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Abstract

Background: Sensitivity analysis is an indispensable tool for the analysis of complex systems. In a recent

paper, we have introduced a thermodynamically consistent variance-based sensitivity analysis approach for

studying the robustness and fragility properties of biochemical reaction systems under uncertainty in the

standard chemical potentials of the activated complexes of the reactions and the standard chemical

potentials of the molecular species. In that approach, key sensitivity indices were estimated by Monte

Carlo sampling, which is computationally very demanding and impractical for large biochemical reaction

systems. Computationally efficient algorithms are needed to make variance-based sensitivity analysis

applicable to realistic cellular networks, modeled by biochemical reaction systems that consist of a large

number of reactions and molecular species.

Results: We present four techniques, derivative approximation (DA), polynomial approximation (PA),

Gauss-Hermite integration (GHI), and orthonormal Hermite approximation (OHA), for analytically

approximating the variance-based sensitivity indices associated with a biochemical reaction system. By

using a well-known model of the mitogen-activated protein kinase signaling cascade as a case study, we

numerically compare the approximation quality of these techniques against traditional Monte Carlo

sampling. Our results indicate that, although DA is computationally the most attractive technique, special

care should be exercised when using it for sensitivity analysis, since it may only be accurate at low levels

of uncertainty. On the other hand, PA, GHI, and OHA are computationally more demanding than DA but

can work well at high levels of uncertainty. GHI results in a slightly better accuracy than PA, but it is more

difficult to implement. OHA produces the most accurate approximation results and can be implemented in

a straightforward manner. It turns out that the computational cost of the four approximation techniques

considered in this paper is orders of magnitude smaller than traditional Monte Carlo estimation. Software,

coded in MATLABr, which implements all sensitivity analysis techniques discussed in this paper, is

available free of charge.

Conclusions: Estimating variance-based sensitivity indices of a large biochemical reaction system is a

computationally challenging task that can only be addressed via approximations. Among the methods

presented in this paper, a technique based on orthonormal Hermite polynomials seems to be an acceptable

candidate for the job, producing very good approximation results for a wide range of uncertainty levels in a

fraction of the time required by traditional Monte Carlo sampling.
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Background

Sensitivity analysis is an indispensable tool for the analysis of complex systems [1, 2]. It is routinely used

to investigate how uncertainty in input variables affects uncertainty in system response and to quantify the

relative importance of the input variables in influencing the response. In addition to many other areas of

science and engineering, sensitivity analysis is used in systems biology to investigate the robustness and

fragility properties of cellular systems, such as signaling, gene regulation, and metabolic networks [3–11],

as well as in systems pharmacology [12], for designing novel pharmacological intervention strategies and

for understanding drug action [13, 14].

To study the sensitivity properties of a biochemical reaction system, such as a signaling network, we must

construct a mathematical model that relates uncertainty in key biochemical factors of interest to a

biologically relevant system response, and develop techniques for determining how factor uncertainty

affects the system response. Since biochemical reaction systems are subject to physical laws, an important

requirement is that sensitivity analysis must satisfy important thermodynamic constraints, such as the

principle of detailed balance [15]. Bearing these in mind, we have proposed in [16] a probabilistic

sensitivity analysis approach for biochemical reaction systems that uses the standard chemical potentials of

the activated complexes of the underlying reactions and molecular species as the biochemical factors of

interest and propagates factor uncertainty to a given system response in a thermodynamically consistent

manner. Moreover, we have adopted a formal statistical approach to sensitivity analysis, known as

variance-based sensitivity analysis [2, 17–19], which uses a set of indices to quantify the contribution of

individual biochemical factors to the variance of the system response.

Unfortunately, it is not in general possible to analytically evaluate variance-based sensitivity indices. As a

consequence, these indices are estimated by Monte Carlo sampling [2, 16, 18, 20], which requires

evaluation of the system response at each sample. A major drawback of this approach is its slow rate of

convergence. As a matter of fact, the error produced by a naive Monte Carlo estimation approach decreases

with an error rate of O(1/
√
L), where L is the number of Monte Carlo samples used [21]. Hence, accurate

estimation of the sensitivity indices requires a large number of Monte Carlo samples and, therefore, a large

number of system response evaluations. This makes Monte Carlo estimation of variance-based sensitivity

indices computationally very expensive, especially in the case of biochemical reaction systems comprised

of a large number of reactions and molecular species.
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To reduce the computational burden of Monte Carlo estimation, it is imperative that we develop techniques

which can produce sufficiently accurate estimates of the sensitivity indices in a fraction of the time

required by Monte Carlo sampling. In this paper, we present four such techniques and apply them to a

well-known biochemical reaction model of the mitogen-activated protein kinase (MAPK) signalling

cascade. The first technique is based on a second-order Taylor series expansion of the response function

and is an extension of the first-order derivative-based approach for variance-based sensitivity analysis

discussed in [2, 18, 19, 22] by including second-order derivative terms. The other approximation techniques

are based on the high-dimensional model representation (HDMR) schemes developed by H. Rabitz and his

coworkers [23–25]. We use analytical derivations, provided in the Additional file 1 accompanying this

paper, and sensitivity analysis results generated by the four methods, to clarify the relative merits of each

approximation technique and produce useful insights on when these techniques can be used for sensitivity

analysis of biochemical reaction systems. We have coded the sensitivity analysis techniques discussed in

this paper using MATLABr. Interested readers can request a copy of the software, and the entire set of

data obtained with this software, by contacting the corresponding author.

