)
j > 0 and η

(2)
j = 0, then we can conclude that factor j influences the sys-

tem response singularly but not jointly with another factor. Moreover, if σ
(2)
j = 0 and

η
(2)
j > 0, we can conclude that factor j does not influence the system response singularly

but it does so jointly with some other factor, whereas, if σ
(2)
j > 0 and η

(2)
j > 0, we can

conclude that factor j influences the system response both singularly and jointly with

some other factor. In practice, we can set a small threshold θ to determine whether
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σ
(2)
j and η

(2)
j are sufficiently larger than zero.

A straightforward technique for approximating the SESI and JESI values is based

on a Monte Carlo Latin hypercube sampling approach, whose details can be found in

Section 3.2 (see also [23, 31, 32]). This approach can be used to provide estimates σ̂
(2)
j

and η̂
(2)
j of the second-order SESI’s and JESI’s by using 2L(J+1) system evaluations [by

integrating the system of N ordinary differential equations given by Eq. (2.2)], where

L is the number of Latin hypercube samples used and J is the number of biochemical

factors considered in the analysis. We refer to σ̂
(2)
j and η̂

(2)
j as the (second-order) SESI’s

and JESI’s obtained byMonte Carlo (MC) estimation. This method is computationally

expensive, since a large number L of Latin hypercube samples is required to obtain

sufficiently accurate estimates of the sensitivity indices.

In this chapter, we present several other methods for approximating the indices

σ
(2)
j and η

(2)
j associated with the second-order variance-based sensitivity analysis. We

first review a number of multivariate representation schemes for the response function

of a biochemical reaction system that can be used to analytically map the complex

relationship between the biochemical factors and the system response. We then discuss

how to use these schemes in order to approximate σ
(2)
j and η

(2)
j . We also present details

regarding the numerical implementation of the resulting approximation techniques.

4.3 Response Function Representation

For ease of presentation, we will base our discussion on a response function R(u) =

R(u1, u2, u3) that depends only on three factors of interest u = {u1, u2, u3}. Although
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extension to the case of J biochemical factors is straightforward, the required notation

is cumbersome and makes key steps difficult to follow. For this reason, we use a

trivariate response function to derive key equations and state the general form of these

equations without proof.

4.3.1 TSMR

If the response function R is continuously differentiable in a neighborhood of u = 0,

then its Taylor series expansion about 0 is given by

R(u1, u2, u3) = r0 + r1(u1) + r2(u2) + r3(u3) + r12(u1, u2)

+ r13(u1, u3) + r23(u2, u3) + r123(u1, u2, u3), (4.5)

where

r0 := R(0)

r1(u1) :=
∞∑

m=1

1

m!

∂mR(0)

∂um1
um1

r2(u2) :=
∞∑

m=1

1

m!

∂mR(0)

∂um2
um2

r3(u3) :=
∞∑

m=1

1

m!

∂mR(0)

∂um3
um3
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r12(u1, u2) :=
∞∑

m1=1

∞∑
m2=1

1

m1!m2!

∂m1+m2R(0)

∂um1
1 ∂um2

2

um1
1 um2

2

r13(u1, u3) :=
∞∑

m1=1

∞∑
m3=1

1

m1!m3!

∂m1+m3R(0)

∂um1
1 ∂um3

3

um1
1 um3

3

r23(u2, u3) :=
∞∑

m2=1

∞∑
m3=1

1

m2!m3!

∂m2+m3R(0)

∂um2
2 ∂um3

3

um2
2 um3

3

r123(u1, u2, u3) :=
∞∑

m1=1

∞∑
m2=1

∞∑
m3=1

1

m1!m2!m3!

∂m1+m2+m3R(0)

∂um1
1 ∂um2

2 ∂um3
3

um1
1 um2

2 um3
3 . (4.6)

Clearly, the Taylor series expansion provides a representation of the system response R

in terms of functions r, given by Eq. (4.6). We refer to the r’s as basis functions. Note

that r0 is the value of R at the reference point 0. On the other hand, r1(u1) summarizes

the singular contribution of factor u1 to the value of R, whereas, r12(u1, u2) summarizes

the joint contribution of factors u1 and u2. Finally, r123(u1, u2, u3) summarizes the joint

contribution of all three factors to the value of R. Similar remarks apply for r2, r3, r13,

and r23.

Although Eq. (4.6) provides analytical formulas for the basis functions, calculating

these functions at a point u requires knowledge of the partial derivatives of R at the

reference point 0, as well as evaluation of infinite sums, which is very difficult to do in

practice. Note however that any basis function r given by Eq. (4.6) is zero if one of its

arguments equals zero. By using this property and Eq. (4.5), we have that

R(0, 0, 0) = r0

R(u1, 0, 0) = r0 + r1(u1)

R(0, u2, 0) = r0 + r2(u2)

R(0, 0, u3) = r0 + r3(u3)
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R(u1, u2, 0) = r0 + r1(u1) + r2(u2) + r12(u1, u2)

R(u1, 0, u3) = r0 + r1(u1) + r3(u3) + r13(u1, u3)

R(0, u2, u3) = r0 + r2(u2) + r3(u3) + r23(u2, u3),

which results in

r0 = R(0, 0, 0)

r1(u1) = R(u1, 0, 0)−R(0, 0, 0)

r2(u2) = R(0, u2, 0)−R(0, 0, 0)

r3(u3) = R(0, 0, u3)−R(0, 0, 0)

r12(u1, u2) = R(u1, u2, 0)−R(u1, 0, 0)−R(0, u2, 0) +R(0, 0, 0)

r13(u1, u3) = R(u1, 0, u3)−R(u1, 0, 0)−R(0, 0, u3) +R(0, 0, 0)

r23(u2, u3) = R(0, u2, u3)−R(0, u2, 0)−R(0, 0, u3) +R(0, 0, 0)

r123(u1, u2, u3) = R(u1, u2, u3)−R(u1, u2, 0)−R(u1, 0, u3)−R(0, u2, u3)

+R(u1, 0, 0) +R(0, u2, 0) +R(0, 0, u3)−R(0, 0, 0). (4.7)

These formulas provide a method for evaluating the basis functions r at some point u.

This can be done by calculating the system response at the corresponding u values

suggested by the formulas. For example, evaluation of r0 requires calculation of the

system response at u1 = u2 = u3 = 0, whereas, evaluation of r1(u1) requires an

additional calculation of the system response at u1, u2 = u3 = 0. This can be done

by solving the system of ordinary differential equations given by Eq. (2.2). We refer

to the representation scheme given by Eqs. (4.5) and (4.6) as Taylor Series Model

Representation (TSMR).
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4.3.2 FD-HDMR

We can extend the decomposition scheme given by Eq. (4.5) to the case of J biochemical

factors and to functions that are not necessarily continuously differentiable. As a mat-

ter of fact, we can represent any response function R with J factors u = {u1, u2, . . . , uJ}

by

R(u) = r0 +
J∑

j=1

∑
· · ·
∑

1≤m1<···<mj≤J

rm1m2···mj
(um1 , um2 , . . . , umj

). (4.8)

The only requirement is that we must be able to uniquely determine the basis functions

r from R. The representation of a multidimensional function R by Eq. (4.8) is known

in the literature as High-Dimensional Model Representation (HDMR) [35,36].

A way to guarantee that we can uniquely determine r from the response function

R is to consider basis functions that become zero if one of their arguments is zero. In

this case, r can be determined by the classical Möbius inversion formula

rm1m2···mj
(um1 , um2 , . . . , umj

) =
∑
I′⊆I

(−1)|I\I
′|R(uI′), (4.9)

which generalizes Eq. (4.7). In this formula, I = {m1,m2, . . . ,mj}, A \ B denotes the

set difference between two sets A and B, |A| denotes the number of elements in a set A

(by convention, we set |∅| = 0), and uI′ is u with all variables, except the one indexed

by I ′, set to zero.

Eqs. (4.8) and (4.9) express R(u) as a superposition of system response values on

lines, planes and hyperplanes passing through the reference point 0. For this reason,

these equations lead to a system representation scheme known in the literature as

cut-HDMR [35–37] or Finite Difference (FD) HDMR [74]. We adopt the second termi-

nology here as being more appropriate for characterizing this type of HDMR. Clearly,
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the Taylor series expansion is a special case of FD-HDMR, with basis functions given

by Eq. (4.7).

4.3.3 ANOVA-HDMR

Let us now assume that we can find invertible differentiable transformations gj, which

we can use to map the biochemical factors uj into factors sj := gj(uj), that take values

between 0 and 1. Let

P (s1, s2, s3) := R(g−1
1 (s1), g

−1
2 (s2), g

−1
3 (s3)). (4.10)

The HDMR representation of P is given by

P (s1, s2, s3) = p0 + p1(s1) + p2(s2) + p3(s3) + p12(s1, s2)

+ p13(s1, s3) + p23(s2, s3) + p123(s1, s2, s3). (4.11)

If we consider basis functions p whose integrals over a single variable are equal to zero,

then we can readily verify from Eq. (4.11) that

p0 =

∫ 1

0

∫ 1

0

∫ 1

0

P (s1, s2, s3)ds1ds2ds3

p1(s1) =

∫ 1

0

∫ 1

0

P (s1, s2, s3)ds2ds3 − p0

p2(s2) =

∫ 1

0

∫ 1

0

P (s1, s2, s3)ds1ds3 − p0

p3(s3) =

∫ 1

0

∫ 1

0

P (s1, s2, s3)ds1ds2 − p0

p12(s1, s2) =

∫ 1

0

P (s1, s2, s3)ds3 − p1(s1)− p2(s2)− p0

p13(s1, s3) =

∫ 1

0

P (s1, s2, s3)ds2 − p1(s1)− p3(s3)− p0
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p23(s2, s3) =

∫ 1

0

P (s1, s2, s3)ds1 − p2(s2)− p3(s3)− p0

p123(s1, s2, s3) = P (s1, s2, s3)− p12(s1, s2)− p13(s1, s3)− p23(s2, s3)

−p1(s1)− p2(s2)− p3(s3)− p0. (4.12)

Therefore, we can uniquely determine the basis functions p from P . By setting sj =

gj(uj) in Eqs. (4.11) and (4.12), and by employing Eq. (4.10), we obtain

R(u1, u2, u3) = ρ0 + ρ1(u1) + ρ2(u2) + ρ3(u3) + ρ12(u1, u2)

+ ρ13(u1, u3) + ρ23(u2, u3) + ρ123(u1, u2, u3), (4.13)

where

ρ0 := p0 =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
R(u1, u2, u3)g

′
1(u1)g

′
2(u2)g

′
3(u3)du1du2du3

ρ1(u1) := p1(g1(u1)) =

∫ ∞

−∞

∫ ∞

−∞
R(u1, u2, u3)g

′
2(u2)g

′
3(u3)du2du3 − ρ0

ρ2(u2) := p2(g2(u2)) =

∫ ∞

−∞

∫ ∞

−∞
R(u1, u2, u3)g

′
1(u1)g

′
3(u3)du1du3 − ρ0

ρ3(u3) := p3(g3(u3)) =

∫ ∞

−∞

∫ ∞

−∞
R(u1, u2, u3)g

′
1(u1)g

′
2(u2)du1du2 − ρ0

ρ12(u1, u2) := p12(g1(u1), g2(u2))

=

∫ ∞

−∞
R(u1, u2, u3)g

′
3(u3)du3 − ρ1(u1)− ρ2(u2)− ρ0

ρ13(u1, u3) := p13(g1(u1), g3(u3))

=

∫ ∞

−∞
R(u1, u2, u3)g

′
2(u2)du2 − ρ1(u1)− ρ3(u3)− ρ0
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ρ23(u2, u3) := p23(g2(u2), g3(u3))

=

∫ ∞

−∞
R(u1, u2, u3)g

′
1(u1)du1 − ρ2(u2)− ρ3(u3)− ρ0

ρ123(u1, u2, u3) := p123(g1(u1), g2(u2), g3(u3))

= R(u1, u2, u3)− ρ12(u1, u2)− ρ13(u1, u3)− ρ23(u2, u3)

−ρ1(u1)− ρ2(u2)− ρ3(u3)− ρ0, (4.14)

with g′ being the first-order derivative of g. For reasons to be explained in Subsec-

tion 4.4.4, the representation of a response function R by Eqs. (4.13) and (4.14) is

referred to in the literature as Analysis-of-Variance (ANOVA) HDMR [26, 35–37, 74].

Note that the basis functions ρ satisfy the following orthogonality conditions:

∫ ∞

−∞
· · ·
∫ ∞

−∞
ρj1,...,jk(uj1 , . . . , ujk)g

′
1(u1) · · · g′J(uJ)du1 · · · duJ = 0,∫ ∞

−∞
· · ·
∫ ∞

−∞
ρj1,...,jk(uj1 , . . . , ujk)ρj′1,...,j′k′ (uj

′
1
, . . . , uj′

k′
)g′1(u1) · · · g′J(uJ)du1 · · · duJ = 0,

(j1, . . . , jk) ̸= (j′1, . . . , j
′
k′), (4.15)

provided that
∫∞
−∞ g′j(uj)duj = 1, for j = 1, 2, . . . , J .

4.4 Approximations of Response Variances

In most applications of interest, it is very difficult to directly evaluate the variance-

based sensitivity indices by means of Eqs. (4.1)–(4.4), due to the complexity of the

response function R. We can address this problem by replacing the response function

with a simpler function R̂(u1, u2, . . . , uJ) that will allow us to approximate the response
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variances given by

Vj := Var
[
E
[
R(U) | Uj

]]
,

Vjj′ := Var
[
E
[
R(U) | Uj, Uj′

]]
− Var

[
E
[
R(U) | Uj

]]
− Var

[
E
[
R(U) | Uj′

]]
,

(4.16)

In the following, we discuss various approximations obtained by employing the previ-

ously discussed representation schemes.

4.4.1 Derivative Approximation

As we mentioned in Subsection 4.3.1, the two main problems associated with the ba-

sis functions of TSMR, given by Eq. (4.6), is the need to calculate high-order partial

derivatives of the response function and to evaluate infinite sums. To address these

problems, we can approximate the basis functions by assuming that the response func-

tion is sufficiently smooth in a neighborhood around 0 so that partial derivatives of

orders greater than two are negligible. In this case, we can approximate the response

function R(u1, u2, u3) by

R̂(u1, u2, u3) = r̂0+r̂1(u1)+r̂2(u2)+r̂3(u3)+r̂12(u1, u2)+r̂13(u1, u3)+r̂23(u2, u3), (4.17)

where

r̂0 := R(0)

r̂1(u1) :=
∂R(0)

∂u1
u1 +

1

2

∂2R(0)

∂u21
u21

r̂2(u2) :=
∂R(0)

∂u2
u2 +

1

2

∂2R(0)

∂u22
u22

r̂3(u3) :=
∂R(0)

∂u3
u3 +

1

2

∂2R(0)

∂u23
u23
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r̂12(u1, u2) :=
∂2R(0)

∂u1∂u2
u1u2

r̂13(u1, u3) :=
∂2R(0)

∂u1∂u3
u1u3

r̂23(u2, u3) :=
∂2R(0)

∂u2∂u3
u2u3 , (4.18)

since r123(u1, u2, u3) = 0 in this case. By employing the statistical independence of U1,

U2, and U3, we can show that the variances associated with the approximate response

function R̂(u1, u2, u3) satisfy:

V̂ = d21λ
2
1 + d22λ

2
2 + d23λ

2
3 +

1

2
d211λ

4
1 +

1

2
d222λ

4
2 +

1

2
d233λ

4
3

+d212λ
2
1λ

2
2 + d213λ

2
1λ

2
3 + d223λ

2
2λ

2
3

V̂1 = d21λ
2
1 +

1

2
d211λ

4
1

V̂2 = d22λ
2
2 +

1

2
d222λ

4
2

V̂3 = d23λ
2
3 +

1

2
d233λ

4
3

V̂12 = d212λ
2
1λ

2
2

V̂13 = d213λ
2
1λ

2
3

V̂23 = d223λ
2
2λ

2
3 , (4.19)

where dj is the first-order partial derivative of R with respect to uj at 0 and djj′ is the

second-order partial derivative of R with respect to uj and uj′ at 0. To show Eq. (4.19),

we have used the fact that Uj follows a Gaussian distribution with zero mean and

standard deviation λj, which implies E
[
U3
j

]
= 0, E

[
U4
j

]
= 3λ4j . As a consequence of

Eqs. (4.1)–(4.4), and Eq. (4.19), we obtain the following approximations to the (second-

86



order) SESI’s and JESI’s (expressed for the general case of J biochemical factors):

σ̂
(2)
j =

V̂j

V̂
, η̂

(2)
j =

T̂j

V̂

V̂j = λ2j d
2
j +

1

2
λ4j d

2
jj

V̂jj′ = λ2j λ
2
j′d

2
jj′

T̂j =
J∑

j′=1,j′ ̸=ĵ

Vjj′

V̂ =
J∑

j=1

V̂j +
J−1∑
j=1

J∑
j′=j+1

V̂jj′

(4.20)

We respectively refer to σ̂
(2)
j and η̂

(2)
j , given by Eq. (4.20), as the (second-order) SESI’s

and JESI’s obtained by Derivative Approximation (DA).

4.4.2 Polynomial Approximation of FD-HDMR

We may obtain a better approximation of the sensitivity indices σ
(2)
j and η

(2)
j by as-

suming that the response function is sufficiently smooth in a neighborhood around 0

so that partial derivatives of orders greater than two with respect to one variable and

partial derivatives that involve more than two variables are negligible. In this case, we

can approximate the response function R(u1, u2, u3) by

R̂(u1, u2, u3) = r̂0+r̂1(u1)+r̂2(u2)+r̂3(u3)+r̂12(u1, u2)+r̂13(u1, u3)+r̂23(u2, u3), (4.21)

where

r̂0 := R(0)

r̂1(u1) :=
∂R(0)

∂u1
u1 +

1

2

∂2R(0)

∂u21
u21

r̂2(u2) :=
∂R(0)

∂u2
u2 +

1

2

∂2R(0)

∂u22
u22
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r̂3(u3) :=
∂R(0)

∂u3
u3 +

1

2

∂2R(0)

∂u23
u23

r̂12(u1, u2) :=
∂2R(0)

∂u1∂u2
u1u2 +

1

2

∂3R(0)

∂u21∂u2
u21u2 +

1

2

∂3R(0)

∂u1∂u22
u1u

2
2 +

1

4

∂4R(0)

∂u21∂u
2
2

u21u
2
2

r̂13(u1, u3) :=
∂2R(0)

∂u1∂u3
u1u3 +

1

2

∂3R(0)

∂u21∂u3
u21u3 +

1

2

∂3R(0)

∂u1∂u23
u1u

2
3 +

1

4

∂4R(0)

∂u21∂u
2
3

u21u
2
3

r̂23(u2, u3) :=
∂2R(0)

∂u2∂u3
u2u3 +

1

2

∂3R(0)

∂u22∂u3
u22u3 +

1

2

∂3R(0)

∂u2∂u23
u2u

2
3 +

1

4

∂4R(0)

∂u22∂u
2
3

u22u
2
3.

(4.22)

Due to difficulties in numerically evaluating high-order derivatives with sufficient accu-

racy, we may not be able to use Eq. (4.22) to derive sufficiently good DA approximations

of the sensitivity indices. However, this equation motivates us to set

r̂j(uj) = αj,1uj + αj,2 u
2
j ,

r̂jj′(uj, uj′) = αjj′,1 ujuj′ + αjj′,2 u
2
j uj′ + αjj′,3 uju

2
j′ + αjj′,4 u

2
j u

2
j′ ,

(4.23)

where the α’s are parameters whose values must be appropriately determined so that

R̂, given by Eqs. (4.21) and (4.23), sufficiently approximates the response function R.

We will be discussing a practical method to address this problem in Subsection 4.5.2

of this chapter.

Clearly, the previous approach is based on approximating the first- and second-

order basis functions associated with the FD-HDMR given by Eqs. (4.8) and (4.9)

with the polynomials given by Eq. (4.23). If R̂(u) is sufficiently close to R(u) in a

neighborhood around 0, then the partial derivatives of R associated with Eq. (4.22)

can be obtained from the parameters α. Note that the approximating basis functions

r̂ given by Eq. (4.23) satisfy the necessary condition of becoming zero if one of their

arguments equals zero.
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As a consequence of Eqs. (4.1)–(4.4), by employing the statistical independence of

the Uj’s, and by using the fact that Uj follows a Gaussian distribution with zero mean

and standard deviation λj, in which case E
[
U3
j

]
= 0 and E

[
U4
j

]
= 3λ4j , we obtain the

following approximations to the (second-order) SESI’s and JESI’s:

σ̂
(2)
j =

V̂j

V̂
, η̂

(2)
j =

T̂j

V̂

V̂j = λ2j α
2
j,1 + 2λ4j α

2
j,2 + 2λ2j αj,1

(
j−1∑
m=1

λ2mαmj,2 +
J∑

m=j+1

λ2mαjm,3

)

+ λ2j

(
j−1∑
m=1

λ2mαmj,2 +
J∑

m=j+1

λ2mαjm,3

)2

+ 4λ4j αj,2

(
j−1∑
m=1

λ2mαmj,4 +
J∑

m=j+1

λ2mαjm,4

)

+ 2λ4j

(
j−1∑
m=1

λ2mαmj,4 +
J∑

m=j+1

λ2mαjm,4

)2

V̂jj′ = λ2j λ
2
j′α

2
jj′,1 + 2λ4j λ

2
j′α

2
jj′,2 + 2λ2j λ

4
j′α

2
jj′,3 + 4λ4j λ

4
j′α

2
jj′,4

T̂j =
J∑

j′=1,j′ ̸=ĵ

Vjj′

V̂ =
J∑

j=1

V̂j +
J−1∑
j=1

J∑
j′=j+1

V̂jj′

(4.24)

Note that Eq. (4.24) is a special case of Equations 35 and 36 in [79]. We respectively

refer to σ̂
(2)
j and η̂

(2)
j , given by Eq. (4.24), as the (second-order) SESI’s and JESI’s

obtained by Polynomial Approximation (PA) of the FD-HDMR.
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4.4.3 Gauss-Hermite Integration of FD-HDMR

We can derive another approximation of the sensitivity indices by assuming that the

partial derivatives of the response function in a neighborhood of 0 that involve more

than two factors are negligible. In this case, we can approximate the response function

R(u1, u2, u3) by

R̂(u1, u2, u3) = r0+r1(u1)+r2(u2)+r3(u3)+r12(u1, u2)+r13(u1, u3)+r23(u2, u3), (4.25)

where

r0 = R(0)

r1(u1) =
∞∑

m=1

1

m!

∂mR(0)

∂um1
um1

r2(u2) =
∞∑

m=1

1

m!

∂mR(0)

∂um2
um2

r3(u3) =
∞∑

m=1

1

m!

∂mR(0)

∂um3
um3

r12(u1, u2) =
∞∑

m1=1

∞∑
m2=1

1

m1!m2!

∂m1+m2R(0)

∂um1
1 ∂um2

2

um1
1 um2

2

r13(u1, u3) =
∞∑

m1=1

∞∑
m3=1

1

m1!m3!

∂m1+m3R(0)

∂um1
1 ∂um3

3

um1
1 um3

3

r23(u2, u3) =
∞∑

m2=1

∞∑
m3=1

1

m2!m3!

∂m2+m3R(0)

∂um2
2 ∂um3

3

um2
2 um3

3 , (4.26)

since r123(u1, u2, u3) = 0 in this case. We expect that this approximation will be more

accurate than the one considered in Eqs. (4.21) and (4.22), since the first- and second-

order basis functions are exactly the same as the corresponding basis functions given

by Eq. (4.6). Note that we can obtain the approximation given by Eq. (4.25) by simply

truncating the third- and higher-order terms in the FD-HDMR of the response func-
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tion R, given by Eqs. (4.8) and (4.9), without making any reference to the derivatives

of R.

Since the basis functions r given by Eq. (4.26) become zero if one of their arguments

is zero, we can relate them to the system response R by means of Eq. (4.7). As a

consequence of Eqs. (4.7) and (4.25), we obtain the following decomposition for R̂

(expressed for the general case of J biochemical factors):

R̂(u) = ψ0 − (J − 2)
J∑

j=1

ψj(uj) +
J−1∑
j=1

J∑
j′=j+1

ψjj′(uj, uj′), (4.27)

where

ψ0 :=
(J − 1)(J − 2)

2
R(0, 0, . . . , 0)

ψj(uj) := R(0, . . . , 0, uj, 0, . . . , 0)

ψjj′(uj, uj′) := R(0, . . . , 0, uj, 0, . . . , 0, uj′ , 0, . . . , 0) . (4.28)

By taking conditional and unconditional expectations on both sides of Eq. (4.27), and

by using the statistical independence of the biochemical factors, we obtain

e0 := E
[
R̂(U)

]
= ψ0 − (J − 2)

J∑
m=1

E
[
ψm(um)

]
+

J−1∑
m=1

J∑
m′=m+1

E
[
ψmm′(Um, Um′)

]
ej(uj) := E

[
R̂(U) | Uj = uj

]
= ψ0 − (J − 2)

J∑
m=1

E
[
ψm(Um) | Uj = uj

]
+

J−1∑
m=1

J∑
m′=m+1

E
[
ψmm′(Um, Um′) | Uj = uj

]
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ejj′(uj, uj′) := E
[
R(U) | Uj = uj, Uj′ = uj′

]
= ψ0 − (J − 2)

J∑
m=1

E
[
ψm(Um) | Uj = uj, Uj′ = uj′

]
+

J−1∑
m=1

J∑
m′=m+1

E
[
ψmm′(Um, Um′) | Uj = uj, Uj′ = uj′

]
, (4.29)

where

E[ψm(Um) | Uj = uj] =


ψj(uj), if m = j

E[ψm(Um)], otherwise

E[ψm(Um) | Uj = uj, Uj′ = uj′ ] =



ψj(uj), if m = j

ψj′(uj′), if m = j′

E[ψm(Um)], otherwise

, for j < j′

E[ψmm′(Um, Um′) | Uj = uj] =



E[ψmj(Um, uj)], if m < j, m′ = j

E[ψjm′(uj, Um′)], if m = j, m′ > j

E[ψmm′(Um, Um′)], otherwise

E[ψmm′(Um, Um′) | Uj = uj, Uj′ = uj′ ] =



ψjj′(uj, uj′), if m = j, m′ = j′

E[ψmj(Um, uj)], if m < j,m′ = j

E[ψmj′(Um, uj′)], if m ̸= j,m′ = j′

E[ψjm′(uj, Um′)], if m = j,m′ ̸= j′

E[ψj′m′(uj′ , Um′)], if m = j′,m′ > j′

E[ψmm′(Um, Um′)], otherwise

,

for j < j′. (4.30)
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Finally, to compute the conditional variances of the response function R̂, note that

Var
[
E
[
R̂(U) | Uj

]]
= Var

[
ej(Uj)

]
= E

[
e2j (Uj)

]
− e20,

Var
[
E
[
R̂(U) | Uj, Uj′

]]
= Var

[
ejj′(Uj, Uj′)

]
= E

[
e2jj′(Uj, Uj′)

]
− e20,

(4.31)

since

E
[
ej(Uj)

]
= E

[
E
[
R̂(U) | Uj

]]
= E

[
R̂(U)

]
,

E
[
ejj′(Uj, Uj′)

]
= E

[
E
[
R̂(U) | Uj, Uj′

]]
= E

[
R̂(U)

]
,

(4.32)

by virtue of the fact that E
[
E
[
Y |X

]]
= E

[
Y
]
.

As a consequence of Eqs. (4.1)–(4.4), and Eq. (4.31), we now obtain the following

approximations to the (second-order) SESI’s and JESI’s:

σ̂
(2)
j =

V̂j

V̂
, η̂

(2)
j =

T̂j

V̂

V̂j = E
[
e2j (Uj)

]
− e20

V̂jj′ = E
[
e2jj′(Uj, Uj′)

]
− V̂j − V̂j′ − e20

T̂j =
J∑

j′=1,j′ ̸=ĵ

Vjj′

V̂ =
J∑

j=1

V̂j +
J−1∑
j=1

J∑
j′=j+1

V̂jj′

(4.33)

with e0, ej, and ejj′ given by Eq. (4.29). Note that evaluation of the expectations of

these quantities requires only one- and two-dimensional integrations. This can be done

by a standard Gauss-Hermite integration procedure, as we explain in Subsection 4.5.3.

We respectively refer to σ̂
(2)
j and η̂

(2)
j , given by Eq. (4.33), as the (second-order) SESI’s

and JESI’s obtained by Gauss-Hermite Integration (GHI) of the FD-HDMR.
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4.4.4 OHA of ANOVA-HDMR

Eq. (4.11) and the fact that the integrals of basis functions p over a single variable are

equal to zero imply∫ 1

0

∫ 1

0

∫ 1

0

P 2(s1, s2, s3)ds1ds2ds3 = p20 +

∫ 1

0

p21(s1)ds1 +

∫ 1

0

p22(s2)ds2

+

∫ 1

0

p23(s3)ds3

+

∫ 1

0

∫ 1

0

p212(s1, s2)ds1ds2 (4.34)

+

∫ 1

0

∫ 1

0

p213(s1, s3)ds1ds3

+

∫ 1

0

∫ 1

0

p223(s2, s3)ds2ds3

+

∫ 1

0

∫ 1

0

∫ 1

0

p2123(s1, s2, s3)ds1ds2ds3 .

If we assume that the biochemical factors of interest are statistically independent ran-

dom variables U1, U2, and U3, with cumulative distribution functions g1(u1), g2(u2),

and g3(u3), respectively, then Eq. (4.34), together with Eqs. (4.10), (4.12), and (4.14),

implies that

V = V1 + V2 + V3 + V12 + V13 + V23 + V123, (4.35)

where

V := Var
[
R(U1, U2, U3)

]
V1 := Var

[
E
[
R(U1, U2, U3) | U1

]]
=

∫ ∞

−∞
ρ21(u1)g

′
1(u1)du1

V2 := Var
[
E
[
R(U1, U2, U3) | U2

]]
=

∫ ∞

−∞
ρ22(u2)g

′
2(u2)du2

V3 := Var
[
E
[
R(U1, U2, U3) | U3

]]
=

∫ ∞

−∞
ρ23(u3)g

′
3(u3)du3

V12 := Var
[
E
[
R(U1, U2, U3) | U1, U2

]]
− V1 − V2

=

∫ ∞

−∞

∫ ∞

−∞
ρ212(u1, u2)g

′
1(u1)g

′
2(u2)du1du2 ≥ 0
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V13 := Var
[
E
[
R(U1, U2, U3) | U1, U3

]]
− V1 − V3

=

∫ ∞

−∞

∫ ∞

−∞
ρ213(u1, u3)g

′
1(u1)g

′
3(u3)du1du3 ≥ 0

V23 := Var
[
E
[
R(U1, U2, U3) | U2, U3

]]
− V2 − V3

=

∫ ∞

−∞

∫ ∞

−∞
ρ223(u2, u3)g

′
2(u2)g

′
3(u3)du2du3 ≥ 0

V123 := V − V12 − V13 − V23 − V1 − V2 − V3

=

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
ρ2123(u1, u2, u3)g

′
1(u1)g

′
2(u2)g

′
3(u3)du1du2du3 ≥ 0, (4.36)

since g′1(u1), g
′
2(u2), and g

′
3(u3) are the probability density functions of U1, U2, and U3,

respectively. The variance decomposition scheme given by Eqs. (3.1) and (3.2) is

a general version of the decomposition given by Eqs. (4.35) and (4.36) for the case

of J biochemical factors. This decomposition is closely related to analysis of variance

(ANOVA) techniques in statistics [26, 80, 81]. For this reason, the representation of

the response function R by Eqs. (4.13) and (4.14) is referred to in the literature as

ANOVA-HDMR.

Note that Eq. (4.35) can be shown in a trivial manner by adding all V ’s in Eq. (4.36).

However, by using Eqs. (4.10), (4.12), (4.14), and (4.36), we can show that, when U1,

U2, and U3 are statistically independent, then V12, V13, V23, V123 ≥ 0, which is a crucial

property for appropriately defining the variance-based sensitivity indices we consider in

this dissertation. Moreover, we can show that these quantities can be directly evaluated

from the basis functions of the ANOVA-HDMR of the response function R(u) by means

of Eq. (4.36). As a consequence, we can use ANOVA-HDMR to develop an efficient

approximation technique for the sensitivity indices σ
(2)
j and η

(2)
j . We can do this by
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sufficiently approximating the response R(u1, u2, u3) by a function

R̂(u1, u2, u3) = ρ̂0 + ρ̂1(u1) + ρ̂2(u2) + ρ̂3(u3) + ρ̂12(u1, u2) + ρ̂13(u1, u3) + ρ̂23(u2, u3),

(4.37)

where the approximating basis functions ρ̂ must be appropriately chosen so that they

satisfy the necessary orthogonality conditions, given by Eq. (4.15), and allow efficient

evaluation of the integrals in Eq. (4.36).

There are several potential choices for the approximating basis functions ρ̂, such

as polynomials, exponentials, splines, etc. However, for the case of statistically inde-

pendent zero-mean Gaussian biochemical factors, the simplest choice is based on the

following first- and second-order Hermite polynomials:

H1(x) = x and H2(x) =
x2 − 1√

2
. (4.38)

Note that these polynomials are orthonormal over the standard Gaussian distribution,

satisfying ∫ ∞

−∞
H1(x)

1√
2π

e−x2/2dx =

∫ ∞

−∞
H2(x)

1√
2π

e−x2/2dx = 0∫ ∞

−∞
H2

1 (x)
1√
2π

e−x2/2dx =

∫ ∞

−∞
H2

2 (x)
1√
2π

e−x2/2dx = 1∫ ∞

−∞
H1(x)H2(x)

1√
2π

e−x2/2dx = 0. (4.39)

In this case, we set

ρ̂j(uj) = αj,1
uj
λj

+
αj,2√
2

(
u2j
λ2j

− 1

)
ρ̂jj′(uj, uj′) = αjj′,1

ujuj′

λjλj′
+
αjj′,2√

2

(
u2j
λ2j

− 1

)
uj′

λj′
+
αjj′,3√

2

uj
λj

(
u2j′

λ2j′
− 1

)

+
αjj′,4

2

(
u2j
λ2j

− 1

)(
u2j′

λ2j′
− 1

)
. (4.40)
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Note that, since the biochemical factors Uj are statistically independent zero-mean

Gaussian random variables with standard deviations given by λj, these approximations

satisfy the necessary orthogonality conditions given by Eq. (4.15).

By using Eq. (4.36) and the orthonormality of the Hermite polynomials H1 and H2,

given by Eq. (4.39), we can obtain the following approximations to the (second-order)

SESI’s and JESI’s (expressed for the general case of J biochemical factors):

σ̂
(2)
j =

V̂j

V̂
, η̂

(2)
j =

T̂j

V̂

V̂j = α2
j,1 + α2

j,2

V̂jj′ = α2
jj′,1 + α2

jj′,2 + α2
jj′,3 + α2

jj′,4

T̂j =
J∑

j′=1,j′ ̸=ĵ

Vjj′

V̂ =
J∑

j=1

V̂j +
J−1∑
j=1

J∑
j′=j+1

V̂jj′

(4.41)

We respectively refer to σ̂
(2)
j and η̂

(2)
j , given by Eq. (4.41), as the (second-order) SESI’s

and JESI’s obtained by Orthonormal Hermite Approximation (OHA) of the ANOVA-

HDMR.

4.5 Numerical Implementation

We now discuss the numerical implementation of the approximation techniques we

presented in Section 4.4. Some techniques can be implemented in a straightforward

manner, while others require more involved implementation steps.
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4.5.1 Derivative Approximation

Approximation of the SESI’s and JESI’s by means of Eq. (4.20) requires evaluation of

the first- and second-order partial derivatives of the response function R(u) at u = 0,

given by

dj =
∂R(0)

∂uj
and djj′ =

∂2R(0)

∂uj∂uj′
. (4.42)

Unfortunately, accurate evaluation of these derivatives is not an easy task [82]. We

may express them in terms of concentration sensitivities and analytically derive a sys-

tem of differential equations that govern the dynamic evolution of such sensitivities.

Then, evaluation of the response derivatives will require simultaneous integration of the

sensitivity equations together with the differential equations governing the underlying

molecular concentration dynamics. Most often, this step cannot be implemented in a

reasonable time due to stiffness of the resulting differential equations [4]. As a con-

sequence, the derivatives are usually approximated by finite-differences. However, the

resulting approximations must be carefully used, since it is difficult to theoretically pre-

dict, control, and numerically evaluate the accuracy of finite-difference approximations

of derivatives [4].

In this dissertation, we use symmetric finite-difference approximations of the deriva-

tives. A symmetric finite-difference approximation of the first-order partial derivative dj

of R(u) with respect to uj at 0, leads to

dj ≃
R(∆ej)−R(−∆ej)

2∆
, (4.43)

for a sufficiently small differential step size ∆ > 0, where ej denotes a J-dimensional

vector with its jth element being equal to one and the remaining elements being zero.
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By applying the previous equation twice, we obtain the following finite-difference ap-

proximation for the second-order partial derivative djj′ of R(u) with respect to uj and

uj′ at 0:

djj′ ≃
R(∆ej +∆ej′)−R(−∆ej +∆ej′)−R(∆ej −∆ej′) +R(−∆ej −∆ej′)

4∆2
. (4.44)

To compute these approximations, we need 2J(J +1)+1 system integrations, which is

quadratic in terms of the number J of the underlying biochemical factors and is much

smaller than the number 2L(J + 1) of system integrations required by Monte Carlo

(MC) estimation, since J ≪ L.

4.5.2 Polynomial Approximation of FD-HDMR

The approximation of the SESI’s and JESI’s by means of Eq. (4.24) requires knowledge

of the values of the α parameters associated with the polynomial approximation of the

basis functions r, given by Eq. (4.23). This can be done by polynomial regression [83],

as we explain next.

Our problem here is to estimate the parameters α, so that

rj(uj) = r̂j(uj) + ϵj = αj,1uj + αj,2u
2
j + ϵj, (4.45)

and

rjj′(uj, uj′) = r̂jj′(uj, uj′) + ϵjj′

= αjj′,1ujuj′ + αjj′,2u
2
j uj′ + αjj′,3uju

2
j′ + αjj′,4u

2
j u

2
j′ + ϵjj′ , (4.46)

for every j, j′, where the ϵ’s are zero-mean random variables that model the errors of

approximating the basis functions r by r̂. We can now use Eq. (4.9) to evaluate the
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basis functions r at a set {uj(q), q ∈ S, j ∈ J} of pre-specified factor values around zero.

Then, the least-square error estimates α̂j,1, α̂j,2 of the parameters αj,1, αj,2 associated

with the basis function rj(uj) are given by [83]:

α̂ααj = (UT

j Uj)
−1UT

j rj , (4.47)

where

α̂ααj :=

α̂j,1

α̂j,2


2×1

, rj :=



rj(uj(1))

rj(uj(2))

...

rj(uj(S))


S×1

, Uj :=



uj(1) u2j (1)

uj(2) u2j (2)

...
...

uj(S) u2j (S)


S×2

, (4.48)

provided that the matrix UT
j Uj is invertible (which is always true if no column of the

Uj matrix is a linear combination of the other columns). On the other hand, the

least-square error estimates α̂jj′,1, α̂jj′,2, α̂jj′,3, α̂jj′,4 of the parameters αjj′,1, αjj′,2,

αjj′,3, αjj′,4 associated with the basis function r̂jj′(uj, uj′) are given by [83]:

α̂ααjj′ = (UT

jj′ Ujj′)
−1UT

jj′ rjj′ , (4.49)

where

α̂ααjj′ :=



α̂jj′,1

α̂jj′,2

α̂jj′,3

α̂jj′,4


4×1
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rjj′ :=



rjj′(uj(1), uj′(1))

...

rjj′(uj(1), uj′(S))

rjj′(uj(2), uj′(1))

...

rjj′(uj(2), uj′(S))

...

rjj′(uj(S), uj′(1))

...

rjj′(uj(S), uj′(S))


S2×1

Ujj′ :=



uj(1)uj′(1) u2j (1)uj′(1) uj(1)u
2
j′(1) u2j (1)u

2
j′(1)

...
...

...
...

uj(1)uj′(S) u2j (1)uj′(S) uj(1)u
2
j′(S) u2j (1)u

2
j′(S)

uj(2)uj′(1) u2j (2)uj′(1) uj(2)u
2
j′(1) u2j (2)u

2
j′(1)

...
...

...
...

uj(2)uj′(S) u2j (2)uj′(S) uj(2)u
2
j′(S) u2j (2)u

2
j′(S)

...
...

...
...

uj(S)uj′(1) u2j (S)uj′(1) uj(S)u
2
j′(1) u2j (S)u

2
j′(1)

...
...

...
...

uj(S)uj′(S) u2j (S)uj′(S) uj(S)u
2
j′(S) u2j (S)u

2
j′(S)


S2×4

, (4.50)
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provided that the matrix UT

jj′Ujj′ is invertible. Note that calculation of α̂αα requires

J(J − 1)S2/2 +JS + 1 system integrations, which is quadratic both in terms of the

number J of biochemical factors and the number S of the samples per factor used in

the regression. Note that J(J − 1)S2/2 + JS + 1 ≃ 2J2(S/2)2, for sufficiently large J .

This number is much smaller than the number 2L(J+1) ≃ 2LJ of system integrations

required by MC, since L≫ J(S/2)2, but larger than the number 2J(J + 1) + 1 ≃ 2J2

of system integrations required by Derivative Approximation (DA), since S > 2.

4.5.3 Gauss-Hermite Integration of FD-HDMR

It is clear from Eqs. (4.29) and (4.30) that evaluation of the SESI’s and JESI’s by

Eq. (4.33) requires the calculation of E
[
ψm(Um)

]
, E
[
ψjm′(Uj, Um)

]
, E
[
ψmj(Um, Uj)

]
,

E
[
ψmm′(Um, Um′)

]
, E
[
e2j (uj)

]
, and E

[
e2jj′(uj, uj′)

]
with respect to Gaussian distribu-

tions. We can evaluate these expectations by using Gauss-Hermite integration [84],

as we explain next.

Let us consider the one-dimensional expectation:

E1 = E
[
ψ1(U1)

]
=

1

λ
√
2π

∫ ∞

−∞
ψ1(U1)e

−u2
1/2λ

2

du1. (4.51)

If we set u1 =
√
2λv1, then

E1 =
1√
π

∫ ∞

−∞
ψ1(

√
2λv1)e

−v21dv1. (4.52)

In this form, we can use the Gauss-Hermite integration procedure to approximate E1

by

Ê1 =
1√
π

Q∑
q=1

ωqψ1(
√
2λaq), (4.53)
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where Q is the order of the approximation, aq and ωq are appropriately chosen abscissas

and weights, respectively [84].