We should mention here that, in systems biology, the most commonly used sensitivity analysis techniques

are based on derivatives of molecular concentrations or other system responses, known as control

coefficients [3]. These differential methods are based on a Taylor series approximation of the response

function and, as such, are subject to several drawbacks that must be carefully considered before applying

them to problems of systems biology. For example, derivative-based sensitivity indices assess the

sensitivity properties of a biochemical reaction system around a set of reference input values. Their

performance usually depends on the particular choice of these values, due to the nonlinear nature of the

response function. For the results to be relevant, the reference values must be the true values, which are

usually not known in practice. As a consequence, derivative-based sensitivity analysis techniques are

limited by the quality of the underlying Taylor series approximation. Moreover, and due to our difficulty in

accurately evaluating high-order derivatives, differential sensitivity analysis techniques are usually limited

in practice to assessing the effect of one input factor on the system response, by keeping all other factors

fixed to their reference values. This is usually not adequate, since we are most often interested in the effects

of multiple biochemical factors on the system response. Finally, traditional differential analysis cannot

cope with probabilistic uncertainty in biochemical factor values, unless it is combined with variance-based

sensitivity analysis (as it is done by the first approximation technique considered in this paper). It turns out
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that variance-based sensitivity analysis does not depend on the additivity or linearity of the system model

and can be naturally used to quantify the simultaneous effect of probabilistic biochemical factor

uncertainty on the system response [2, 18]. For this reason, it provides a very attractive and powerful

approach for sensitivity analysis of biochemical reaction systems.

We should finally mention that a number of alternative approximation techniques for variance-based

sensitivity analysis have been proposed in the literature [26–29]. In these techniques, the original response

function is approximated by a surrogate function and the sensitivity indices are then estimated by Monte

Carlo sampling based on that function. Reduction in computations is achieved by the fact that the time

required for computing the system response at each Monte Carlo iteration using the surrogate function is

much smaller than computing the response using the original function (whose evaluation requires solving a

system of ordinary differential equations). However, the computations associated with these techniques are

still substantial, since they must employ a large number of samples to sufficiently reduce the Monte Carlo

estimation error. By contrast, the techniques discussed in this paper are based on surrogate functions that

lead to analytical formulas for the sensitivity indices, thus avoiding Monte Carlo estimation. As a matter of

fact, the computational cost for calculating the variance-based sensitivity indices using the techniques

discussed in this paper is mainly associated with the problem of estimating the underlying parameters of

the surrogate function used, which leads to appreciable computational savings over the techniques

proposed in [26–29].

Methods

Biochemical reaction systems

In this paper, we consider a well-stirred (homogeneous) biochemical reaction system at constant

temperature and volume that consists of M coupled reactions of the form:

N∑
n=1

νnmXn

κ2m−1

�
κ2m

N∑
n=1

ν ′nmXn, m = 1, 2, . . . ,M,

where κ2m−1, κ2m ≥ 0 are the normalized rate constants of the forward and reverse reactions (measured in

s−1) and νnm, ν ′nm ≥ 0 are the stoichiometry coefficients of the reactants and products. We assume that the

system consists of N molecular species X1, X2, . . . , XN , with concentrations (measured in molecules/cell)

at time t ≥ 0 given by q1(t), q2(t), . . ., qN (t), respectively. We characterize the dynamic evolution of

5



molecular concentrations by the following chemical kinetic equations:

dqn(t)

dt
=

M∑
m=1

snmρm(t), t ≥ 0, n = 1, 2, . . . , N, (1)

where snm := ν ′nm − νnm is the stoichiometry coefficient of the nth molecular species associated with the

mth reaction and

ρm(t) := κ2m−1

N∏
i=1

[qi(t)]
νim − κ2m

N∏
i=1

[qi(t)]
ν′im (2)

is the flux of the mth reaction at time t.

The sensitivity analysis approach we consider here is based on quantifying the influence of a reaction or

molecular species on an appropriately chosen response characteristic R of a biochemical reaction system.