Likewise, by setting u1 =
√
2λ1v1 and u2 =

√
2λ2v2, we can write the two-

dimensional expectation

E2 = E
[
ψ2(U1, U2)

]
=

1

2πλ1λ2

∫ ∞

−∞

∫ ∞

−∞
ψ2(u1, u2)e

−u2
1/2λ

2
1e−u2

2/2λ
2
2du1du2 (4.54)

in the form

E2 =
1

π

∫ ∞

−∞

∫ ∞

−∞
ψ2(

√
2λ1v1,

√
2λ2v2)e

−v21e−v22dv1dv2. (4.55)

A two-step (first for v1 and then for v2) application of one-dimensional Gauss-Hermite

integration results in the following approximation of E2:

Ê2 =
1

π

Q∑
q1=1

Q∑
q2=1

ωq1ωq2ψ2(
√
2λ1aq1 ,

√
2λ2aq2). (4.56)

It turns out that calculation of the expectations required by Eq. (4.33) involves

J(J − 1)Q2/2+ JQ+ 1 system integrations, when Q is even, or J(J − 1)(Q− 1)2/2 +

J(Q − 1) + 1 system integrations, when Q is odd, which is quadratic both in terms

of the number J of biochemical factors and the order Q of Gauss-Hermite Integration

(GHI). Note that, if the number S of the samples per factor used in the regression

associated with Polynomial Approximation (PA) is even, and Q = S or Q = S + 1,

then GHI requires the same number of system integrations as PA.

4.5.4 OHA of ANOVA-HDMR

Approximating the sensitivity indices σ
(2)
j and η

(2)
j by Eq. (4.41) requires evaluation of

the parameters α so that the functions ρ̂, given by Eq. (4.40), result in a sufficiently
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good approximation of the response function R by R̂, given by Eq. (4.37). Our problem

here is to estimate the parameters α, so that

ρj(uj) = ρ̂j(uj) + ϵj = αj,1
uj
λj

+
αj,2√
2

(
u2j
λ2j

− 1

)
+ ϵj, (4.57)

and

ρjj′(uj, uj′) = ρ̂jj′(uj, uj′) + ϵjj′

= αjj′,1
ujuj′

λjλj′
+
αjj′,2√

2

(
u2j
λ2j

− 1

)
uj′

λj′
+
αjj′,3√

2

uj
λj

(
u2j′

λ2j′
− 1

)

+
αjj′,4

2

(
u2j
λ2j

− 1

)(
u2j′

λ2j′
− 1

)
+ ϵjj′ , (4.58)

for every j, j′, where the ϵ’s are zero-mean random variables that model the errors in

approximating the basis functions ρ by ρ̂. From Eq. (4.57), note that

αj,1 =

∫ ∞

−∞

uj
λj
ρj(uj)Gj(uj)duj,

αj,2 =
1√
2

∫ ∞

−∞

(
u2j
λ2j

− 1

)
ρj(uj)Gj(uj)duj,

(4.59)

where Gj(uj) is the Gaussian probability density function

Gj(uj) =
1√
2πλj

e−u2
j /2λ

2
j . (4.60)

This is a consequence of the zero-mean Gaussianity of the biochemical factors and the

orthonormality of the Hermite polynomials over the Gaussian distribution. Likewise,

and from Eq. (4.58), we have that

αjj′,1 =

∫ ∞

−∞

uj
λj

uj′

λj′
ρjj′(uj, uj′)Gj(uj)Gj′(uj′)dujduj′

αjj′,2 =
1√
2

∫ ∞

−∞

(
u2j
λ2j

− 1

)
uj′

λj′
ρjj′(uj, uj′)Gj(uj)Gj′(uj′)dujduj′
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αjj′,3 =
1√
2

∫ ∞

−∞

uj
λj

(
u2j′

λ2j′
− 1

)
ρjj′(uj, uj′)Gj(uj)Gj′(uj′)dujduj′

αjj′,4 =
1

2

∫ ∞

−∞

(
u2j
λ2j

− 1

)(
u2j′

λ2j′
− 1

)
ρjj′(uj, uj′)Gj(uj)Gj′(uj′)dujduj′ . (4.61)

Finally,

αj,1 = E

[
Uj
λj
R(U)

]

αj,2 =
1√
2
E

[(
U2
j

λ2j
− 1

)
R(U)

]

αjj′,1 = E

[
Uj
λj

Uj′

λj′
R(U)

]

αjj′,2 =
1√
2
E

[(
U2
j

λ2j
− 1

)
Uj′

λj′
R(U)

]

αjj′,3 =
1√
2
E

[
Uj
λj

(
U2
j′

λ2j′
− 1

)
R(U)

]

αjj′,4 =
1

2
E

[(
U2
j

λ2j
− 1

)(
U2
j′

λ2j′
− 1

)
R(U)

]
, (4.62)

by virtue of Eqs. (4.14), (4.59), and (4.61).

As a consequence of the previous analysis, to determine the parameters α, we need

to evaluate the expectations in Eq. (4.62). We can do this by Monte Carlo estima-

tion based on a Latin hypercube sampling strategy, which leads to a more efficient

implementation than standard Monte Carlo sampling [66, 67]. In particular, we can

generate L Latin hypercube Gaussian samples u(l) = {u(l)1 , u
(l)
2 , . . . , u

(l)
J }, l = 1, 2, . . . , L,

evaluate the responses R(u(l)), for l = 1, 2, . . . , L, and set

αj,1 ≃ α̂j,1 :=
1

L

L∑
l=1

u
(l)
j

λj
R(u(l))

αj,2 ≃ α̂j,2 :=
1√
2

1

L

L∑
l=1


[
u
(l)
j

]2
λ2j

− 1

R(u(l))
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αjj′,1 ≃ α̂jj′,1 :=
1

L

L∑
l=1

u
(l)
j

λj

u
(l)
j′

λj′
R(u(l))

αjj′,2 ≃ α̂jj′,2 :=
1√
2

1

L

L∑
l=1


[
u
(l)
j

]2
λ2j

− 1

 u
(l)
j′

λj′
R(u(l))

αjj′,3 ≃ α̂jj′,3 :=
1√
2

1

L

L∑
l=1

u
(l)
j

λj


[
u
(l)
j′

]2
λ2j′

− 1

R(u(l))

αjj′,4 ≃ α̂jj′,4 :=
1

2

1

L

L∑
l=1


[
u
(l)
j

]2
λ2j

− 1



[
u
(l)
j′

]2
λ2j′

− 1

R(u(l)). (4.63)

Clearly, implementation of Eq. (4.63) requires L system integrations.

The problem with Monte Carlo estimation is that, most often, it requires a large

number of system integrations to produce sufficiently accurate estimates for the α pa-

rameters. As a consequence, it is a computationally inefficient method for estimating α.

An alternative approach is to use the previous L samples {u(l), l = 1, 2, . . . , L} and es-

timate the α parameters by polynomial regression, as we did in Subsection 4.5.2. We

discuss this approach in the following.

As a consequence of Eqs. (4.37) and (4.40), the polynomial regression problem

amounts to estimating ρ̂0 and the parameters α, so that

R(u) = R̂(u) + ϵ

= ρ̂0 +
J∑

j=1

αj,1
uj
λj

+
αj,2√
2

(
u2j
λ2j

− 1

)

+
J−1∑
j=1

J∑
j′=j+1

αjj′,1
ujuj′

λjλj′
+
αjj′,2√

2

(
u2j
λ2j

− 1

)
uj′

λj′

+
J−1∑
j=1

J∑
j′=j+1

αjj′,3√
2

uj
λj

(
u2j′

λ2j′
− 1

)
+
αjj′,4

2

(
u2j
λ2j

− 1

)(
u2j′

λ2j′
− 1

)
+ ϵ , (4.64)

where ϵ is a zero-mean random variable that models the errors of approximating the
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response function R by R̂. In this case, the least-square error estimate α̂αα of the param-

eters α are given by

α̂αα = (UTU)−1UTρ , (4.65)

where

α̂αα :=



ρ̂0

α̂1,1

...

α̂1,2

...

α̂(J−1)J,4


(2J2+1)×1

ρ :=



R(u(1))

R(u(2))

...

R(u(L))


L×1

U :=



1
u
(1)
1

λ1
· · ·

[
(u

(1)
1 /λ1)2−1

]
√
2

· · ·
[
(u

(1)
J−1/λJ−1)

2−1
][

(u
(1)
J /λJ )

2−1
]

2

1
u
(2)
1

λ1
· · ·

[
(u

(2)
1 /λ1)2−1

]
√
2

· · ·
[
(u

(2)
J−1/λJ−1)

2−1
][

(u
(2)
J /λJ )

2−1
]

2

...
...

...
...

...
...

1
u
(L)
1

λ1
· · ·

[
(u

(L)
1 /λ1)2−1

]
√
2

· · ·
[
(w

(L)
J−1/λJ−1)

2−1
][

(u
(L)
J /λJ )

2−1
]

2


L×(2J2+1)

, (4.66)

provided that the matrix UTU is invertible. Note that calculation of α̂αα requires the

same number L of system integrations as Monte Carlo estimation by Eq. (4.63).

It is not difficult to see from Eq. (4.65) that, if α̂ααMC is the Monte Carlo estimate

of ρ̂0 and of the parameters α, given by [recall Eq. (4.14)]

ρ̂0 = ρ0 = E
[
R(U)

]
≃ 1

L

L∑
l=1

R(u(l)), (4.67)

and Eq. (4.63), respectively, then

α̂ααMC =
1

L
UTρ =

1

L
UTU α̂αα . (4.68)
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Moreover,

lim
L→∞

1

L
UTU = I, (4.69)

where I is the identity matrix, by virtue of the biorthonormality conditions given

by Eq. (4.39) and the fact that the Monte Carlo estimate
[∑L

l=1 f(x
(l))
]
/L converges to

the integral
∫∞
−∞ f(x)π(x)dx, as L→ ∞, provided that x(l), l = 1, 2, . . . , L, are samples

independently drawn from the probability density function π(x). As a consequence, the

Monte Carlo estimate α̂ααMC and the regression estimate α̂αα are identical in the limit as the

number of Monte Carlo samples grows to infinity. Since α is obtained by minimizing

the least-square error between R and R̂, we expect that the regression estimate α

of the parameters α will be more preferable than the Monte Carlo estimate α̂ααMC, in

the sense that, for a relatively small number of Monte Carlo samples, α may produce

a better fit R̂ of the response function R than the one produced by α̂ααMC. Finally,

note from Eq. (4.69) that, for a sufficiently large number of Monte Carlo samples,

UTU is approximately equal to the identity matrix multiplied by L, which effectively

reduces the risk of singularity when evaluating the inverse matrix (UTU)−1 in Eq. (4.65).

Therefore, if UTU turns out to be singular for a chosen value of L, the user needs to

increase L until a nonsingular matrix UTU is obtained.

Orthonormal Hermite Approximation (OHA) requires L system integrations, where L

is the number of regression points obtained by Latin hypercube sampling.7 This num-

ber is smaller than the number 2L(J+1) of system integrations used in MC by a factor

of 2(J + 1), but it could be larger than the number of system integrations required by

DA, PA, or GHI.

7In this chapter, we take the number of regression points used in OHA to be the same as the
number of Latin hypercube samples employed by MC, although these two numbers can be different
in general.
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4.6 Numerical Results

We now employ the techniques discussed in this chapter to estimate the variance-based

sensitivity indices σj,2 and ηj,2 associated with the duration, integrated response, and

strength of ERK-PP activity. We do this by considering the dynamic behavior, within

a time frame of 6 hours, of the MAPK signaling cascade model depicted in Fig. 2.1. We

consider two cases: (a) reaction-oriented sensitivity analysis (ROSA), and (b) species-

oriented sensitivity analysis (SOSA), as we have explained in Section 3.3. ROSA

investigates the importance of reactions in influencing the system response, and SOSA

investigates the importance of molecular species in influencing the system response. In

each case, we need to set values for the standard deviations {λ‡m, m = 1, 2, . . . ,M}

of the standard chemical potentials of the activated complexes of the reactions and

the standard deviations {λn, n = 1, 2, . . . , N} of the standard chemical potentials of

the molecular species. Due to difficulties in obtaining these values in practice, we

assume here that λ‡m = λ‡, for m = 1, 2, . . . ,M , and λn = λ, for n = 1, 2, . . . , N , and

consider λ‡, λ as two “user-defined” parameters that quantify the fluctuation levels in

biochemical factor values. By following the previous work in Section 3.3, we perform

sensitivity analysis with λ‡, λ = 0.1, 0.2, 0.3, 0.4.8 Finally, we employ L = 6,000 Latin

hypercube samples in MC and OHA, S = 4 regression samples per factor in PA,9 and

a Gauss-Hermite integration of order Q = 5 in GHI.

8As a consequence of Eq. (2.21), if Yn = 0, for n = 1, 2, . . . , N , then a ±λ‡ variation in the values of
Y ‡
m about zero will produce a variation in the nominal values of the rate constants of the mth reaction

within the percentage interval 100
[
exp{−λ‡

m} − 1, exp{λ‡
m} − 1

]
%. This corresponds to variations in

the nominal values of the reaction rate constants within the interval [−9.52%, 10.52%], for λ‡ = 0.1,
[−18.13%, 22.14%], for λ‡ = 0.2, [−25.92%, 34.99%], for λ‡ = 0.3, and [−32.97%, 49.18%], for λ‡ = 0.4.

9In our simulations, we use S = 4 regression points per biochemical factor, located at −2w,−w,w,
and 2w, where w = λ‡ for ROSA and w = λ for SOSA (i.e., we use regression points located at ± one
and two standard deviations from 0).
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Table 4.1: Number of required system integrations, equations used, and sources of error
for each approximation method.

method required ROSA SOSA equations sources of error

system used

integrations

MC 2L(J + 1) 264000 288000 Eqs. (4.2)–(4.4) number of MC samples used

DA 2J(J + 1) + 1 925 1105 Eq. (4.20) local approximation

truncation of Taylor series

derivative approximation

PA J(J − 1)S2/2 3445 4141 Eq. (4.24) local approximation

+JS + 1 truncation of FD-HDMR

polynomial approximation

polynomial regression

GHI 2J(J − 1)⌊Q/2⌋2 3445 4141 Eqs. (4.28)– local approximation

+2J⌊Q/2⌋+ 1 (4.30), (4.33) truncation of FD-HDMR

Gauss-Hermite integration

OHA L 6000 6000 Eq. (4.41) truncation of ANOVA-HDMR

Hermite approximation

polynomial regression

L: number of Monte Carlo (Latin hypercube) samples

J : number of biochemical factors

S: number of regression samples per factor

Q: order of Gauss-Hermite integration

In Table 4.1, we summarize the number of system integrations and the equations

used by each method. For ROSA-based sensitivity analysis (J = 21), the number of

system integrations required by DA, PA, GHI, and OHA, are respectively only 0.35%,

1.30%, 1.30%, and 2.27% of that required by MC. For SOSA-based sensitivity analysis

(J = 23), the number of system integrations required by DA, PA, GHI, and OHA, are

respectively only 0.38%, 1.44%, 1.44%, and 2.08% of that required by MC.
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We list the ROSA results in Tables 4.2–4.4, obtained by the five techniques con-

sidered in this chapter and for the four fluctuation levels in the standard chemical

potentials of the activated complexes associated with the reactions. The results are

given in percentages. For ease of presentation, we have truncated the SESI and JESI

values to the closest integers. To reduce the size of the tables, we depict only the

results associated with reactions whose truncated SESI or JESI values, estimated by

MC, are at least 5%. We consider the SESI and JESI values obtained by MC as the

“true” values. By following the previous work in Section 3.1, we classify reactions and

molecular species into one of four categories of interest: singularly influential, jointly

influential, singularly/jointly influential, and non-influential. We do this by comparing

their SESI and JESI values to a 10% threshold. In particular, a reaction is singularly

influential if the corresponding SESI value is at least 10% and the JESI value is smaller

than 10%, jointly influential if the JESI value is at least 10% and the SESI value is

smaller than 10%, singularly/jointly influential if both the SESI and JESI values are at

least 10%, and non-influential if both the SESI and JESI values are smaller than 10%.

In the remaining of this subsection, we discuss the ROSA results separately for each

response characteristic. A similar discussion applies for the SOSA results presented in

the Appendix at the end of this chapter.

4.6.1 Duration

Estimation, by MC, of the ROSA-based sensitivity indices associated with the duration

of ERK-PP activity produces values that change little with the size λ‡ of the underlying

fluctuations; see Table 4.2. Moreover, the estimated SESI and JESI values indicate that
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Table 4.2: ROSA-based SESI and JESI values for the duration of ERK-PP activity in
the MAPK signaling cascade obtained by the five techniques considered in this chapter.
Bold reaction numbers indicate SESI or JESI values, obtained by MC, that are above
the 10% threshold.

SESI - DURATION (λ‡ = 0.1)(λ‡ = 0.1)(λ‡ = 0.1) JESI - DURATION (λ‡ = 0.1)(λ‡ = 0.1)(λ‡ = 0.1)

Reaction MC DA PA GHI OHA Reaction MC DA PA GHI OHA

4 28 28 28 27 28 4 1 0 0 0 0

6 24 26 25 22 25 6 1 0 0 0 0

11 7 7 7 9 8 11 0 0 0 0 0

13 18 18 20 18 19 13 1 0 0 0 0

SESI - DURATION (λ‡ = 0.2)(λ‡ = 0.2)(λ‡ = 0.2) JESI - DURATION (λ‡ = 0.2)(λ‡ = 0.2)(λ‡ = 0.2)

Reaction MC DA PA GHI OHA Reaction MC DA PA GHI OHA

4 26 27 27 29 27 4 2 1 1 1 1

6 22 25 25 25 23 6 2 1 1 1 1

11 7 7 7 8 8 11 1 0 0 0 0

13 16 17 18 16 17 13 1 1 0 0 0

17 5 5 6 4 5 17 1 1 1 1 1

21 5 5 5 6 5 21 1 1 0 1 1

SESI - DURATION (λ‡ = 0.3)(λ‡ = 0.3)(λ‡ = 0.3) JESI - DURATION (λ‡ = 0.3)(λ‡ = 0.3)(λ‡ = 0.3)

Reaction MC DA PA GHI OHA Reaction MC DA PA GHI OHA

4 26 26 26 24 26 4 1 2 2 2 2

6 21 24 20 21 21 6 1 2 1 1 1

11 7 6 7 7 8 11 0 1 0 0 0

13 15 16 13 15 15 13 1 1 1 1 1

17 5 4 6 5 5 17 1 2 2 2 1

21 6 5 8 8 6 21 2 2 3 2 1

SESI - DURATION (λ‡ = 0.4)(λ‡ = 0.4)(λ‡ = 0.4) JESI - DURATION (λ‡ = 0.4)(λ‡ = 0.4)(λ‡ = 0.4)

Reaction MC DA PA GHI OHA Reaction MC DA PA GHI OHA

4 23 24 23 21 25 4 4 3 2 3 3

6 19 22 20 19 21 6 4 3 2 2 2

11 8 6 6 7 9 11 1 1 0 0 0

13 14 15 12 11 15 13 1 2 1 1 1

17 5 4 6 8 5 17 2 3 2 3 1
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the duration is primarily affected by reactions 4, 6, and 13 (refer to Fig. 2.1, Table 2.1

and Table 2.2 for identifying these reactions), which exert their influence only singularly

(since the SESI values are larger than 10%, whereas the corresponding JESI values are

less than 10%). As a matter of fact, all JESI values are negligible, which indicates

that the log-duration may be approximately additive,10 at least within the range of

the applied perturbations. It turns out that the SESI’s associated with an additive

response function can be well estimated by all previous approximation techniques.

From the results depicted in Table 4.2 (and Table 4.5 in the Appendix and the

end of this chapter), it is clear that, as compared to MC, the DA, PA, GHI, and OHA

consistently provide good approximations to the SESI and JESI values at all fluctuation

levels. Moreover, all methods can be used to correctly classify reactions 4, 6, and 13

as being singularly influential.

4.6.2 Integrated Response

Estimation, by MC, of the ROSA-based sensitivity indices associated with the inte-

grated response of ERK-PP activity produces the SESI and JESI values depicted in

Table 4.3. These values indicate that the integrated response is primarily influenced

by reactions 4 and 6 (refer to Fig. 2.1 and Table 2.1 for identifying these reactions).

For small to moderate fluctuations (i.e., for λ‡ = 0.1, 0.2), reactions 4 and 6 influ-

ence the integrated response only singularly. However, for large fluctuations (i.e., for

λ‡ = 0.3, 0.4), reaction 4 influences the integrated response both singularly and jointly

(since both SESI and JESI values are at least 10%), whereas, reaction 6 still influences

10Additive response functions do not produce high-order (≥ 2) joint effects and result in zero JESI
values [23]. Although a linear response function is additive, the inverse is not necessarily true.
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Table 4.3: ROSA-based SESI and JESI values for the integrated response of ERK-PP
activity in the MAPK signaling cascade obtained by the five techniques considered in
this chapter. Bold reaction numbers indicate SESI or JESI values, obtained by MC,
that are above the 10% threshold.

SESI - I-RESPONSE (λ‡ = 0.1)(λ‡ = 0.1)(λ‡ = 0.1) JESI - I-RESPONSE (λ‡ = 0.1)(λ‡ = 0.1)(λ‡ = 0.1)

Reaction MC DA PA GHI OHA Reaction MC DA PA GHI OHA

4 39 39 39 39 39 4 1 0 0 0 0

6 26 27 27 27 27 6 1 0 0 0 0

11 9 10 9 9 9 11 0 0 0 0 0

13 8 8 8 8 8 13 0 0 0 0 0

SESI - I-RESPONSE (λ‡ = 0.2)(λ‡ = 0.2)(λ‡ = 0.2) JESI - I-RESPONSE (λ‡ = 0.2)(λ‡ = 0.2)(λ‡ = 0.2)

Reaction MC DA PA GHI OHA Reaction MC DA PA GHI OHA

4 37 38 40 40 39 4 5 1 1 2 2

6 25 27 26 26 25 6 4 0 0 1 1

8 5 5 5 5 6 8 2 0 0 1 1

11 7 9 8 8 8 11 1 0 0 0 0

13 6 8 7 7 7 13 1 1 0 0 0

SESI - I-RESPONSE (λ‡ = 0.3)(λ‡ = 0.3)(λ‡ = 0.3) JESI - I-RESPONSE (λ‡ = 0.3)(λ‡ = 0.3)(λ‡ = 0.3)

Reaction MC DA PA GHI OHA Reaction MC DA PA GHI OHA

4 38 37 43 41 36 4 10 2 9 10 11

6 21 26 22 21 21 6 7 1 4 4 6

8 8 4 7 7 7 8 4 0 3 4 5

SESI - I-RESPONSE (λ‡ = 0.4)(λ‡ = 0.4)(λ‡ = 0.4) JESI - I-RESPONSE (λ‡ = 0.4)(λ‡ = 0.4)(λ‡ = 0.4)

Reaction MC DA PA GHI OHA Reaction MC DA PA GHI OHA

4 36 36 43 40 34 4 15 3 18 15 16

6 18 25 16 19 18 6 8 2 7 7 8

8 8 4 8 9 8 8 7 1 6 6 7

the integrated response only singularly.

It is clear from the results depicted in Table 4.3 (and Table 4.6 in the Appendix

of this chapter) that all approximation techniques work relatively well for small to

moderate fluctuation levels (i.e., for λ‡ = 0.1, 0.2), providing accurate SESI and JESI
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values, as compared to the values obtained by MC, and produce correct classification

of the reactions. This is true, since the log integrated response may be approximately

additive in this case, as indicated by the negligible JESI values. However, for large

fluctuations (i.e., for λ‡ = 0.3, 0.4), the log integrated response is not additive any-

more and the results obtained by DA deteriorate noticeably,11 deeming the use of DA

inappropriate. As a matter of fact, the DA is not capable of capturing second-order

joint effects and the resulting JESI values are very small. If we use the DA results to

classify the reactions, then we will erroneously conclude that reaction 4 influences the

integrated response only singularly, when λ‡ = 0.3, 0.4.

From the results depicted in Table 4.3 (and Table 4.6 in the Appendix at the end

of this chapter), it is clear that, for large fluctuations, GHI and OHA provide good

approximations to the sensitivity indices. Moreover, the results indicate that OHA

may be a better approximation technique than GHI (e.g., compare the SESI results

obtained by GHI and OHA for reaction 4). On the other hand, the results obtained by

PA are much better than the results obtained by DA. However, the performance of PA

may deteriorate at high fluctuation levels and may become inferior to GHI and OHA

(e.g., compare the results obtained by PA, GHI, and OHA for reaction 4). Finally, it

is clear that the sensitivity results obtained by GHI and OHA can be used to correctly

classify all reactions.

11For example, using the JESI results produced by ROSA, the largest differences between the values
obtained by DA and MC are 8% and 12% for λ‡ = 0.3, 0.4, respectively.
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4.6.3 Strength

Estimation, by MC, of the ROSA-based sensitivity indices associated with the strength

of ERK-PP activity produces the SESI and JESI values depicted in Table 4.4. These

values indicate that the log strength may be approximately additive when λ‡ = 0.1.

However, the log strength becomes nonadditive when λ‡ = 0.2, 0.3, 0.4, since the es-

timated JESI values are not negligible at these fluctuation levels. Note that, when

λ‡ = 0.1, the strength is primarily affected by reactions 4, 6, 8, and 19, which exert their

influence only singularly. However, when λ‡ = 0.2, reaction 8 becomes non-influential,

reaction 4 influences the strength both singularly and jointly, whereas, reactions 6

and 19 still influence the strength singularly. On the other hand, when λ‡ = 0.3, 0.4,

reactions 4 and 6 influence the strength both singularly and jointly, whereas, reaction 8

influences the strength only jointly (since the JESI values are larger than 10%, whereas,

the corresponding SESI values are less than 10%).

It is clear from the results depicted in Table 4.4 (and Table 4.7 in the Appendix at

the end of this chapter) that all approximation techniques work relatively well when

λ‡ = 0.1, producing accurate SESI and JESI values, as compared to the values obtained

by MC, and resulting in correct classification of the reactions. However, when λ‡ =

0.2, 0.3, 0.4, DA produces inaccurate results, while the performance of PA and GHI

deteriorates noticeably.12 Once more, OHA consistently provides good results, which

can be used to correctly classify the reactions at all fluctuation levels.

12For example, considering the JESI results produced by ROSA, the largest differences between the
values obtained by DA and MC are 11%, 20% and 23% for λ‡ = 0.2, 0.3, 0.4, respectively. Moreover,
the largest differences between the values obtained by PA and MC are 10%, 8% and 5% for λ‡ =
0.2, 0.3, 0.4, respectively. Finally, the largest differences between the values obtained by GHI and MC
are 5%, 7% and 5% for λ‡ = 0.2, 0.3, 0.4, respectively.
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Table 4.4: ROSA-based SESI and JESI values for the strength of ERK-PP activity in
the MAPK signaling cascade obtained by the five techniques considered in this chapter.
Bold reaction numbers indicate SESI or JESI values, obtained by MC, that are above
the 10% threshold.

SESI - STRENGTH (λ‡ = 0.1)(λ‡ = 0.1)(λ‡ = 0.1) JESI - STRENGTH (λ‡ = 0.1)(λ‡ = 0.1)(λ‡ = 0.1)

Reaction MC DA PA GHI OHA Reaction MC DA PA GHI OHA

4 38 38 36 30 38 4 1 0 0 0 0

6 17 15 15 14 17 6 1 1 0 0 0

8 10 10 9 6 10 8 1 0 0 0 0

11 8 9 9 4 8 11 0 0 0 0 0

19 12 10 12 15 13 19 1 1 0 0 0

SESI - STRENGTH (λ‡ = 0.2)(λ‡ = 0.2)(λ‡ = 0.2) JESI - STRENGTH (λ‡ = 0.2)(λ‡ = 0.2)(λ‡ = 0.2)

Reaction MC DA PA GHI OHA Reaction MC DA PA GHI OHA

4 32 34 40 39 33 4 13 2 3 8 11

6 14 14 14 12 13 6 8 3 1 3 6

8 8 9 11 12 9 8 7 1 1 2 5

17 6 4 6 3 6 17 6 1 1 2 4

19 10 9 11 12 12 19 5 2 1 1 4

SESI - STRENGTH (λ‡ = 0.3)(λ‡ = 0.3)(λ‡ = 0.3) JESI - STRENGTH (λ‡ = 0.3)(λ‡ = 0.3)(λ‡ = 0.3)

Reaction MC DA PA GHI OHA Reaction MC DA PA GHI OHA

4 31 30 37 37 27 4 23 3 22 25 26

6 10 12 12 11 10 6 17 5 9 10 15

8 9 8 10 9 8 8 11 2 8 9 11

19 6 8 7 6 5 19 5 4 3 3 4

SESI - STRENGTH (λ‡ = 0.4)(λ‡ = 0.4)(λ‡ = 0.4) JESI - STRENGTH (λ‡ = 0.4)(λ‡ = 0.4)(λ‡ = 0.4)

Reaction MC DA PA GHI OHA Reaction MC DA PA GHI OHA

4 28 25 40 36 26 4 28 5 29 27 29

5 2 1 1 0 2 5 6 5 2 2 5

6 10 10 9 11 10 6 16 7 11 11 15

8 8 7 8 10 8 8 15 3 11 11 14

15 1 0 0 0 2 15 7 5 4 4 7

21 1 0 0 0 1 21 7 4 4 4 8
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4.7 Discussion

The previous numerical results demonstrate that, in terms of estimation accuracy, OHA

is the best method and DA is the worst, whereas, PA and GHI are in between, with

GHI slightly better than PA. To explain why this is so, we must investigate the sources

of error introduced by each technique, which we summarize in Table 4.1.

The estimation error produced by the MC approach is mainly due to the finite num-

ber L of samples used and decreases slowly as L increases, regardless of the number J

of biochemical factors used, at least theoretically.13

There are two sources of error associated with DA. First, substantial errors may

be introduced due to the fact that DA locally approximates the response function by

a Taylor series expansion that includes only first- and second-order partial derivatives.

Consequently, DA may not produce good estimates of the sensitivity indices under

large fluctuations, since a second-order Taylor series approximation of the response

function may not be sufficiently accurate over the range of factor values generated by

such fluctuations. This is especially true when the response function is nonadditive (as

it is the case with the log integrated response and the log strength of ERK-PP in the

MAPK example). In such cases, large factor variations may produce substantial joint

effects, which cannot be captured by a local second-order Taylor series approximation.

This is evident by the fact that, under large fluctuations, the JESI values obtained

by DA, associated with the integrated response and strength, are significantly smaller

than the ones produced by MC.

13Note, however, that to achieve a certain level of accuracy in practice, we may also need to
increase L as the number J of biochemical factors increases, due to the exponential growth in the
volume of the biochemical factor space when adding extra dimensions, a problem that is usually
referred to as “curse of dimensionality.”
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A second source of error associated with DA is the approximation of the first- and

second-order derivatives of the response function by finite-differences.14 It has been

pointed out in [4] that the resulting approximations must be carefully used, since it

is difficult to theoretically predict, control, and numerically evaluate their accuracy.

Although a number of techniques have been developed to deal with this problem [82],

exact evaluation of the response derivatives usually requires simultaneous integration

of a set of “sensitivity equations,” together with the differential equations governing

the underlying molecular concentration dynamics, which turns out to be a very difficult

task due to stiffness of the resulting system of differential equations [4].

PA attempts to improve the accuracy of DA by adding high-order derivative terms

in the Taylor series expansion of the response function. In addition to the first- and

second-order partial derivatives used by the DA, the Taylor series expansion now

includes third- and fourth-order partial derivatives that involve only two biochemi-

cal factors. Moreover, instead of approximating the derivatives by finite differences,

the method avoids such computations by expanding the response function using FD-

HDMR, by truncating all components of order ≥ 3, by respectively approximating the

first- and second-order FD-HDMR components with second- and fourth-order polyno-

mials, and by estimating the coefficients of these polynomials using regression. Errors

are introduced by truncating the FD-HDMR and locally approximating the resulting

response function by a fourth-order polynomial including only terms involving single

and pairs of biochemical factors. As a consequence, PA may not be able to accurately

estimate some SESI and JESI values under large fluctuations, since the underlying

14In our simulations, we approximate the first- and second-order partial derivatives of the response
function by using Eqs. (4.43) and (4.44), with ∆ = 0.1.
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truncation and polynomial approximation of the response function may not be suffi-

ciently accurate over the range of factor values generated by such fluctuations. Note

also that errors can be introduced due to estimating the polynomial coefficients by

regression, a situation that cannot be evaluated and controlled easily.15

GHI attempts to improve the accuracy of estimating the sensitivity indices by

employing the exact first- and second-order FD-HDMR components, and numerically

calculating the required expectations and variances using Gauss-Hermite integrations.

Errors are introduced when truncating the FD-HDMR and evaluating the expectations

and variances by one- and two-dimensional Gauss-Hermite integrations. Evaluating

and controlling these errors is practically impossible.16 Truncation of the FD-HDMR

essentially corresponds to a local approximation of the response function, although this

approximation is expected to be more accurate than the Taylor series and polynomial

approximations used by DA and PA, respectively. As a consequence, GHI may not be

able to accurately estimate some SESI and JESI values under large fluctuations, since

the underlying FD-HDMR truncation may not be sufficiently accurate over the range

of factor values generated by such fluctuations.

Finally, the errors introduced by OHA are due to approximating the ANOVA-

HDMR expansion of the response function by first- and second-order ANOVA-HDMR

components, approximating these components with first- and second-order orthonor-

mal Hermite polynomials, and estimating the coefficients of these polynomials using

regression. Here, the truncation of high-order ANOVA-HDMR components does not

15Using more samples per biochemical factor does not necessarily increase accuracy, especially in
polynomial regression [83,84].

16Higher-order Gauss-Hermite integrations do not necessarily produce higher accuracy. This is true
only when the integrands are sufficiently smooth, in the sense that they can be well-approximated by
polynomials [84].
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correspond to a local approximation of the response function, which is why this ap-

proximation is more accurate than truncating the FD-HDMR components, as in GHI.

In fact, if we consider fluctuation levels at which the higher-order (≥ 3) terms in

the variance decomposition scheme given by Eq. (3.1) are negligible, then the higher-

order (≥ 3) terms in the ANOVA-HDMR decomposition of the response function will

be negligible as well [see Eq. (3.1)]. This is not necessarily true for the higher-order

terms in the FD-HDMR decomposition. Therefore, truncating the ANOVA-HDMR

decomposition of the response function, as opposed to the FD-HDMR decomposition,

is well justified for fluctuation levels at which the response variance is not appreciably

influenced by high-order joint effects. Under very large fluctuations, OHA may not

accurately estimate the sensitivity indices, since the underlying truncation of ANOVA-

HDMR may not be accurate enough due to appreciable high-order (≥ 3) joint effects in

the response variance. However, the global nature of the approximation methodology

employed by OHA, the direct relationship between ANOVA-HDMR and the response

variance decomposition scheme given by Eq. (3.1), and the orthonormality properties of

the Hermite polynomials, make OHA the most desirable technique for approximating

the sensitivity indices, among the techniques considered in this chapter.

Although we have also obtained simulation results for other biochemical reaction

systems, we have limited the presentation in this dissertation to the results obtained

for the MAPK model depicted in Fig. 2.1. To illustrate various aspects of the approx-

imation techniques and their relative merits, we have chosen the response functions to

represent three types of high-dimensional system responses: the log duration, lnD, is

approximately additive for the levels of biochemical factor uncertainty considered in
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this dissertation, the log integrated response, lnI, is moderately nonadditive, whereas,

the log strength, lnS, is highly nonadditive. Based on our experience so far, all our

simulation results are consistent with each other and perfectly agree with the theoreti-

cal analysis presented in this chapter. We therefore believe that the conclusions based

on the MAPK model are general and can be applied to other biochemical reaction

systems as well.

It is very important to keep in mind that the four approximation techniques con-

sidered in this chapter are based on the assumption that, for most biochemical reaction

systems of interest, fluctuations of input biochemical factors will produce only single

and second-order joint effects at the output. As a consequence, truncating the HDMR

of the response function to a second-order is a natural thing to do. Note that this

assumption depends on the particular choice of the biochemical factors used, on how

the system response relates to these factors, and on the fluctuation levels used for sen-

sitivity analysis. In general, the approximation methods discussed in this chapter are

expected to fail in the presence of high-order (≥ 3) joint effects among biochemical

factors. Therefore, it may be necessary in these cases to consider truncated HDMR’s

that include higher-order basis functions. Extension to this case is straightforward

but computationally demanding, since higher-order cases require evaluation of a large

number of variance terms in the decomposition scheme given by Eq. (3.1), which can

be a tedious thing to do for large biochemical reaction systems.

We should point out here that GHI is based on the methodology proposed in [6,85],

which has been effectively used to calculate statistical moments of the responses of

high-dimensional mechanical systems subject to randomly fluctuating loads. In this
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dissertation, this method has been reformulated to fit the framework of variance-based

sensitivity analysis and has been applied to biochemical reaction systems. On the

other hand, OHA is based on the methodology proposed in [37, 86–88] for approxi-

mating ANOVA-HDMR’s using orthonormal basis functions. OHA can also be viewed

as a special case of the polynomial chaos expansion (PCE) approach to sensitivity

analysis discussed in [89–91], and has been recently employed in [92] for estimating

variance-based sensitivity indices in order to learn the topology of a functional net-

work of interactions from given data. To our knowledge, it is the first time that we

systematically compare the four approximation techniques and use them to study the

sensitivity properties of biochemical reaction systems [93].

To conclude this chapter, we would like to stress the fact that the approximation

techniques presented in this chapter have been derived by assuming that the biochem-

ical factors used for sensitivity analysis are statistically independent and that each

factor follows a Gaussian distribution. The assumption of statistical independence

between the random variables {Y ‡
m,m = 1, 2, . . . ,M} and {Yn, n = 1, 2, . . . , N} has

been justified in Section 2.4. However, justifying mutual independence within the sets

{Y ‡
m,m = 1, 2, . . . ,M} and {Yn, n = 1, 2, . . . , N} is a very difficult thing to do. We

simply view this assumption as a convenient approximation that allows us to pro-

ceed with the sensitivity analysis approaches discussed in this dissertation. Developing

variance-based sensitivity analysis for correlated biochemical factors is a challenging

problem that needs careful investigation [23,94]. On the other hand, if the biochemical

factors follow non-Gaussian distributions, such as uniform, gamma, binomial, etc., the

approximation techniques must be appropriately modified to accommodate these dis-
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tributions. For example, if each biochemical factor follows a uniform distribution, then

we must replace the Gauss-Hermite integration step in GHI by Gauss-Legendre inte-

gration [84]. Moreover, if the biochemical factors follow gamma distributions, then we

must replace the orthonormal Hermite polynomials in OHA by orthonormal Laguerre

polynomials [89,91].

4.8 Appendix

In Tables 4.5–4.7, we provide the SOSA-based sensitivity analysis results for the

three response characteristics (duration, integrated response, and strength) of ERK-

PP activity in the MAPK signaling cascade obtained by the five techniques (MC,

DA, PA, GHI, and OHA) considered in this chapter and for four fluctuation levels

(λ = 0.1, 0.2, 0.3, 0.4) in the values of the standard chemical potentials associated with

the molecular species (refer to Fig. 2.1 and Table 2.3 for identifying these species). The

results are given in percentages and have been truncated to the nearest integer. Only

results that correspond to SESI or JESI values obtained by MC that are at least 5%

are shown. Bold species numbers indicate SESI or JESI values that are at least 10%.

According to our discussion in Section 3.1, these species are classified by the variance-

based sensitivity analysis method to be singularly influential (if the SESI value is at

least 10% but the JESI value is below 10%), jointly influential (if the JESI value is

at least 10% but the SESI value is below 10%), and singularly/jointly influential (if

both the SESI and JESI values are at least 10%). The remaining molecular species are

deemed to be non-influential.
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Table 4.5: SOSA-based SESI and JESI values for the duration of ERK-PP activity in
the MAPK signaling cascade obtained by the five techniques considered in this chapter.
Bold species numbers indicate SESI or JESI values, obtained by MC, that are above
the 10% threshold.

SESI - DURATION (λ = 0.1)(λ = 0.1)(λ = 0.1) JESI - DURATION (λ = 0.1)(λ = 0.1)(λ = 0.1)

Species MC DA PA GHI OHA Species MC DA PA GHI OHA

5 38 37 38 34 38 5 1 0 0 0 0

7 23 25 23 25 23 7 0 0 0 0 0

14 17 17 19 19 18 14 0 0 0 0 0

SESI - DURATION (λ = 0.2)(λ = 0.2)(λ = 0.2) JESI - DURATION (λ = 0.2)(λ = 0.2)(λ = 0.2)

Species MC DA PA GHI OHA Species MC DA PA GHI OHA

5 36 35 36 37 37 5 4 1 1 1 1

7 20 24 22 20 22 7 2 1 1 1 1

14 15 16 17 19 16 14 1 0 0 0 0

SESI - DURATION (λ = 0.3)(λ = 0.3)(λ = 0.3) JESI - DURATION (λ = 0.3)(λ = 0.3)(λ = 0.3)

Species MC DA PA GHI OHA Species MC DA PA GHI OHA

5 36 33 36 33 36 5 3 3 2 3 2

7 20 23 20 21 21 7 1 1 1 1 1

14 15 16 14 14 15 14 1 1 1 1 1

18 5 4 5 6 5 18 1 2 2 2 1

SESI - DURATION (λ = 0.4)(λ = 0.4)(λ = 0.4) JESI - DURATION (λ = 0.4)(λ = 0.4)(λ = 0.4)

Species MC DA PA GHI OHA Species MC DA PA GHI OHA

5 34 31 27 32 33 5 5 4 4 5 5

7 19 21 20 18 19 7 3 2 2 2 3

12 5 4 5 4 6 12 1 1 0 0 1

14 15 15 13 11 15 14 1 1 1 1 1
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Table 4.6: SOSA-based SESI and JESI values for the integrated response of ERK-PP
activity in the MAPK signaling cascade obtained by the five techniques considered in
this chapter. Bold species numbers indicate SESI or JESI values, obtained by MC,
that are above the 10% threshold.

SESI - I-RESPONSE (λ = 0.1)(λ = 0.1)(λ = 0.1) JESI - I-RESPONSE (λ = 0.1)(λ = 0.1)(λ = 0.1)

Species MC DA PA GHI OHA Species MC DA PA GHI OHA

5 46 47 47 47 47 5 1 0 0 0 0

7 23 23 23 23 23 7 0 0 0 0 0

9 9 9 9 9 9 9 1 0 0 0 0

14 11 12 12 12 12 14 0 0 0 0 0

SESI - I-RESPONSE (λ = 0.2)(λ = 0.2)(λ = 0.2) JESI - I-RESPONSE (λ = 0.2)(λ = 0.2)(λ = 0.2)

Species MC DA PA GHI OHA Species MC DA PA GHI OHA

5 47 46 50 49 46 5 7 1 2 5 5

7 19 23 21 20 21 7 4 0 1 2 2

9 8 9 9 8 9 9 3 0 1 2 3

14 8 12 9 9 9 14 1 0 0 0 0

SESI - I-RESPONSE (λ = 0.3)(λ = 0.3)(λ = 0.3) JESI - I-RESPONSE (λ = 0.3)(λ = 0.3)(λ = 0.3)

Species MC DA PA GHI OHA Species MC DA PA GHI OHA

5 47 45 50 52 44 5 14 2 16 14 15

7 16 23 15 15 16 7 7 1 6 5 6

9 9 9 9 8 9 9 5 1 6 5 7

SESI - I-RESPONSE (λ = 0.4)(λ = 0.4)(λ = 0.4) JESI - I-RESPONSE (λ = 0.4)(λ = 0.4)(λ = 0.4)

Species MC DA PA GHI OHA Species MC DA PA GHI OHA

5 45 44 45 48 46 5 16 3 22 17 15

7 15 22 13 14 15 7 8 1 8 7 7

9 9 8 9 10 9 9 7 1 8 7 7
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Table 4.7: SOSA-based SESI and JESI values for the strength of ERK-PP activity in
the MAPK signaling cascade obtained by the five techniques considered in this chapter.
Bold species numbers indicate SESI or JESI values, obtained by MC, that are above
the 10% threshold.