We employ a well-known model of the MAPK signaling cascade (see Figure 1 and Additional file 2 for

details on this model) and consider three response characteristics with established biological significance,

namely the duration D, integrated response I , and strength S of the doubly phosphorylated extracellular

signal-regulated kinase (ERK-PP), defined by

D := t0

I :=

∫ t0

0
q(t)dt

S :=
1

t0

∫ t0

0
q(t)dt,

where q(t) is the concentration profile of ERK-PP and t0 is the time at which q(t) converges to zero. If

convergence to zero does not occur within the observation time interval [0, tmax], then we set t0 = tmax.

We choose to work with the duration, integrated response, and strength of ERK-PP activity, since it has

been experimentally observed that differences in duration and strength may cause distinct biological

outcomes, such as cell differentiation, proliferation, and apoptosis [30–34], whereas, the integrated

response directly correlates with DNA synthesis [35, 36]. We take the system response R to be the

logarithm of the duration, integrated response, or strength; that is, we take R to be lnD, lnI , or lnS. This

reduces the effect of outliers and increases the efficiency of numerically evaluating the indices associated

with variance-based sensitivity analysis [16].
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Variance-based sensitivity analysis

We employ the variance-based sensitivity analysis approach for biochemical reaction systems we recently

introduced in [16]. This method is based on a biophysically-derived probabilistic model for the rate

constants of a biochemical reaction system. According to this model, we treat the rate constants κ2m−1 and

κ2m as random variables K2m−1 and K2m, given by the Eyring-Polanyi equations [37]

K2m−1 =
kBT

h

C‡
m∏N

n=1C
νnm
n

K2m =
kBT

h

C‡
m∏N

n=1C
ν′nm
n

, (3)

where kB is the Boltzmann constant (kB = 1.3806504× 10−23JK−1), T is the system temperature, h is

the Planck constant (h = 6.62606885× 10−34Js), C‡
m is the (random) capacity of the activated complex

associated with the mth reaction, and Cn is the (random) capacity of the nth molecular species. The

capacities are defined by

C‡
m := exp

{
−M

‡0
m

kBT

}

Cn := exp

{
− M0

n

kBT

}
, (4)

where M ‡0
m , M0

n are the (random) standard chemical potentials of the mth activated complex and the nth

molecular species, respectively, given by

M ‡0
m = µ‡0m + kBTY

‡
m

M0
n = µ0n + kBTYn. (5)

In (5), µ‡0m and µ0n are the nominal standard chemical potential values associated with the mth reaction and

the nth molecular species, whereas, Y ‡
m and Yn are zero-mean Gaussian random variables with standard

deviations λ‡m and λn, respectively. These random variables account for variations in the standard chemical

potentials about their nominal values caused by unpredictable biological variability and uncertainty

regarding their exact values. Similarly to [16], we assume that the random variables Y ‡
m,m = 1, 2, . . . ,M ,

and Yn, n = 1, 2, . . . , N , are statistically independent.
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Our variance-based sensitivity analysis technique assesses how uncertainty in the rate constants of a

biochemical reaction system affect the system response. As a consequence of (3), (4), and (5), we have that

K2m−1 = κ2m−1 exp{−Y ‡
m} exp

{
N∑

n=1

νnmYn

}

K2m = κ2m exp{−Y ‡
m} exp

{
N∑

n=1

ν ′nmYn

}
, (6)

where

κ2m−1 =
kBT

h

c‡m∏N
n=1 c

νnm
n

κ2m =
kBT

h

c‡m∏N
n=1 c

ν′nm
n

are the nominal values of the rate constants, with

c‡m := exp

{
− µ‡0m
kBT

}

cn := exp

{
− µ0n
kBT

}
.

Equation (6) suggests that uncertainty in the forward and reverse reaction rates occurs due to uncertainty in

the standard chemical potentials of the activated complexes associated with the reactions and the standard

chemical potentials of the reactants.

As a consequence of the previous model, we investigate the sensitivity properties of a biochemical reaction

system due to the uncertainty in the standard chemical potentials. To simplify notation, we use

WWW = {W1,W2, . . . ,WJ} to denote the random variables Y ‡ and Y . We consider two cases, namely

J =M and Wj = Y ‡
j , for j = 1, 2, . . . ,M , as well as J = N and Wj = Yj , j = 1, 2, . . . , N . In the first

case, the standard chemical potentials of the molecular species are assumed to be fixed, whereas, the

standard chemical potentials of the activated complexes are perturbed randomly. Our objective is to

investigate the importance of reactions in influencing the system response and, for this reason, we refer to

this case as reaction-oriented sensitivity analysis (ROSA) [16]. In the second case, the standard chemical

potentials of the activated complexes are assumed to be fixed, whereas, the standard chemical potentials of

the molecular species are perturbed randomly. In this case, our objective is to investigate the importance of
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molecular species in influencing the system response. For this reason, we refer to this case as

species-oriented sensitivity analysis (SOSA) [16].