SESI - STRENGTH (λ = 0.1)(λ = 0.1)(λ = 0.1) JESI - STRENGTH (λ = 0.1)(λ = 0.1)(λ = 0.1)

Species MC DA PA GHI OHA Species MC DA PA GHI OHA

5 40 41 40 38 41 5 1 0 0 0 0

7 13 11 14 8 13 7 1 0 0 0 0

9 26 26 27 29 26 9 1 0 0 0 0

17 5 6 5 5 6 17 0 0 0 0 0

21 6 6 5 8 6 21 0 0 0 0 0

SESI - STRENGTH (λ = 0.2)(λ = 0.2)(λ = 0.2) JESI - STRENGTH (λ = 0.2)(λ = 0.2)(λ = 0.2)

Species MC DA PA GHI OHA Species MC DA PA GHI OHA

5 40 38 47 46 35 5 18 2 10 18 17

7 10 10 11 11 10 7 9 1 4 6 7

9 15 24 17 16 17 9 9 1 4 6 9

SESI - STRENGTH (λ = 0.3)(λ = 0.3)(λ = 0.3) JESI - STRENGTH (λ = 0.3)(λ = 0.3)(λ = 0.3)

Species MC DA PA GHI OHA Species MC DA PA GHI OHA

5 41 35 44 49 34 5 27 3 30 28 29

7 8 9 7 7 8 7 15 1 11 9 13

9 10 22 10 9 10 9 9 1 10 9 9

22 1 0 0 0 1 22 6 5 4 4 7

SESI - STRENGTH (λ = 0.4)(λ = 0.4)(λ = 0.4) JESI - STRENGTH (λ = 0.4)(λ = 0.4)(λ = 0.4)

Species MC DA PA GHI OHA Species MC DA PA GHI OHA

5 40 31 40 41 39 5 26 5 35 29 26

7 8 8 7 8 8 7 13 2 12 11 13

9 9 20 8 10 9 9 11 2 11 10 11

22 2 0 1 1 2 22 6 8 5 5 7
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Chapter 5

Reducing Experimental Variability

Applying the previously proposed variance-based sensitivity analysis technique (and

almost any other sensitivity analysis technique available in the literature) requires

specification of the nominal values of underlying kinetic parameters [32]. It turns out

that different nominal values may produce different sensitivity results (see our example

in Section 5.6 and the Appendix at the end of this chapter), which can be very prob-

lematic in applications of the method to systems biology problems. For the sensitivity

results to be biologically relevant, the nominal values must be close to their “true”

values. However, the true parameter values of real biochemical reaction systems are

hardly known. Most often, nominal kinetic parameter values are estimated from mea-

surements reported by various laboratories using different experimental methods and

conditions. It is therefore uncertain whether a particular set of nominal parameters

closely approximates the biological system at hand [45,95]. Even if nominal parameter

values are obtained under the same experimental conditions (which is usually done by

a collective fit approach based on minimizing the discrepancy between obtained exper-
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imental data and predicted system responses), there is a high degree of uncertainty

on whether these values are the “true” system values. This is due to the “sloppiness”

of biochemical reaction systems (different combinations of parameter values may lead

to equally acceptable concentration dynamics) [96, 97], appreciable errors typical to

experimental biology [98], as well as substantial differences between the in-vitro and

in-vivo kinetic properties of molecular species [99].

In fact, biological data are always subject to unpredictable biological and exper-

imental variabilities. When dealing with such data, it is important to distinguish

between these two sources of uncertainty, so that experimental protocols and com-

putational analysis can be appropriately designed and conclusions can be accurately

drawn [39, 100]. For example, when using ROSA and SOSA in systems-based drug

design applications, we are only interested in assessing how biological variability in-

fluences cellular behavior, since experimental variability does not exist in living cells

and cannot be pharmacologically controlled. If experimental variability is prominent,

then its effect should be minimized in order to improve the accuracy of the sensitivity

analysis method used.

Motivated by this need, we propose in this chapter a variance-based approach to

sensitivity analysis that explicitly considers experimental variability and effectively

reduces its effects on the obtained results. More specifically, we introduce a new set of

sensitivity indices, which we refer to as noise-reduced variance-based sensitivity indices

(NR-VSI’s), that account for the uncertainty in nominal reaction rate values due to

experimental variability. Although these indices are a simple extension of the variance-

based sensitivity indices considered in Chapter 3, they are less sensitive to the choice
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of nominal rate values used and lead to a powerful sensitivity analysis methodology

that can effectively accommodate different levels of experimental variability.

Variance-based sensitivity indices can be estimated by Monte Carlo sampling. This

is a powerful yet computationally demanding numerical approach, since it requires

evaluation of the response function of a biochemical reaction system at a large number

of kinetic parameter values. To reduce computational effort, many approximation

techniques have been proposed in the literature [75–79, 90, 92, 93]. Most techniques

replace the actual response function by an approximate one that is much easier to

compute, and estimate the sensitivity indices either analytically or by Monte Carlo

sampling using the approximate function. However, a major limitation of this approach

is that it does not work well for large biochemical reaction systems, since it cannot

capture the effects of high-order biochemical factor interactions on high-dimensional

nonlinear system responses [76,101].

One way to address this problem is to use a pre-screening technique to identify

non-influential biochemical factors, whose contributions to the system response vari-

ance are negligible, then fix their values to the corresponding nominal values, or group

them together and treat them as one factor [102]. This approach will reduce the dimen-

sionality of the sensitivity analysis problem at hand and make estimation of sensitivity

indices easier to handle. Currently available pre-screening techniques employ elemen-

tary effect measures [103, 104], or integrals of squared partial derivatives [105, 106].

Although these methods work well for the analytical examples provided in the litera-

ture, they are unreliable when used for sensitivity analysis of large biochemical reaction

systems [101]. Both methods are prone to large errors, since they require evaluation
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of partial derivative of the response function with respect to each biochemical factor

at different points in the parameter space, which cannot be done analytically. Partial

derivatives are usually approximated by finite differences, whose accuracy is very diffi-

cult to assess and control [4]. When evaluating elementary effect measures or integrals

of squared partial derivatives, numerical errors may accumulate and propagate, and in

some cases grow exponentially or oscillate [107], causing the calculated pre-screening

measures to appreciably deviate from their actual values, thus leading to unreliable

sensitivity analysis results.

On the other hand, in real biological systems, substantial high-order interactions

normally exist only among those system factors that already demonstrate substantial

low-order interactions [108]. This motivates us to assume that, if the singular and joint

contribution to the system response variance of a biochemical factor with another factor

is negligible, it is unlikely that this factor will contribute to the system response variance

by interacting with multiple other factors, in which case the biochemical factor will be

non-influential. As a consequence of this assumption, we can ignore high-order (≥ 3)

factor contributions to the response variance, which are difficult to compute, and use

an approximate second-order sensitivity analysis method, such as one of the techniques

discussed in Chapter 4, to pre-screen non-influential factors. As a matter of fact, by

employing an orthonormal Hermite polynomial approximation (OHA) of the response

function, we can construct a second-order variance-based sensitivity analysis technique

for accurately pre-screening non-influential biochemical factors. This leads to an at-

tractive dimensionality reduction approach that can be used to effectively reduce the

computational effort required by estimating the NR-VSI’s using Monte Carlo sampling.
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5.1 Probabilistic Modeling of Rate Con-

stants Revisited

In Section 2.4, we have treated the rate constants k2m−1 and k2m as random variables

K2m−1 and K2m, given by the following Eyring-Polanyi equations:

K2m−1 =
kBT

h

C‡
m∏N

n=1C
νnm
n

and K2m =
kBT

h

C‡
m∏N

n=1C
ν′nm
n

, (5.1)

where kB is the Boltzmann constant (kB = 1.3806504 × 10−23JK−1), T is the system

temperature, h is the Planck constant (h = 6.62606885×10−34Js), C‡
m is the (random)

capacity of the activated complex associated with the mth reaction, and Cn is the

(random) capacity of the nth molecular species. The capacities are defined by

C‡
m := xtotal exp

{
−M

‡0
m

kBT

}
and Cn := xtotal exp

{
−M0

n

kBT

}
, (5.2)

where M ‡0
m , M0

n are the (random) standard chemical potentials of the mth activated

complex and the nth molecular species, respectively, given by

M ‡0
m = µ‡0

m + kBTY
‡
m and M0

n = µ0
n + kBTYn. (5.3)

In Eq. (5.3), µ‡0
m and µ0

n are the nominal standard chemical potential values associated

with the mth reaction and the nth molecular species, respectively, whereas, Y ‡
m and

Yn are zero-mean Gaussian random variables with standard deviations λ‡m and λn,

respectively. These random variables account for fluctuations in the standard chemical

potentials about their nominal values caused by unpredictable biological variability.

Following our previous approach, we will again assume here that the random variables

{Y ‡
m,m = 1, 2, . . . ,M} and {Yn, n = 1, 2, . . . , N} are statistically independent and that

λ‡m = λ‡, for every m = 1, 2, . . . ,M , whereas, λn = λ, for every n = 1, 2, . . . , N .
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As a consequence of Eqs. (5.1)–(5.3), we have that

K̃ = k̃(0) + AY. (5.4)

In this equation, K̃ is a 2M × 1 random vector with elements {K̃2m−1 := lnK2m−1,

K̃2m := lnK2m,m = 1, 2, . . . ,M}, and k̃(0) is a 2M ×1 vector with elements {k̃(0)2m−1 :=

ln k
(0)
2m−1, k̃

(0)
2m := ln k

(0)
2m,m = 1, 2, . . . ,M}, where k(0)2m−1 and k

(0)
2m are the nominal values

of the rate constants given in Eq. (2.14). In addition, A is a 2M × (M + N) matrix,

given by

A =



−1 0 · · · 0 ν11 ν21 · · · νN1

−1 0 · · · 0 ν ′11 ν ′21 · · · ν ′N1

0 −1 · · · 0 ν12 ν22 · · · νN2

0 −1 · · · 0 ν ′12 ν ′22 · · · ν ′N2

...
...

. . .
...

...
...

. . .
...

0 0 · · · −1 ν1M ν2M · · · νNM

0 0 · · · −1 ν ′1M ν ′2M · · · ν ′NM


, (5.5)

whereas,Y is an (M+N)×1 random vector with elements {Y ‡
m,m = 1, 2, . . . ,M, Yn, n =

1, 2, . . . , N}. Eq. (5.4) provides a probabilistic model for perturbing the forward and

reverse reaction rate constants of a biochemical reaction system about their nominal

values. In addition to being derived from basic biophysical principles, it guarantees that

the perturbed reaction rate constants automatically satisfy the necessary Wegscheider

conditions imposed by thermodynamics, which are given by Eq. (2.25), provided that

these conditions are satisfied by the nominal reaction rate constants. As a consequence,

Eq. (5.4) leads to a thermodynamically consistent method for sensitivity analysis of

biochemical reaction systems [32].

Determining the true nominal values {k(0)2m−1, k
(0)
2m,m = 1, 2, . . . ,M} for the rate

constants of a given biochemical reaction system is a difficult task, usually addressed
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by directly measuring these values or by collectively fitting them to experimental data

using statistical inference techniques. Due to variations in experimental conditions and

biochemical methods used, directly measuring the kinetic parameters usually results

in reporting different nominal values in the literature. As we discussed above, this can

be problematic for sensitivity analysis, since the results may appreciably depend on

the particular set of nominal values used. On the other hand, a statistical inference

technique for parameter estimation does not usually produce a unique set of nominal

values but a statistical distribution over a range of possible values. This is true, for ex-

ample, in Bayesian inference, which characterizes parameter estimates by a probability

distribution, known as posterior [109].

The previous discussion suggests that, in many practical situations, we must treat

the nominal reaction rate constants as random variables {K(0)
2m−1, K

(0)
2m,m = 1, 2, . . . ,M}.

This allows us to quantify the uncertainty about the true nominal values of the rate

constants by means of a joint probability distribution and obtain representative values

by sampling this distribution. In the following, we suggest a particular probability

distribution for the nominal reaction rate constants, derived from the Eyring-Polanyi

equations. Although other choices are possible, such as the posterior distribution

obtained by a Bayesian parameter estimation approach, our choice is simple and suffi-

ciently illustrates the sensitivity analysis methodology we discuss in this chapter.

In the following, we will assume that the logarithms {K̃(0)
2m−1 := lnK

(0)
2m−1, K̃

(0)
2m :=

lnK
(0)
2m,m = 1, 2, . . . ,M} of the nominal reaction rate constants follow a multivariate

Gaussian distribution with mean values {µ2m−1 := E
[
lnK

(0)
2m−1

]
, µ2m := E

[
lnK

(0)
2m

]
,

m = 1, 2, . . . ,M}. Our objective is to find a column orthogonal 2M ×P matrix V (i.e.,
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a 2M ×P matrix V such that VTV = IP×P , where IP×P is the P ×P identity matrix),

such that

K̃(0) = µµµ+ VZ, (5.6)

where K̃(0) is a 2M × 1 random vector with elements {K̃(0)
2m−1, K̃

(0)
2m,m = 1, 2, . . . ,M},

µµµ is a 2M × 1 vector with elements {µ2m−1, µ2m,m = 1, 2, . . . ,M}, and Z is a P ×

1 random vector with independently and identically distributed zero-mean Gaussian

random elements {Zp, p = 1, 2, . . . , P} of variance σ2. Then, K̃(0) will be a multivariate

Gaussian random vector with mean µµµ and covariance matrix σ2VVT . Note that, due

to the column orthogonality of matrix V, there will be a one-to-one correspondence

between K̃(0) and Z, since Z = VT (K̃(0) −µµµ) in this case. This allows us to efficiently

sample the multivariate Gaussian distribution of K̃(0) in a Monte Carlo setting by

independently sampling the univariate Gaussian distributions of the elements in Z.17

To solve the previous problem, note that the nominal reaction rate constants

{K(0)
2m−1, K

(0)
2m, m = 1, 2, . . . ,M} must also satisfy the Eyring-Polanyi equations, given

by Eqs. (5.1)–(5.3). As a consequence,

K̃(0) = xT + AM. (5.7)

17If the linear transformation given by Eq. (5.6) is not one-to-one, then an infinite number of Z

values will be mapped to the same value of K̃(0). This produces inefficient sampling of K̃(0), since a
lot of effort may be wasted by repeatedly sampling the same value of K̃(0), and can result in a much
slower converge of the Monte Carlo algorithm used to estimate the sensitivity indices discussed in this
chapter.
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In this equation, xT is the 2M × 1 vector given by

xT =



ln kBT
h

+ ln xtotal −
∑N

n=1 νn1xtotal

ln kBT
h

+ ln xtotal −
∑N

n=1 ν
′
n1xtotal

ln kBT
h

+ ln xtotal −
∑N

n=1 νn2xtotal

ln kBT
h

+ ln xtotal −
∑N

n=1 ν
′
n2xtotal

...

ln kBT
h

+ lnxtotal −
∑N

n=1 νnMxtotal

ln kBT
h

+ lnxtotal −
∑N

n=1 ν
′
nMxtotal


,

M is an (M + N) × 1 random vector with elements {M ‡0
m /(kBT ), m = 1, 2, . . . ,M ,

M0
n/(kBT ), n = 1, 2, . . . , N}, and A is the 2M × (M + N) matrix given by Eq. (5.5).

Eq. (5.7) shows that the nominal rate constant values are spanned by the columns of

matrix A, which are not orthonormal. On the other hand, and according to Eq. (5.6),

we want these values to also be spanned by the columns of matrix V, which must be

orthonormal. We can accomplish this by setting the columns of matrix V equal to the

basis vectors of the column space of matrix A.

As a consequence of Eqs. (5.4) and (5.6), we have that

K̃ = µµµ+ AY + VZ, (5.8)

where A is given by Eq. (5.5) and the columns of V form an orthonormal basis for the

columns of A. Eq. (5.8) provides an extension of the probabilistic model for the rate

constants of a biochemical reaction system proposed in Section 2.4, by incorporating

the effects of both biological and experimental variability on these constants by means

of two well-defined random terms, namely AY and VZ, respectively. The “level” of

biological variability is quantified by the standard deviations λ‡ (for reactions) and λ

(for molecular species), associated with the zero-mean Gaussian random variables Y ‡
m
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and Yn, respectively, whereas, the “level” of experimental variability is quantified by

the standard deviation σ, associated with the zero-mean Gaussian random variable Zp.

To use Eq. (5.8) for sensitivity analysis, we must know the mean values {µ2m−1, µ2m,

m = 1, 2, . . . ,M} of the nominal log rate constants. Moreover, we must make sure that

the exponentials of these values satisfy the necessary Wegscheider conditions implied

by thermodynamics; i.e.,

M∏
m=1

[
exp{µ2m−1}
exp{µ2m}

]bm
= 1, for all b ∈ null(S). (5.9)

This guarantees that {K(0)
2m−1, K

(0)
2m,m = 1, 2, . . . ,M}, and therefore {K2m−1, K2m,m =

1, 2, . . . ,M}, satisfy the Wegscheider conditions. In practice, we can estimate {µ2m−1,

µ2m,m = 1, 2, . . . ,M} by averaging published values for the rate constants, if avail-

able, or by Monte Carlo sampling of the posterior distribution, if a Bayesian inference

approach is used for parameter estimation. If the values {µ2m−1, µ2m,m = 1, 2, . . . ,M}

do not satisfy Eq. (5.9), then we can use an orthogonal projection technique, discussed

in [110], to map them to thermodynamically feasible values.

5.2 Noise-Reduced Sensitivity Indices

To enhance the predictive power and robustness of sensitivity analysis, we need to

separate biological and experimental variability and reduce the effects of experimental

variability on the results of such analysis. These are important tasks, since, in a

systems biology setting, the main objective of sensitivity analysis is to assess how

biological variability affects cellular behavior. Eq. (5.8) derived in the previous section

provides a probabilistic model for the rate constants of a biochemical reaction system
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that effectively separates biological and experimental variability. In this section, we

use this model to develop a variance-based sensitivity analysis approach that exploits

the effects of biological variability by appropriately averaging experimental variability

out of the problem.

Similar to Section 3.1, we use U1, U2, . . . , UJ to denote the random variables Y ‡

and Y associated with biological variability. We consider two cases, namely J = M

and Uj = Y ‡
j , for j = 1, 2, . . . ,M , as well as J = N and Uj = Yj, for j = 1, 2, . . . , N . In

the first case, the objective is to perform reaction-oriented sensitivity analysis (ROSA)

in order to investigate the importance of reactions in influencing the system response.

In the second case, the objective is to perform species-oriented sensitivity analysis

(SOSA) in order to investigate the importance of molecular species in influencing the

system response. Recall that we use Z1, Z2, . . . , ZP to denote the random variables

associated with experimental variability. We will be referring to U = {U1, U2, . . . , UJ}

as “biochemical factors” and to Z = {Z1, Z2, . . . , ZP} as “noise factors.”

As explained in Section 2.3, the response R of a biochemical reaction system is

calculated by solving the system of differential equations given by Eq. (2.2). Moreover,

and as a consequence of Eq. (5.8), R is a function of both U and Z. We can assess the

sensitivity properties of the biochemical reaction system due to biological variability

by setting Z = z, for some known value z, and by randomly perturbing U. In this

case, the variance V (z) := VarU [R(U, z)] of the system response satisfies [25,26,74]:

V (z) =
J∑

j=1

Vj(z) +
J−1∑
j=1

J∑
j′=j+1

Vjj′(z) + · · ·+ V12···J(z), (5.10)
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where

Vj(z) := VarUj
[
EU(j)

[
R(U, z) | Uj

]]
,

Vjj′(z) := VarUj ,Uj′
[
EU(j,j′)

[
R(U, z) | Uj, Uj′

]]
− Vj(z)− Vj′(z),

(5.11)

with similar expressions for the remaining terms. Here, U(j) denotes all elements in U

excluding Uj, whereas, U(j,j′) denotes all elements in U excluding Uj and Uj′ . If the

biochemical factors U1, U2, . . . , UJ are statistically independent (which we have assumed

here to be true), then each term on the right-hand-side of Eq. (5.10) will be nonnegative

[the Vj(z) terms are always nonnegative]. This equation provides a decomposition of

the system response variance V (z) into individual terms V1(z), V2(z), . . . , V12(z), . . .. By

following the discussion in Section 3.1, it turns out that Vj(z) quantifies the average

reduction in response variance obtained by keeping the jth biochemical factor fixed. As

a consequence, we use Vj(z) to measure the singular influence of the jth biochemical

factor Uj on the system response. Moreover, the term Vjj′(z) quantifies the average

reduction in the total response variance due to jointly fixing the two biochemical factors

Uj and Uj′ , which is not accounted for by summing the average reductions obtained by

separately fixing these factors. Therefore, we use Vjj′(z) to measure the joint influence

of the biochemical factors Uj and Uj′ on the system response. Finally, higher-order

terms in Eq. (5.10) quantify the joint influence of three or more biochemical factors on

the system response.

By using the decomposition scheme in Eq. (5.10), we have developed in Chapter 3

a powerful methodology for sensitivity analysis of biochemical reaction systems. The

method is based on calculating the single-effect sensitivity indices (SESI’s), defined by

σj(z) :=
Vj(z)

V (z)
=

VarUj
[
EU(j)

[
R(U, z) | Uj

]]
VarU

[
R(U, z)

] , j = 1, 2, . . . , J, (5.12)
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the total-effect sensitivity indices (TESI’s), defined by

τj(z) :=
Vj(z) +

∑J
j′=1,j′ ̸=j Vjj′(z) + · · ·+ V12···J(z)

V (z)

=
EU(j)

[
VarUj

[
R(U, z) | U(j)

]]
VarU

[
R(U, z)

] , j = 1, 2, . . . , J, (5.13)

and the joint-effect sensitivity indices (JESI’s), defined by

ηj(z) := τj(z)− σj(z), j = 1, 2, . . . , J. (5.14)

The SESI σj(z) quantifies the fractional singular contribution of the jth biochemical fac-

tor to the response variance V (z), the JESI ηj(z) quantifies the fractional contribution

of the jth biochemical factor to V (z) jointly with one or more other factors, whereas,

the TESI τj(z) quantifies the fractional total (singular and joint) contribution of the jth

biochemical factor to V (z).

Unfortunately, sensitivity analysis based on Eqs. (5.10)–(5.14) depends on the par-

ticular choice for the value of the noise factor Z. As a matter of fact, since Z is a

random vector, V (Z) is a random variable and the same is true for the sensitivity

indices. If the value zt of Z that corresponds to the true nominal values of the reaction

rate constants were known, then we could use the system response variance V (zt) and

the associated indices σj(zt), τj(zt), and ηj(zt) for sensitivity analysis. However, this

value is unknown and sensitivity analysis based on V (zt) is not possible.

Since the main objective of sensitivity analysis is to determine the biochemical

factors that influence the system response, we must base our approach on that por-

tion of the response variance VarU,Z

[
R(U,Z)

]
that encapsulates only the effects of

biological variability. Note that the variance VarZ
[
EU

[
R(U,Z)

]]
of the mean system

response EU

[
R(U,Z)

]
, averaged over the effects of biological variability, encapsulates
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only experimental variability. As a consequence, the difference VarU,Z

[
R(U,Z)

]
−

VarZ
[
EU

[
R(U,Z)

]]
is the portion of the system response variance due to biologi-

cal variability. By using the well-known variance decomposition formula VarY
[
Y
]
=

VarX
[
EY

[
Y |X

]]
+ EX

[
VarY

[
Y |X

]]
, we have that

VarU,Z

[
R(U,Z)

]
− VarZ[EU

[
R(U,Z)

]]
= EZ

[
VarU

[
R(U,Z)

]]
. (5.15)

This suggests that we develop a sensitivity analysis approach based on the mean re-

sponse variance V := E
[
V (Z)

]
= EZ

[
VarU

[
R(U,Z)

]]
.

By taking expectations on both sides of Eq. (5.10), and by using Eq. (5.11), we

have that

V =
J∑

j=1

V j +
J−1∑
j=1

J∑
j′=j+1

V jj′ + · · ·+ V12···J , (5.16)

where

V := EZ

[
VarU

[
R(U,Z) | Z

]]
,

V j := EZ

[
VarUj

[
EU(j)

[
R(U,Z) | Uj,Z

]]]
,

V jj′ := EZ

[
VarUj ,Uj′

[
EU(j,j′)

[
R(U,Z) | Uj, Uj′ ,Z

]]]
− V j − V j′ ,

(5.17)

with similar expressions for the remaining terms. This variance decomposition scheme

leads to the following sensitivity indices [compare with Eqs. (5.12)–(5.14)]:

σj :=
V j

V
=

EZ

[
VarUj

[
EU(j)

[
R(U,Z) | Uj,Z

]]]
EZ

[
VarU

[
R(U,Z) | Z

]] , j = 1, 2, . . . , J,

τj :=
V j +

∑J
j′=1,j′ ̸=j V jj′ + · · ·+ V12···J

V

=
EZ

[
EU(j)

[
VarUj

[
R(U,Z) | U(j),Z

]]]
EZ

[
VarU

[
R(U,Z) | Z

]] , j = 1, 2, . . . , J,

ηj := τ j − σj, j = 1, 2, . . . , J.

(5.18)
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The variance-based sensitivity indices given by Eq. (5.18) are obtained by averaging

over the noise factors Z, thus minimizing the effect of experimental variability. We

will be referring to these sensitivity indices as noise-reduced variance-based sensitivity

indices (NR-VSI’s). The NR-SESI σj quantifies the fractional singular contribution of

the jth biochemical factor to the average response variance V , the NR-JESI ηj quantifies

the fractional contribution of the jth biochemical factor to V jointly with one or more

other factors, whereas, the NR-TESI τj quantifies the fractional total (singular and

joint) contribution of the jth biochemical factor to V .

By following the previous discussions in Section 3.1, if σj = ηj = 0, then we will con-

clude that the biochemical factor j does not appreciably influence the system response.

On the other hand, if σj > 0 and ηj = 0, then we will conclude that the biochemical

factor j influences the system response mostly singularly. Moreover, if σj = 0 and

ηj > 0, we will conclude that the biochemical factor j influences the system response

mostly jointly with other biochemical factors, whereas, if σj > 0 and ηj > 0, we will

conclude that the biochemical factor j influences the system response both singularly

and jointly with other biochemical factors. In practice, we set a small threshold θ to

determine whether σj and ηj are sufficiently larger than zero.

5.3 Monte Carlo Estimation

Unfortunately, the NR-VSI’s given by Eq. (5.18) cannot be computed analytically. For

their evaluation, we must resort to Monte Carlo estimation. By using the variance

decomposition formula VarY
[
Y
]
= VarX

[
EY

[
Y |X

]]
+ EX

[
VarY

[
Y |X

]]
, we can show
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that

σj =
VarUj ,Z

[
EU(j)

[
R(U,Z) | Uj,Z

]]
− VarZ

[
EU

[
R(U,Z) | Z

]]
VarU,Z

[
R(U,Z)

]
− VarZ

[
EU

[
R(U,Z) | Z

]] ,

τj =
VarU,Z

[
R(U,Z)

]
− VarU(j),Z

[
EUj

[
R(U,Z) | U(j),Z

]]
VarU,Z

[
R(U,Z)

]
− VarZ

[
EU

[
R(U,Z) | Z

]] .

(5.19)

These formulas allow us to use a Monte Carlo method, similar to the one employed

in Section 3.2, based on a Latin hypercube sampling scheme that efficiently samples

the random factors in order to reduce estimation variance. We refer to this method as

Monte Carlo Latin hypercube sampling (MC-LHS).

The MC-LHS method we use to estimate the NR-SESI’s and the NR-TESI’s is

based on Eq. (5.19) and extends the MC-LHS method used in Section 3.2 by taking

into consideration experimental variability. For a given sample size L, the method

starts by forming two groups:

u
(1)
1 u

(1)
2 . . . u

(1)
J z

(1)
1 z

(1)
2 . . . z

(1)
P

u
(2)
1 u

(2)
2 . . . u

(2)
J z

(2)
1 z

(2)
2 . . . z

(2)
P

...
...

...
...

...
...

u
(L)
1 u

(L)
2 . . . u

(L)
J z

(L)
1 z

(L)
2 . . . z

(L)
P

u
(L+1)
1 u

(L+1)
2 . . . u

(L+1)
J z

(L+1)
1 z

(L+1)
2 . . . z

(L+1)
P

u
(L+2)
1 u

(L+2)
2 . . . u

(L+2)
J z

(L+2)
1 z

(L+2)
2 . . . z

(L+2)
P

...
...

...
...

...
...

u
(2L)
1 u

(2L)
2 . . . u

(2L)
J z

(2L)
1 z

(2L)
2 . . . z

(2L)
P

of 2L Latin hypercube samples of the statistically independent random factors U ={
U1, U2, . . . , UJ

}
and Z =

{
Z1, Z2, . . . , ZP

}
. The samples are drawn independently

from the Gaussian probability densities of {Uj, j = 1, 2, . . . , J} and {Zp, p = 1, 2, . . . , P}.
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Subsequently, we group the samples together to form the following values for U and Z:

u(l) =
{
u
(l)
1 , u

(l)
2 , . . . , u

(l)
J

}
, l = 1, 2, . . . , 2L

u
(l)
j =

{
u
(L+l)
1 , . . . , u

(L+l)
j−1 , u

(l)
j , u

(L+l)
j+1 , . . . , u

(L+l)
J

}
, j = 1, 2, . . . , J, l = 1, 2, . . . , L

u
(l)
(j) =

{
u
(l)
1 , . . . , u

(l)
j−1, u

(L+l)
j , u

(l)
j+1, . . . , u

(l)
J

}
, j = 1, 2, . . . , J, l = 1, 2, . . . , L

z(l) =
{
z
(l)
1 , z

(l)
2 , . . . , z

(l)
P

}
, l = 1, 2, . . . , 2L .

We then evaluate the following Monte Carlo estimates for the conditional and uncon-

ditional variances in Eq. (5.19):

V̂arU,Z,j [R(U,Z)] =
1

8L

[ L∑
l=1

R2(u(l), z(l)) +
L∑
l=1

R2(u(l), z(L+l)) +
L∑
l=1

R2(u(L+l), z(l))

+
L∑
l=1

R2(u(L+l), z(L+l)) +
L∑
l=1

R2(u
(l)
j , z(l)) +

L∑
l=1

R2(u
(l)
j , z(L+l))

+
L∑
l=1

R2(u
(l)
(j), z

(l)) +
L∑
l=1

R2(u
(l)
(j), z

(L+l))
]
− Ê

2

U,Z,j [R(U,Z)] ,

V̂arZ,j
[
EU

[
R(U,Z) | Z

]]
=

1

4L

[ L∑
l=1

R(u(l), z(l))R(u(L+l), z(l))

+
L∑
l=1

R(u(l), z(L+l))R(u(L+l), z(L+l)) +
L∑
l=1

R(u
(l)
j , z(l))R(u

(l)
(j), z

(l))

+
L∑
l=1

R(u
(l)
j , z(L+l))R(u

(l)
(j), z

(L+l))
]
− Ê

2

U,Z,j [R(U,Z)] ,

V̂arUj ,Z
[
EU(j)

[
R(U,Z) | Uj,Z

]]
=

1

4L

[ L∑
l=1

R(u(l), z(l))R(u
(l)
j , z(l))

+
L∑
l=1

R(u(l), z(L+l))R(u
(l)
j , z(L+l)) +

L∑
l=1

R(u(L+l), z(l))R(u
(l)
(j), z

(l))

+
L∑
l=1

R(u(L+l), z(L+l))R(u
(l)
(j), z

(L+l))
]
− Ê

2

U,Z,j [R(U,Z)] ,
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V̂arU(j),Z

[
EUj

[
R(U,Z) | U(j),Z

]]
=

1

4L

[ L∑
l=1

R(u(l), z(l))R(u
(l)
(j), z

(l))

+
L∑
l=1

R(u(l), z(L+l))R(u
(l)
(j), z

(L+l)) +
L∑
l=1

R(u(L+l), z(l))R(u
(l)
j , z(l))

+
L∑
l=1

R(u(L+l), z(L+l))R(u
(l)
j , z(L+l))

]
− Ê

2

U,Z,j [R(U,Z)] ,

where

Ê
2

U,Z,j [R(U,Z)] =
1

4L

[ L∑
l=1

R(u(l), z(l))R(u(L+l), z(L+l))

+
L∑
l=1

R(u(l), z(L+l))R(u(L+l), z(l))

+
L∑
l=1

R(u
(l)
j , z(l))R(u

(l)
(j), z

(L+l)) +
L∑
l=1

R(u
(l)
j , z(L+l))R(u

(l)
(j), z

(l))
]
.

Finally, we estimate the NR-VSI’s by:

σ̂j ≃
V̂arUj ,Z

[
EU(j)

[
R(U,Z) | Uj,Z

]]
− V̂arZ,j

[
EU

[
R(U,Z) | Z

]]
V̂arU,Z,j

[
R(U,Z)

]
− V̂arZ,j

[
EU

[
R(U,Z) | Z

]] ,

τ̂j ≃
V̂arU,Z,j

[
R(U,Z)

]
− V̂arU(j),Z

[
EUj

[
R(U,Z) | U(j),Z

]]
V̂arU,Z,j

[
R(U,Z)

]
− V̂arZ,j

[
EU

[
R(U,Z) | Z

]] .

Note that computation of the previous estimators requires evaluation of the sys-

tem responses R(u(l), z(l)), R(u(l), z(L+l)), R(u(L+l), z(l)), and R(u(L+l), z(L+l)), for l =

1, 2, . . . , L, as well as R(u
(l)
j , z(l)), R(u

(l)
j , z(L+l)), R(u

(l)
(j), z

(l)), and R(u
(l)
(j), z

(L+l)), for

j = 1, 2, . . . , J , l = 1, 2, . . . , L. This corresponds to a total of 4L + 4LJ = 4L(J + 1)

system evaluations, by solving the system of differential equations given by Eq. (2.2),

where L is the number of Latin hypercube samples used and J is the number of bio-

chemical factors considered (J =M for ROSA and J = N for SOSA). It is worthwhile

noticing that to estimate the variance-based sensitivity indices given in Section 3.1,

which do not consider experimental variability, we need 2L(J + 1) system evaluations
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by the Monte Carlo method given in Section 3.2. If the number of Latin hypercube

samples L is the same in both cases, then the computational time required for esti-

mating the NR-VSI’s is only twice as much as the time required for estimating the

sensitivity indices without experimental variability. On the other hand, if we directly

use Eq. (5.18) to estimate the NR-VSI’s by averaging the conditional variances ob-

tained at different sampled values of the noise factors Z, then the total number of

required system evaluations will be 2LLz(J +1), where Lz is the number of Z samples

used. This will be appreciably larger than 4L(J + 1) (since Lz ≫ 2) and prohibitively

expensive for large biochemical reaction systems.

5.4 Derivative Approximation

If, for every z, the response function R(u, z) is sufficiently smooth around (0, z), so

that its derivatives of orders ≥ 3 at (0, z) are negligible, and if the biochemical fac-

tors U are i.i.d. zero-mean Gaussian random variables with sufficiently small standard

deviations λ, such that

λ4
[
∂2R(0, z)

∂uj∂uj′

]2
≃ 0, for every j, j′ = 1, 2, . . . , J, (5.20)

then, by following a similar procedure as the one we used to derive Eq. (3.10), we have

V (z) = VarU
[
R(U, z)

]
≃

J∑
j=1

Vj(z), (5.21)

where

Vj(z) = VarUj
[
EU(j)

[
R(U, z) | Uj

]]
≃ λ2

[
R(0, z)

∂uj

]2
. (5.22)
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In this case,

V ≃ V 1 + V 1 + · · ·+ V j, (5.23)

with

V j ≃ λ2 EZ

[[
∂R(0,Z)/∂uj

]2]
, (5.24)

and the NR-SESI’s and NR-TESI’s will satisfy

σj ≃ τj ≃
EZ

[[
∂R(0,Z)/∂uj

]2]∑J
j′=1 EZ

[[
∂R(0,Z)/∂uj′

]2] , j = 1, 2, . . . , J. (5.25)

Eq. (5.25) shows that, under certain conditions, the two noise-reduced sensitivity

indices considered in this chapter can be approximated by using the means, with re-

spect to the noise factors Z, of the squares of the response derivatives ∂R(0,Z)/∂uj,

j = 1, 2, . . . , J . The resulting approximation is related to the derivative-based global

sensitivity measures recently suggested in the literature by Kucherenko et al. [106].

Therefore, we can view the sensitivity analysis approach suggested by Kucherenko et al.

as a direct consequence of the approach discussed in this chapter. However, the sen-

sitivity analysis results obtained by the Kucherenko approach will be legitimate only

if the underlying assumptions that lead to Eq. (5.25) are satisfied, which is not easy

to verify in practice. Note also that Eq. (5.25) implies that sensitivity analysis based

on the derivative approximation given by Eq. (5.25) is limited to the case when the

biochemical factors contribute to the response variance mostly singularly, with all joint

contributions being negligible. This limits the scope of a sensitivity analysis approach

based on the approximation given by Eq. (5.25), unless the response function is nearly

additive with respect to the biochemical factors.18 Finally, to evaluate the derivative-

18If the system response function R(u, z) is additive with respect to u, then we can show that
Eq. (5.23) is exact.
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based approximation given by Eq. (5.25) we must also resort to Monte Carlo estima-

tion. This requires 2LzJ system evaluations (provided that a central finite-difference

approximation of the derivative is used), as compared to the 4L(J +1) system evalua-

tions required to estimate the NR-VSI’s by Eq. (5.19), which will be beneficial only if

Lz ≪ L.

5.5 Dimensionality Reduction

A serious bottleneck when calculating sensitivity indices by Monte Carlo estimation

is the substantial computational time required to achieve a certain level of accuracy.

This is due to the fact that accurate Monte Carlo estimation requires a large number

of system evaluations, which is done by integrating the differential equations given by

Eq. (2.2) at each Monte Carlo step. To make matters worse, stiffness may substan-

tially increase the computational time required for integrating these equations. Since

estimation of the NR-VSI’s given by Eq. (5.19) requires 4L(J +1) system evaluations,

where J is the number of biochemical factors used for sensitivity analysis, we may

be able to appreciably reduce computational time by considering a smaller number of

biochemical factors in our analysis, thus reducing the dimensionality of the problem

at hand. One way to accomplish this goal is to use a relatively fast method to first

identify non-influential biochemical factors, and subsequently employ a variance-based

sensitivity analysis method that focuses on the influential factors, while treating all

non-influential biochemical factors as a single group [23].

Variance-based sensitivity analysis can be easily tailored to accommodate groups
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of factors [79, 102]. Grouping factors allows us to reduce computations at the cost of

losing information about the relative importance of factors within a group. Since we

are not interested in the relative importance of non-influential biochemical factors, we

can reduce the computational burden of variance-based sensitivity analysis by treating

these factors as a group. Considering also the fact that, in most biochemical reac-

tion systems, only a small number of biochemical factors turn out to be influential,

we may achieve substantial computational savings by aggregating the non-influential

biochemical factors into one group.

Let us denote by U0 and U1 the non-influential and influential biochemical fac-

tors, respectively. Note that U = {U0,U1}. Moreover, let J0 be the total number

of non-influential biochemical factors, in which case, the total number of influential

biochemical factors will be J1 = J − J0. Although the NR-VSI’s associated with

the influential biochemical factors will still be given by Eq. (5.18), or Eq. (5.19), the

NR-VSI’s associated with the group of non-influential factors will now be given by

σ0 =
EZ

[
VarU0

[
EU1

[
R(U0,U1,Z) | U0,Z

]]]
EZ

[
VarU0,U1

[
R(U0,U1,Z)

]]
=

VarU0,Z

[
EU1

[
R(U0,U1,Z) | U0,Z

]]
− VarZ

[
EU0,U1

[
R(U0,U1,Z) | Z

]]
VarU0,U1,Z

[
R(U0,U1,Z)

]
− VarZ

[
EU0,U1

[
R(U0,U1,Z) | Z

]] ,

τ 0 =
EZ

[
EU1

[
VarU0

[
R(U0,U1,Z) | U1,Z

]]]
EZ

[
VarU0,U1

[
R(U0,U1,Z)

]] (5.26)

=
VarU0,U1,Z

[
R(U0,U1,Z)

]
− VarU1,Z

[
EU0

[
R(U0,U1,Z) | U1,Z

]]
VarU0,U1,Z

[
R(U0,U1,Z)

]
− VarZ

[
EU0,U1

[
R(U0,U1,Z) | Z

]] ,

η0 = τ 0 − σ0.

The MC-LHS estimators given in the Section 5.3 can be easily modified to estimate the

NR-VSI’s σ0 and τ 0 given by Eq. (5.26). It turns out that, in this case, computation of
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all NR-VSI’s requires 4L(J −J0+2) = 4L(J1+2) system evaluations, which is smaller

than the 4L(J0+J1+1) system evaluations required when the non-influential factors are

not grouped together. As a consequence, grouping the non-influential factors results

in a reduction of system evaluations by a factor of 1 + (J0 − 1)/(J1 + 2), which can be

substantial when the number of influential factors J1 is much smaller than the number

of non-influential factors J0.

To employ the previous idea, we must develop a method that we can use to efficiently

identify non-influential biochemical factors before we perform variance-based sensitivity

analysis using Monte Carlo estimation. Let us define the second-order NR-VSI’s

σ
(2)
j :=

V j∑J
j=1 V j +

∑J−1
j=1

∑J
j′=j+1 V jj′

,

τ
(2)
j :=

V j +
∑J

j′=1,j′ ̸=j V jj′∑J
j=1 V j +

∑J−1
j=1

∑J
j′=j+1 V jj′

,

η
(2)
j := τ

(2)
j − σ

(2)
j =

∑J
j′=1,j′ ̸=j V jj′∑J

j=1 V j +
∑J−1

j=1

∑J
j′=j+1 V jj′

,

(5.27)

and the second-order group NR-VSI’s

σ
(2)
0 :=

∑
j∈U0

V j∑J
j=1 V j +

∑J−1
j=1

∑J
j′=j+1 V jj′

,

τ
(2)
0 :=

∑
{j:Uj∈U0} V j +

∑∑
1≤j<j′≤J,{j:Uj∈U0} or {j′:Uj′∈U0} V jj′∑J

j=1 V j +
∑J−1

j=1

∑J
j′=j+1 V jj′

,

η
(2)
0 := τ

(2)
0 − σ

(2)
0 =

∑∑
1≤j<j′≤J,{j:Uj∈U0} or {j′:Uj′∈U0} V jj′∑J
j=1 V j +

∑J−1
j=1

∑J
j′=j+1 V jj′

,

(5.28)

obtained from the corresponding NR-VSI’s and group NR-VSI’s, given by Eq. (5.18)

and Eq. (5.26), by setting all third-order and higher-order variance terms equal to zero.

It has been argued in the literature that, in most well-defined physical systems, ap-

preciable high-order interactions normally occur only among those biochemical factors

that already demonstrate substantial low-order interactions [108]. We can capitalize
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on this argument and assume that a biochemical factor is non-influential if and only if

its singular and joint, with another factor, contribution to the response variance is neg-

ligible. As a consequence, we may say that the biochemical factor Uj is non-influential

if and only if τ
(2)
j ≃ 0. Moreover, if τ

(2)
0 ≃ 0 [or σ

(2)
0 ≃ 0 and η

(2)
0 ≃ 0], then we may

conclude that all biochemical factors contained in U0 are indeed non-influential.

Although a number of techniques can be adopted for estimating the second-order

NR-VSI’s and second-order group NR-VSI’s, we will consider here the Orthonormal

Hermite Approximation (OHA) discussed in Chapter 4, based on approximating the

response function of a biochemical reaction system by orthonormal Hermite polyno-

mials. It has been demonstrated in Chapter 4 (also in [93]) that this method can

provide good approximations of second-order variance-based sensitivity indices. If we

set W = {U,Z}, then OHA employs the following approximation of the system re-

sponse function R(W) = R(U,Z):

R̂(w) = ρ̂0 +
J+P∑
q=1

[
αq,1

wq

sq
+
αq,2√
2

(
w2
q

s2q
− 1

)]

+
J+P−1∑
q=1

J+P∑
q′=q+1

αqq′,1
wqwq′

sqsq′

+
J+P−1∑
q=1

J+P∑
q′=q+1

αqq′,2√
2

(
w2

q

s2q
− 1

)
wq′

sq′

+
J+P−1∑
q=1

J+P∑
q′=q+1

αqq′,3√
2

wq

sq

(
w2
q′

s2q′
− 1

)

+
J+P−1∑
q=1

J+P∑
q′=q+1

αqq′,4

2

(
w2
q

s2q
− 1

)(
w2
q′

s2q′
− 1

)
, (5.29)

where wq = uq, for q = 1, 2, . . . , J , whereas, wq = zq−J , for q = J + 1, J + 2, . . . , J + P .

Moreover, sq = λ‡, for q = 1, 2, . . . , J , and sq = σ, for q = J + 1, J + 2, . . . , J + P , in

the case of ROSA, whereas, sq = λ, for q = 1, 2, . . . , J , and sq = σ, for q = J + 1, J +
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2, . . . , J+P , in the case of SOSA. Note that R̂(w) provides a polynomial approximation

of the response function R(w) in terms of first- and second-order orthonormal Hermite

polynomials. In Eq. (5.29), the values of the parameters ρ̂0 and αmust be appropriately

determined so that R̂(w) sufficiently approximates the response function R(w) over

the entire space of biochemical and experimental factor values. This can be done by

polynomial regression based on the Monte Carlo Latin hypercube sampling discussed

in Section 4.5.4.

By using Eq. (5.29), the orthonormality of the Hermite polynomials, the statistical

independence and zero-mean Gaussianity of U and Z, we can show that the second-

order NR-VSI’s, given by Eq. (5.27), can be approximated by

σ̂
(2)

j =
V j∑J

j=1 V j +
∑J−1

j=1

∑J
j′=j+1 V jj′

,

τ̂
(2)

j =
V j +

∑J
j′=1,j′ ̸=j V jj′∑J

j=1 V j +
∑J−1

j=1

∑J
j′=j+1 V jj′

,

η̂
(2)

j =

∑J
j′=1,j′ ̸=j V jj′∑J

j=1 V j +
∑J−1

j=1

∑J
j′=j+1 V jj′

,

(5.30)

and the second-order group NR-VSI’s, given by Eq. (5.28), can be approximated by

σ̂
(2)

0 =

∑
j∈U0

V̂ j∑J
j=1 V̂ j +

∑J−1
j=1

∑J
j′=j+1 V̂ jj′

,

τ̂
(2)

0 =

∑
{j:Uj∈U0} V̂ j +

∑∑
1≤j<j′≤J,{j:Uj∈U0} or {j′:Uj′∈U0} V̂ jj′∑J

j=1 V̂ j +
∑J−1

j=1

∑J
j′=j+1 V̂ jj′

,

η̂
(2)

0 =

∑∑
1≤j<j′≤J,{j:Uj∈U0} or {j′:Uj′∈U0} V̂ jj′∑J
j=1 V̂ j +

∑J−1
j=1

∑J
j′=j+1 V̂ jj′

,

(5.31)
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where

V̂ j = α2
j,1 + α2

j,2 +
J+P∑

q=J+1

(
α2
jq,1 + α2

jq,2 + α2
jq,3 + α2

jq,4

)
V̂ jj′ = α2

j′j,1 + α2
j′j,2 + α2

j′j,3 + α2
j′j,4, for j′ < j

V̂ jj′ = α2
jj′,1 + α2

jj′,2 + α2
jj′,3 + α2

jj′,4, for j′ > j . (5.32)

After evaluating these approximations, we can use them to rank all biochemical

factors Uj in accordance to the estimated τ̂
(2)

j values and cluster the J0 biochemical

factors with the smallest τ̂
(2)

j values in a groupU0, such that the corresponding values of

σ̂
(2)

0 and η̂
(2)

0 are both below a predefined small threshold ϵ. To maximize dimensionality

reduction, we must find the largest possible number J0 of biochemical factors that we

can place in U0. Finally, we can employ MC-LHS and Eqs. (5.19) and (5.26), to

estimate the NR-VSI’s of the influential factors U1 = U \ U0, as well as the group

NR-VSI’s of the non-influential factors.

The previous approach depends on the validity of our assumption that a biochemical

factor is influential only if it appreciably affects the system response at least singularly

or jointly with another factor. If this assumption is violated, then the classification

of the biochemical factors obtained by OHA may not be accurate. However, we can

numerically validate the accuracy of classification by checking the estimated value

of the group NR-SESI σ0 and group NR-JESI η0. If σ0 and η0 are both sufficiently

small, then the biochemical factors in U0, determined by OHA, will have (as a group) a

negligible contribution to the system response and, thus, will indeed be non-influential.

If, however, the estimated value of σ0 or η0 is large, then some factors in U0 will be

influential. In this case, we must un-group the factors in U0 and repeat our grouping
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method by appropriately reducing J0. We expect that, for most biochemical reaction

systems of interest to systems biology, the chance for this to happen will be small.

Estimating the second-order NR-VSI’s and group NR-VSI’s by OHA requires L0

system evaluations, where L0 is the number of regression points obtained by Monte

Carlo Latin hypercube sampling. L0 must be no less than the number 2(J +P )2+1 of

coefficients in Eq. (5.29). Therefore, L0 increases with the total number of biochemical

and experimental factors. Normally, by setting L0 to be 2 ∼ 4 times the number of

unknown coefficients is adequate to obtain a sufficiently accurate fit of the response

function, although this clearly depends on the particular response function at hand.

In this chapter, we set L0 = 8(J + P )2. As a consequence, the total number of system

evaluations when using OHA-based dimensionality reduction is 4L(J1 + 2) + 8(J0 +

J1 + P )2, where J0, J1 are the numbers of non-influential and influential biochemical

factors, respectively, and P is the number of noise factors. This can be significantly

smaller than the number 4L(J0+J1+1) of system evaluations required in the absence

of dimensionality reduction, provided that (J0 + J1 + P )2 ≪ L(J0 − 1)/2, which is

usually true since L is an appreciably large number.

5.6 Numerical Results

We now employ the MAPK signaling cascade model we described in Section 2.2 to

demonstrate the noise-reduced variance-based sensitivity analysis technique proposed

in this chapter. The sensitivity analysis approach we consider here is based on quan-

tifying the influence of a reaction (for ROSA) or molecular species (for SOSA) on the

154



duration, integrated response, and strength of ERK-PP activity, which are estimated

based on the dynamic behavior of ERK-PP within a time frame of 6 hours. We investi-

gate the sensitivity properties of the MAPK signaling cascade by classifying reactions

and molecular species into one of four categories of interest: singularly influential,

jointly influential, singularly/jointly influential, and non-influential. We do this by

comparing their NR-SESI and NR-JESI values to a threshold θ = 0.1. In the MC-LHS

estimation of variance-based sensitivity indices, we set L = 6,000.

To investigate the effect of different nominal reaction rate values on the results

obtained by the variance-based and noise-reduced variance-based sensitivity analysis

approaches discussed in this dissertation, we first perturb the published nominal rate

constant values (see Tables 2.1 and 2.2) by using Eq. (5.6), where Z is i.i.d. Gaussian

experimental noise with standard deviation σ = 0.4. We randomly select a set of

perturbed rate constant values as the new nominal values, perform variance-based and

noise-reduced variance-based sensitivity analysis, and compare the results with the

ones obtained by using the published nominal values. To save space, we only present

the results obtained for the duration of ERK-PP. We have tested other biochemical

reaction systems and other response functions and obtained similar results as the ones

presented here; e.g., see [111].

In the first row of Fig. 5.1, we depict the SESI and JESI values for the duration

of ERK-PP activity estimated by ROSA with standard deviation λ‡ = 0.1, based on

the published (circles) and perturbed (squares) nominal rate values. When using the

published rate values, the duration of ERK-PP activity is primarily influenced by re-

actions 4, 6, and 13 (refer to Fig. 2.1, Table 2.1, and Table 2.2 for identifying these
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Figure 5.1: ROSA results for the duration of ERK-PP activity in the MAPK signaling
cascade based on the published and perturbed nominal rate values with λ‡ = 0.1.

reactions), which exert their influence only singularly (since their SESI values are above

the threshold θ = 0.1, whereas the corresponding JESI values are below 0.1). When

using the perturbed rate values, the importance of reactions 4, 6, and 13 diminishes

significantly, with the SESI values associated with reactions 6 and 13 being above the

threshold only marginally. On the other hand, reactions 11 and 17 become the two

most influential reactions, since their SESI values surpass the SESI value associated

with reaction 4 (which is the most influential reaction under the published rate val-

ues). Moreover, reactions 11 and 17 become the most influential ones among all other

reactions. Note that reactions 11 and 17 are identified as being non-influential under
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the published rate values, which is in sharp contrast with the conclusion made when

using the perturbed rate values.

In the first row of Fig. 5.2, found in the Appendix at the end of this chapter, we

depict similar results obtained with SOSA. It is therefore quite clear that inconsistencies

in sensitivity analysis results, due to experimental variability in the nominal values of

the rate constants, can greatly reduce the applicability of variance-based sensitivity

analysis.

We can address the previous problem by employing the noise reduction technique

we have introduced in this chapter. We illustrate this in the second row of Fig. 5.1

(as well as in the second row of Fig. 5.2), in which we depict the NR-JESI and NR-

SESI values associated with the duration of ERK-PP activity estimated by ROSA with

λ‡ = 0.1 and σ = 0.7, based on the published (circles) and perturbed (squares) nominal

rate values. Note that, in this case, the values of the two sensitivity indices obtained by

using the published and perturbed rate constant values as the nominal values are very

close to each other. As a matter of fact, the largest difference is only 4%, which occurs

for the NR-JESI of reaction 17, a reaction that is classified as being non-influential

in both cases. The results depicted in the second row of Fig. 5.1 indicate that, for

both the published and perturbed rate values, the duration of ERK-PP is primarily

affected by reactions 4, 6, 8, and 15, with reactions 4 and 6 exerting their influence

both singularly and jointly, and with reactions 8 and 15 influencing the duration only

jointly. As a consequence, it is clear that the NR-VSI’s results are less sensitive to the

particular choice of the nominal values and can provide much more consistent results

than the traditional variance-based sensitivity indices.
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Table 5.1: Number of required system evaluations and equations used for each noise-
reduced variance-based sensitivity analysis method considered in this chapter.

method required system evaluations equations used

MC-LHS 4L(J + 1) = 4L(J0 + J1 + 1) Eq. (5.19)

NR-DA 2LzJ = 2Lz(J0 + J1) Eq. (5.25)

OHA-DR 4L(J1 + 2) + 8(J0 + J1 + P )2 Eqs. (5.19), (5.26), (5.30)–(5.32)

L: number of Monte Carlo Latin hypercube samples in MC-LHS

Lz: number of Monte Carlo Latin hypercube samples in NR-DA

J : number of biochemical factors

J0: number of non-influential biochemical factors in OHA-DR

J1: number of influential biochemical factors in OHA-DR

P : number of noise factors

In the remaining of this section, we compare the three methods for estimating the

NR-VSI’s discussed in this chapter, namely, the Monte Carlo Latin hypercube sampling

(MC-LHS) method discussed in Section 5.3, the noise-reduced derivative approxima-

tion (NR-DA) method discussed in Section 5.4, and the OHA-based dimensionality

reduction (OHA-DR) method discussed in Section 5.5. In Table 5.1, we summarize the

number of system evaluations and the equations used by each method. For the NR-DA

method we employ Lz = 1,000 Latin hypercube samples to estimate the expectations

required by Eq. (5.25). For both ROSA (J = 21) and SOSA (J = 23), the number of

system evaluations required by the derivative approximation method is about 8% of

that required by MC-LHS. When using OHA-DR, we employ a threshold ϵ = 0.1 for

identifying the non-influential group U0. The number of system evaluations required

by OHA-DR depends on the values of J0 and J1, which may vary for different system

responses.
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In Tables 5.2 and 5.3, we summarize the ROSA-based NR-SESI and NR-JESI values

for the duration, integrated response, and strength of ERK-PP activity, estimated by

the three methods considered in this chapter (i.e., MC-LHS, NR-DA, and OHA-DR),

with standard deviations λ‡ = 0.1, σ = 0.1, in Table 5.2, and λ‡ = 0.4, σ = 0.7, in

Table 5.3, based on the published nominal values. Moreover, we summarize the corre-

sponding SOSA-based results in Tables 5.6 and 5.7 of the Appendix at the end of this

chapter. The results are given in percentages and have been truncated to the nearest

integers. To reduce the size of the tables, we depict only the results associated with

reactions or molecular species whose truncated NR-SESI or NR-JESI values, estimated

by MC-LHS, are at least 0.05. We consider the NR-SESI and NR-JESI values obtained

by MC-LHS as the “true” values. Bold reaction or species numbers indicate NR-SESI

or NR-JESI values, obtained by MC-LHS, that are larger than 0.1, in which case, the

corresponding reactions or molecular species are deemed to be influential.

For the duration, when λ‡ = 0.1 and σ = 0.1, ROSA-based OHA-DR leads to J0 =

13 and J1 = 8, which means that the number of required system evaluations to estimate

the NR-VSI’s is about 51% of that required by MC-LHS. For the integrated response

and strength, the number of system evaluations required to estimate the NR-VSI’s is

about 37% of that required by MC-LHS. On the other hand, when λ‡ = 0.1 and σ = 0.1,

the number of system evaluations required by SOSA-based OHA-DR to estimate the

NR-VSI’s for the duration, integrated response, and strength, is about 37%, 30%, and

30% of that required by MC-LHS, respectively. Inspection of the estimated group

values σ0 and η0 reveals that the biochemical factor group U0 determined by OHA is

truly non-influential, since both σ0 and η0 are less than 0.1 in all cases.
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Table 5.2: ROSA-based NR-VSI’s for the duration, integrated response, and strength
of ERK-PP activity in the MAPK signaling cascade, estimated by the three methods
considered in this chapter, with λ‡ = 0.1 and σ = 0.1. Bold reaction numbers indicate
NR-SESI or NR-JESI values, obtained by MC-LHS, that are larger than 0.1

NR-SESI - DURATION NR-JESI - DURATION

(λ‡ = 0.1, σ = 0.1)(λ‡ = 0.1, σ = 0.1)(λ‡ = 0.1, σ = 0.1) (λ‡ = 0.1, σ = 0.1)(λ‡ = 0.1, σ = 0.1)(λ‡ = 0.1, σ = 0.1)

Reaction MC-LHS NR-DA OHA-DR Reaction MC-LHS NR-DA OHA-DR

4 28 28 27 4 1 − 1

6 23 24 23 6 0 − 0

11 7 7 7 11 0 − 0

13 16 17 16 13 0 − 0

17 6 5 6 17 1 − 1

21 6 6 6 21 1 − 1

NR-SESI - INTEGRATED RESPONSE NR-JESI - INTEGRATED RESPONSE

(λ‡ = 0.1, σ = 0.1)(λ‡ = 0.1, σ = 0.1)(λ‡ = 0.1, σ = 0.1) (λ‡ = 0.1, σ = 0.1)(λ‡ = 0.1, σ = 0.1)(λ‡ = 0.1, σ = 0.1)

Reaction MC-LHS NR-DA OHA-DR Reaction MC-LHS NR-DA OHA-DR

4 39 39 39 4 1 − 2

6 26 27 27 6 0 − 1

8 5 5 5 8 0 − 1

11 9 9 9 11 0 − 0

13 7 8 8 13 0 − 0

NR-SESI - STRENGTH NR-JESI - STRENGTH

(λ‡ = 0.1, σ = 0.1)(λ‡ = 0.1, σ = 0.1)(λ‡ = 0.1, σ = 0.1) (λ‡ = 0.1, σ = 0.1)(λ‡ = 0.1, σ = 0.1)(λ‡ = 0.1, σ = 0.1)

Reaction MC-LHS NR-DA OHA-DR Reaction MC-LHS NR-DA OHA-DR

4 37 38 36 4 6 − 6

6 15 17 15 6 3 − 6

8 10 10 9 8 3 − 5

11 5 7 4 11 0 − 0

17 6 6 6 17 3 − 4

19 13 14 12 19 2 − 3
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Table 5.3: ROSA-based NR-VSI’s for the duration, integrated response, and strength
of ERK-PP activity in the MAPK signaling cascade, estimated by the three methods
considered in this chapter, with λ‡ = 0.4 and σ = 0.7. Bold reaction numbers indicate
NR-SESI or NR-JESI values, obtained by MC-LHS, that are larger than 0.1.

NR-SESI - DURATION NR-JESI - DURATION

(λ‡ = 0.4, σ = 0.7)(λ‡ = 0.4, σ = 0.7)(λ‡ = 0.4, σ = 0.7) (λ‡ = 0.4, σ = 0.7)(λ‡ = 0.4, σ = 0.7)(λ‡ = 0.4, σ = 0.7)

Reaction MC-LHS NR-DA OHA-DR Reaction MC-LHS NR-DA OHA-DR

1 7 1 7 1 7 − 6

4 15 25 15 4 20 − 22

5 2 6 2 5 6 − 6

6 10 13 10 6 14 − 15

8 3 11 3 8 12 − 13

11 10 0 11 11 4 − 4

13 7 7 7 13 5 − 5

15 5 11 5 15 11 − 11

NR-SESI - INTEGRATED RESPONSE NR-JESI - INTEGRATED RESPONSE

(λ‡ = 0.4, σ = 0.7)(λ‡ = 0.4, σ = 0.7)(λ‡ = 0.4, σ = 0.7) (λ‡ = 0.4, σ = 0.7)(λ‡ = 0.4, σ = 0.7)(λ‡ = 0.4, σ = 0.7)

Reaction MC-LHS NR-DA OHA-DR Reaction MC-LHS NR-DA OHA-DR

4 37 28 35 4 12 − 13

6 16 17 17 6 9 − 9

8 11 18 11 8 7 − 8

15 5 15 5 15 6 − 6

21 4 4 4 21 5 − 5

NR-SESI - STRENGTH NR-JESI - STRENGTH

(λ‡ = 0.4, σ = 0.7)(λ‡ = 0.4, σ = 0.7)(λ‡ = 0.4, σ = 0.7) (λ‡ = 0.4, σ = 0.7)(λ‡ = 0.4, σ = 0.7)(λ‡ = 0.4, σ = 0.7)

Reaction MC-LHS NR-DA OHA-DR Reaction MC-LHS NR-DA OHA-DR

4 34 27 35 4 17 − 18

5 3 5 3 5 5 − 5

6 13 16 12 6 12 − 12

8 11 15 11 8 11 − 12

15 7 15 8 15 9 − 10

21 4 5 4 21 8 − 8

161



It is clear from the results depicted in Table 5.2 that, for all three response charac-

teristics, the influential reactions exert their influence only singularly, since all NR-JESI

values are very small. This indicates that the response functions may be approximately

additive within the range of applied fluctuations. It turns out that the NR-SESI’s asso-

ciated with a nearly additive response function can be well estimated by both NR-DA

and OHA-DR, as demonstrated by the results in Table 5.2 (and Table 5.6 in the Ap-

pendix at the end of this chapter). In this case, NR-DA seems to be the best choice,

since it is computationally the most efficient method.

When λ‡ = 0.4 and σ = 0.7, the number of system evaluations required to estimate

the NR-VSI’s for the duration, integrated response, and strength, by both ROSA-based

OHA-DR and SOSA-based OHA-DR, is about 64%, 55%, and 64% of that required

by MC-LHS, respectively. Inspection of the estimated group NR-SESI value σ0 and

group NR-JESI value η0 reveals that the biochemical factor group U0 determined by

OHA is truly non-influential, since both σ0 and η0 are less than 0.1 in all these cases.

From the results depicted in Table 5.3 (and Table 5.7 in the Appendix at the end of

this chapter), it is clear that NR-DA produces inaccurate results, deeming the use of

derivative approximation inappropriate in this case. First of all, NR-DA cannot be

used to estimate the NR-JESI values, which can be substantial for large biological or

experimental fluctuations. Second, the NR-SESI values estimated by NR-DA differ

substantially from those estimated by MC-LHS. For example, the largest difference

between the NR-SESI values depicted in Table 5.2 obtained by NR-DA and MC-LHS

is 10% for the duration, 10% for the integrated response, and 8% for the strength. On

the other hand, OHA-DR consistently provides good results. As a matter of fact, the
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Table 5.4: MAPK noise-reduced ROSA results when λ‡ = 0.4 and σ = 0.7.

No. Reaction D I S

4 Raf* + Pho1 
 Raf*-Pho1 • • •

6 MEK + Raf* 
 MEK-Raf* • • •

8 MEK-P + Raf* 
 MEK-P-Raf* • • •

11 MEK-PP-Pho2 → MEK-P + Pho2 •

15 ERK-MEK-PP → ERK-P + MEK-PP •

largest difference between the values depicted in Table 5.2 obtained by OHA-DR and

MC-LHS is only 2% for both NR-SESI’s and NR-JESI’s. Similar conclusions can be

made for SOSA by referring to the result summarized in Table 5.7 of the Appendix at

the end of this chapter.

As a consequence of the ROSA-based NR-VSI results depicted in Table 5.3, we

may conclude that the duration of ERK-PP activity in the MAPK signaling cascade

is predominantly influenced by reactions 4, 6, 8, 11, and 15, with reactions 4, 6, and 8

predominantly influencing the integrated response and strength as well. On the other

hand, and as a consequence of the SOSA-based NR-VSI results depicted in Table 5.7 of

the Appendix at the end of this chapter, we may conclude that the duration of ERK-

PP activity in the MAPK signaling cascade is predominantly influenced by molecular

species 5, 7, 9, and 16, with species 5, 7, and 9 predominantly influencing the integrated

response and strength as well. We summarize these conclusions in Tables 5.4 and 5.5.
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Table 5.5: MAPK noise-reduced SOSA results when λ‡ = 0.4 and σ = 0.7.

No. Molecular Species D I S

5 Pho1 • • •

7 MEK • • •

9 MEK-P • • •

16 ERK-MEK-PP •

5.7 Discussion

By comparing the noise-reduced ROSA results summarized in Table 5.4 with the ROSA

results depicted in Table 3.2, we conclude that both methods indicate that the strength

of ERK-PP activity in the MAPK signaling cascade is mostly influenced by the same

reactions, namely reactions 4, 6, and 8. However, in addition to reactions 4 and 6, the

noise-reduced ROSA results indicate that reaction 8 influences the timing of ERK-PP

activity, whereas, reaction 13 is replaced by reactions 8, 11, and 15 in influencing the

duration. It is clear that, by considering experimental variability in the nominal values

of rate constants, a higher correlation emerges in the control of the three response

characteristics considered in this dissertation, since these characteristics are now com-

monly influenced by reactions 4, 6, and 8. Reaction 4 is the binding and unbinding

of the active version Raf* of the Raf kinase with its inactivator phosphatase Pho1,

which is a key step in Raf dephosphorylation. Reactions 6 and 8 both belong to MEK

phosphorylation. It has been reported that Raf dephosphorylation and MEK phospho-

rylation exercise high control on all three characteristics of the signal output in the
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MAPK signaling cascade [16], and this is in agreement with our ROSA results based

on NR-VSI’s. In terms of influential reactions for the duration of ERK-PP activity,

reaction 11 is the second step in MEK dephosphorylation, which has been reported

to greatly impact the decay time of ERK-PP output [50]. On the other hand, re-

action 15 is the single ERK phosphorylation by MEK, which influences the duration

only jointly. Inspection of the estimated noise-reduced pairwise-effect sensitivity in-

dex19 reveals that reaction 15 influences the duration of ERK-PP activity mostly with

reaction 6, which belongs to MEK phosphorylation. It has been reported that there

is a tight connection between ERK phosphorylation and MEK phosphorylation, since

ERK is the only known MEK substrate and ERK is phosphorylated when MEK is

phosphorylated [112]. This observation is well explained by our noise-reduced ROSA

results.

By comparing the noise-reduced SOSA results summarized in Table 5.5 with the

ROSA results depicted in Table 3.3, we may also conclude that, by considering ex-

perimental variability in the nominal values of the rate constants, a higher correlation

emerges in the control of all three response characteristics, since these characteris-

tics are now commonly influenced by molecular species 5, 7, and 9. Species 5 is the

phosphatase associated with Raf inactivation. Interestingly, the first drug licensed

to act on the MAPK signaling pathway20 is a Raf kinase inhibitor, which induces

anti-proliferative and proapoptotic effects by influencing ERK activity [69]. Molecular

species 7 (MEK) and 9 (MEK-P) are the other two species that commonly influence the

19This is the noised-reduced version of PESI, defined in Section 3.1.
20This is the drug Sorafenib which has been approved for the treatment of primary kidney cancer

and advanced primary liver cancer.
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three response characteristics. It has been reported that genetically mutated constitu-

tively active MEK is sufficient to cause cellular transformation, which can eventually

lead to cancer [72]. In fact, MEK may be easier to target than ERK, since MEK1

is confined to the cytoplasm [112, 113], which makes it a desirable target to block

or enhance the response of the MAPK signaling cascade. The results obtained by the

noise-reduced SOSA reveal a new influential molecular species for the duration of ERK-

PP activity, namely species 16 (ERK-MEK-PP). It has been reported that increased

MEK/ERK complex formation contributes to activation of ERK signaling during liver

regeneration [114].

In a computational and experimental study, Bhalla et al. proposed that differences

in the concentrations of MAPK phosphatases, such as protein phosphatase 2A (PP2A)

and especially MKP, allow ERK activity to switch between monostable and bistable

behavior; concentrations near and below 0.6µM for PP2A or 0.02µM for MKP would al-

low ERK to exhibit sustained or bistable behavior [115]. However, a simple calculation

indicates that the concentration of Pho3 in our model, which acts to dephosphorylate

ERK, is approximately 17µM, which would always force ERK to completely adapt back

to its original non-phosphorylated form. This brings up issues related to variations in

the initial concentrations of different molecular species, which is another commonly

studied quantity in sensitivity analysis. In fact, our NR-VSI’s can be straightforwardly

extended to investigate the influence of different initial component concentrations on

response characteristics, under various nominal values of reaction rate constants, or to

investigate the influence of different reaction rate constants on the response character-

istics, under various nominal values of initial concentrations of molecular species.
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To use the noise-reduced sensitivity analysis approach discussed in this chapter,

we must specify appropriate values for the standard deviations λ‡ (or λ) and σ of

the underlying biochemical and noise factor perturbations, which are determined by

the levels of biological and experimental variations, respectively. A number of quan-

titative studies have been performed to estimate the magnitudes of biological and ex-

perimental variability under different experimental methodologies, based, for example,

on two-dimensional gel electrophoresis [39, 42], isobaric tag for relative and absolute

quantitation (iTRAQ) [40], and DNA microarrays [41]. In principle, our noise-reduced

sensitivity analysis approach can benefit from these studies, which can be used to

provide appropriate values for the underlying standard deviations under various ex-

perimental conditions. However, it is not always possible to obtain quantitative in-

formation about the size of biological and experimental variability. As a consequence,

and in most practical situations, we can view the standard deviations λ‡ (or λ), and σ

as user-defined parameters that effectively control the “scale” of sensitivity analysis

performed. In particular, the standard deviation σ controls the “range” of probable

nominal rate constant values, whereas, the standard deviation λ‡ (or λ) controls the

“size” of parameter fluctuations around a given set of nominal values.

As discussed in Section 5.5 and demonstrated by the simulation results in Section 5.6

and in the Appendix at the end of this chapter, the number of system evaluations re-

quired by OHA-based dimensionality reduction decreases linearly as the number of

non-influential biochemical factors determined by OHA increases. This number varies

for different biochemical reaction systems and different response characteristics. When

sensitivity analysis employs the simultaneous use of several response characteristics,
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such as the duration, integrated response, and strength of ERK-PP concentration we

considered in Section 5.5, the final set of non-influential factors used for dimensionality

reduction must be the intersection of all non-influential factors determined by OHA for

each individual system response. As a consequence, the final number of non-influential

factors may be small and the computational savings achieved by dimensionality reduc-

tion may not be significant.

Finally, it is worthwhile noticing that the computational time required by OHA-

based factor pre-screening is increased by the time required to solve the polynomial

regression required for determining the coefficients in the system response approxi-

mation given by Eq. (5.29). This additional time depends on the total number of

biochemical and noise factors, which can be substantial for large biochemical reaction

systems. On the other hand, the computational time required for solving the system of

differential equations given by Eq. (2.2) depends on the size of the biochemical reaction

system under consideration and on whether or not the system is stiff. For large bio-

chemical reaction systems with low stiffness, the computational time required for the

regression step in OHA may be substantially larger than the time required for solving

the underlying differential equations, in which case, the use of MC-LHS may be more

preferable than OHA-based dimensionality reduction. In the future, we need to de-

velop new techniques for pre-screening non-influential biochemical factors in order to

lower the dimensionality of noise-reduced sensitivity analysis. These techniques should

maintain good approximation accuracy of the variance-based sensitivity indices, with-

out requiring a dramatic increase in computational cost for large biochemical reaction

systems.
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5.8 Appendix

In this appendix, we provide the SOSA-based NR-VSI results for the duration, in-

tegrated response, and strength of ERK-PP activity in the MAPK signaling cascade

obtained by the three techniques (MC-LHS, NR-DA, and OHA-DR) considered in this

chapter. In the first row of Fig. 5.2, we depict the SESI and JESI values for the dura-

tion of ERK-PP activity estimated by SOSA-based MC-LHS with standard deviation

λ = 0.1, based on the published and perturbed nominal rate values, respectively. In the

second row of Fig. 5.2, we depict the NR-SESI and NR-JESI values for the duration of

ERK-PP activity estimated by SOSA-based MC-LHS with standard deviations λ = 0.1

and σ = 0.7, based on the published and perturbed nominal rate values, respectively.

In Tables 5.6 and 5.7, we summarize the SOSA-based NR-SESI and NR-JESI val-

ues for the duration, integrated response, and strength of ERK-PP, estimated by the

three methods considered in this chapter (i.e., MC-LHS, NR-DA, and OHA-DR), with

standard deviations λ = 0.1, σ = 0.1, in Table 5.6, and λ = 0.4, σ = 0.7 in Table 5.7,

based on the published nominal values. The results are given in percentages and have

been truncated to the nearest integers. To reduce the size of these tables, we depict

only the results associated with molecular species whose truncated NR-SESI or NR-

JESI values, estimated by MC-LHS, are at least 0.05. Bold species numbers indicate

NR-SESI or NR-JESI values, obtained by MC-LHS, that are larger than 0.1, in which

case, the corresponding species are deemed to be influential.
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Figure 5.2: SOSA results for the duration of ERK-PP activity in the MAPK signaling
cascade based on the published and perturbed nominal rate values with λ = 0.1.
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Table 5.6: SOSA-based NR-VSI’s for the duration, integrated response, and strength of
ERK-PP activity in MAPK signaling cascade, estimated by the three methods consid-
ered in this chapter, with λ = 0.1 and σ = 0.1. Bold species numbers indicate NR-SESI
or NR-JESI values, obtained by MC-LHS, that are larger than 0.1.

NR-SESI - DURATION NR-JESI - DURATION

(λ‡ = 0.1, σ = 0.1)(λ‡ = 0.1, σ = 0.1)(λ‡ = 0.1, σ = 0.1) (λ‡ = 0.1, σ = 0.1)(λ‡ = 0.1, σ = 0.1)(λ‡ = 0.1, σ = 0.1)

Species MC-LHS NR-DA OHA-DR Species MC-LHS NR-DA OHA-DR

5 36 38 37 5 1 − 1

7 21 23 22 7 0 − 0

14 15 17 16 14 0 − 0

18 6 5 6 18 1 − 1

22 5 5 6 22 1 − 1

NR-SESI - INTEGRATED RESPONSE NR-JESI - INTEGRATED RESPONSE

(λ‡ = 0.1, σ = 0.1)(λ‡ = 0.1, σ = 0.1)(λ‡ = 0.1, σ = 0.1) (λ‡ = 0.1, σ = 0.1)(λ‡ = 0.1, σ = 0.1)(λ‡ = 0.1, σ = 0.1)

Species MC-LHS NR-DA OHA-DR Species MC-LHS NR-DA OHA-DR

5 47 47 48 5 1 − 2

7 22 23 22 7 1 − 1

9 9 9 9 9 1 − 1

14 10 11 10 14 0 − 0

NR-SESI - STRENGTH NR-JESI - STRENGTH

(λ‡ = 0.1, σ = 0.1)(λ‡ = 0.1, σ = 0.1)(λ‡ = 0.1, σ = 0.1) (λ‡ = 0.1, σ = 0.1)(λ‡ = 0.1, σ = 0.1)(λ‡ = 0.1, σ = 0.1)

Species MC-LHS NR-DA OHA-DR Species MC-LHS NR-DA OHA-DR

5 40 41 38 5 9 − 9

7 12 13 10 7 4 − 5

9 20 25 22 9 6 − 5

21 8 7 7 21 2 − 2
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Table 5.7: SOSA-based NR-VSI’s for the duration, integrated response, and strength of
ERK-PP activity in MAPK signaling cascade, estimated by the three methods consid-
ered in this chapter, with λ = 0.4 and σ = 0.7. Bold species numbers indicate NR-SESI
or NR-JESI values, obtained by MC-LHS, that are larger than 0.1.

NR-SESI - DURATION NR-JESI - DURATION

(λ‡ = 0.4, σ = 0.7)(λ‡ = 0.4, σ = 0.7)(λ‡ = 0.4, σ = 0.7) (λ‡ = 0.4, σ = 0.7)(λ‡ = 0.4, σ = 0.7)(λ‡ = 0.4, σ = 0.7)

Species MC-LHS NR-DA OHA-DR Species MC-LHS NR-DA OHA-DR

5 24 31 24 5 25 − 25

7 10 7 10 7 16 − 16

9 5 28 4 9 14 − 14

12 8 2 9 12 4 − 4

14 8 14 8 14 4 − 4

16 5 2 5 16 11 − 11

22 2 3 2 22 8 − 8

NR-SESI - INTEGRATED RESPONSE NR-JESI - INTEGRATED RESPONSE

(λ‡ = 0.4, σ = 0.7)(λ‡ = 0.4, σ = 0.7)(λ‡ = 0.4, σ = 0.7) (λ‡ = 0.4, σ = 0.7)(λ‡ = 0.4, σ = 0.7)(λ‡ = 0.4, σ = 0.7)

Species MC-LHS NR-DA OHA-DR Species MC-LHS NR-DA OHA-DR

5 47 38 47 5 13 − 13

7 13 28 15 7 8 − 9

9 10 27 11 9 7 − 8

16 4 1 4 16 5 − 6

22 3 2 3 22 5 − 5

NR-SESI - STRENGTH NR-JESI - STRENGTH

(λ‡ = 0.4, σ = 0.7)(λ‡ = 0.4, σ = 0.7)(λ‡ = 0.4, σ = 0.7) (λ‡ = 0.4, σ = 0.7)(λ‡ = 0.4, σ = 0.7)(λ‡ = 0.4, σ = 0.7)

Species MC-LHS NR-DA OHA-DR Species MC-LHS NR-DA OHA-DR

5 43 38 44 5 18 − 19

7 11 27 12 7 11 − 11

9 10 29 10 9 10 − 11

16 6 1 6 16 9 − 9

22 3 1 3 22 7 − 7
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Chapter 6

Conclusions

In this dissertation, we presented a thermodynamically consistent variance-based ap-

proach for the sensitivity analysis of biochemical reaction systems. We developed a

probabilistic model for perturbing the reaction rate constants based on the classical

Eyring-Polanyi equations of chemical kinetics. This model guarantees that the per-

turbed rate constants automatically satisfy the Wegscheider conditions imposed by

thermodynamics. As a consequence, and in sharp contrast to previously proposed

techniques, the sensitivity analysis approach we introduced in this dissertation leads

to thermodynamically consistent results. Compared with the most commonly used

derivative-based sensitivity analysis approach, variance-based sensitivity analysis can

easily accommodate appreciable parameter variations and allows for a systematic inves-

tigation of interactions among different system components. Besides, variance-based

sensitivity analysis is not limited to additive system responses, and is able to treat

groups of factors as if they were single ones. Our numerical results demonstrate that

the proposed method is very appealing, since it can produce rich information about
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the sensitivity properties of a biochemical reaction system and can lead to rigorous and

systematic interpretation of the results. However, variance-based sensitivity analysis

is computationally intensive due to the need for a large number of system evaluations

in a Monte Carlo framework. This problem becomes very serious for large biochemical

reaction systems, especially when the differential equations governing the system are

stiff.

Motivated by the previous computational issue, we discussed four techniques that

one can use to analytically approximate the second-order sensitivity indices associated

with the proposed variance-based sensitivity analysis methodology. We highlighted

important theoretical, numerical, and computational aspects of each method, in an

attempt to provide a comprehensive understanding of the advantages and disadvantages

of each technique. Our simulation results, based on a mathematical model of the

MAPK signaling cascade, clearly demonstrate the inferiority of second-order derivative-

based sensitivity analysis at moderate to high levels of uncertainty. It also shows the

superiority of OHA, which is constructed by truncating the ANOVA-HDMR of the

response function of a biochemical reaction system and by approximating the first-

and second-order ANOVA-HDMR component functions using orthonormal Hermite

polynomials. All four approximation techniques are orders of magnitude faster than

Monte Carlo estimation, and make the variance-based sensitivity analysis approach

more practical for large biochemical reaction systems.

As it is true in the case of derivative-based sensitivity analysis techniques, the ap-

plication of the variance-based sensitivity analysis approach discussed in this thesis

requires specifying the nominal values of the kinetic parameters. As a consequence,

174



the sensitivity analysis results may depend on the particular choice of the nominal

parameter values. To address this issue, we proposed an extended version of our

thermodynamically consistent variance-based approach, which effectively reduces the

experimental uncertainty associated with the choice of nominal kinetic parameter val-

ues. Our simulation results clearly demonstrated the superiority of the noise-reduced

variance-based sensitivity indices for quantifying the average relative importance of

different biochemical factors over a broad range of nominal rate values, thus leading

to biological conclusions that are less sensitive to the uncertainties in choosing these

values. To reduce the computational cost of Monte Carlo estimation when evaluating

noise-reduced variance-based sensitivity indices, we discussed two numerical methods

based on derivative approximation and OHA-based dimensionality reduction, respec-

tively. Although derivative approximation is a very fast method, its applicability is

limited to nearly additive response functions. On the other hand, OHA-based dimen-

sionality reduction is applicable to more general response functions. However, the

computational cost of this method depends on a polynomial regression step, which can

be inefficient when dealing with large biochemical reaction systems, and on the number

of non-influential biochemical factors detected by pre-screening. To further improve

the noise-reduced variance-based sensitivity analysis approach, future research must be

focused on developing numerically accurate and computationally efficient techniques

for pre-screening non-influential factors in large biochemical reaction systems.

The probabilistic sensitivity analysis techniques discussed in this thesis were demon-

strated using a biologically relevant example, namely the MAPK signaling cascade, in

terms of three response characteristics with established biological significance. The sen-
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sitivity analysis results identified only a few reactions and molecular species as being

influential on the duration, integrated response, and strength of the output ERK-PP

activity. During this doctoral research, we have also employed a number of other

well-known cellular signaling pathways, such as the epidermal growth factor recep-

tor (EGFR) signaling pathway [116], the EGF-ERK signaling pathway [45], and the

Janus kinase-signal transducers and activators of transcription (JAK-STAT) signaling

pathway [117], to test the sensitivity analysis approaches we considered in this thesis.

The results we obtained clearly indicate that the biological behavior of cell signaling

depends only on a handful of biochemical factors. This property makes sensitivity

analysis a desirable tool for simplifying biochemical reaction system models, for identi-

fying influential targets in system-based drug design, and for estimating system model

parameters more efficiently and accurately.

An important assumption made in this dissertation is that input biochemical factors

are independent of each other. As we discussed in Section 2.4, it is not easy to justify

the mutual independence between the standard chemical potentials of activated com-

plexes associated with closely related reactions, and the mutual independence between

the standard chemical potentials of correlated molecular species, especially those with

common components. More accurate modeling to reflect relationships between these

biochemical factors needs biophysical knowledge on how biochemical factors depend on

each other. Another reason for the independence assumption is that correlated input

samples are more laborious to generate. Moreover, the sample size needed to compute

sensitivity measures for correlated samples is much higher than that for independent

ones [23, 27]. A useful trick to circumvent the use of correlated samples is to treat
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dependencies as being produced by a known transformation applied on statistically in-

dependent noise terms [23], a process known as whitening. We believe that future work

should be done to develop appropriate probabilistic models and sensitivity measures

that can efficiently handle correlated biochemical factors.

The sensitivity analysis approaches discussed in this dissertation were applied to

deterministic chemical kinetics based on the mass action rate law. Using this type of

kinetics requires the assumption that the number of molecular species is large and rep-

resents a macroscopic view of a biochemical reaction system. However, the number of

molecular species involved in some gene networks and cellular signaling pathways can be

quite small, and stochastic effects may dominate the system behavior [118,119]. In this

case, biochemical reaction systems are usually modeled by using the chemical master

equation [120] or, under certain conditions, by employing the chemical Langevin equa-

tion [121]. We can extend the variance-based sensitivity analysis approaches discussed

in this thesis to this case by evaluating system responses using Gillespie’s stochas-

tic simulation algorithm (SSA) [122, 123]. However, the computational cost involved

would be prohibitively expensive even for small biochemical reaction systems. The

approximation techniques discussed in this dissertation can be applied to reduce the

computational burden.
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