Given the response R of a biochemical reaction system with random factorsWWW , its total variance

Vtot := Var[R(WWW )] satisfies [17, 38, 39]:

Vtot =
J∑

j=1

Vj +
J−1∑
j=1

J∑
j′=j+1

Vjj′ + · · ·+ V12···J , (7)

where

Vj := Var[E[R(WWW ) |Wj ]]

Vjj′ := Var[E[R(WWW ) |Wj ,Wj′ ]]− Vj − Vj′ , (8)

with similar expressions for the remaining terms. If the biochemical factorsWWW are statistically independent

(which we assume here to be true), then each term on the right-hand-side of (7) is nonnegative. This

equation provides a decomposition of the total system response variance Vtot into individual terms

V1, V2, . . . , V12, . . .. It turns out that Vj quantifies the average reduction in total response variance, obtained

by keeping the jth biochemical factor fixed. As a consequence, we use Vj to measure the singular influence

of the jth biochemical factor Wj on the system response. Moreover, the term Vjj′ quantifies the average

reduction in the total response variance due to jointly fixing the two biochemical factors Wj and Wj′ , not

accounted for by summing the average reductions obtained by separately fixing these factors. Therefore,

we use Vjj′ to measure the joint influence of the biochemical factors Wj and Wj′ on the system response.

Finally, higher-order terms in (7) quantify the joint influence of three or more biochemical factors on the

system response.

In most practical situations, it is difficult to evaluate the high-order terms (≥ 3) in the response variance

decomposition scheme given by (7). Although these terms are usually negligible at low to moderate levels

of biochemical factor uncertainty, they may take substantial values at high levels [16]. Unfortunately, it is

difficult to deal in practice with high-order variance terms. For this reason, it is quite convenient to base our

sensitivity analysis effort only on the first- and second-order terms Vj and Vjj′ . Then, instead of using the

total system response variance Vtot, we base our sensitivity analysis on its second-order portion V , given by

V =

J∑
j=1

Vj +

J−1∑
j=1

J∑
j′=j+1

Vjj′ . (9)
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By using the probabilistic model given by (6) and the variance decomposition scheme in (9), we can

develop a powerful (second-order) methodology for sensitivity analysis of biochemical reaction systems,

similar to the one discussed in [16] that was based on the total response variance Vtot. The method requires

evaluation of two indices, namely the (second-order) single-effect sensitivity index (SESI) σj , defined by

σj :=
Vj
V
, (10)

and the (second-order) joint-effect sensitivity index (JESI) ηj , defined by

ηj :=
Uj
V
, (11)

where

Uj :=

J∑
j=1,j′ ̸=j

Vjj′ . (12)

Clearly, σj quantifies the fractional singular contribution of the jth biochemical factor to the second-order

portion V of the total response variance, whereas, ηj quantifies the fractional contribution of the jth

biochemical factor to V jointly with another factor. It turns out that, if σj = ηj = 0, then we can conclude

that factor j does not influence the system response singularly or jointly with another factor (although, it

may influence the system response jointly with two or more factors). On the other hand, if σj > 0 and

ηj = 0, then we can conclude that factor j influences the system response singularly but not jointly with

another factor. Moreover, if σj = 0 and ηj > 0, we can conclude that factor j does not influence the system

response singularly but it does so jointly with some other factor, whereas, if σj > 0 and ηj > 0, we can

conclude that factor j influences the system response both singularly and jointly with some other factor. In

practice, we can set a small threshold θ to determine whether σj and ηj are sufficiently larger than zero.

Unfortunately, we cannot evaluate the exact values of the sensitivity indices σj and ηj . For this reason, we

must resort to approximations. In this paper, we consider the possibility of employing one of five methods

to accomplish this goal. We discuss these methods next and refer the reader to [16] and the accompanying

Additional file 1 for details pertaining to their development and numerical implementation.

Monte Carlo estimation

A straightforward technique for approximating the SESI and JESI values is based on a Monte Carlo Latin

hypercube sampling approach, whose details can be found in [16] (see also [2, 20]). This approach can be

used to provide estimates σ̂j and η̂j of the second-order SESI’s and JESI’s by using 2L(J + 1) system
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evaluations [by integrating the system of N ordinary differential equations given by (1) and (2)], where L

is the number of Latin hypercube samples used and J is the number of biochemical factors considered in

the analysis. We refer to σ̂j and η̂j as the (second-order) SESI’s and JESI’s obtained by Monte Carlo (MC)

estimation. This method is computationally expensive, since a large number L of Latin hypercube samples

is required to obtain sufficiently accurate estimates of the sensitivity indices.

Derivative approximation

A method for deriving approximations σ̂j and η̂j of the sensitivity indices σj and ηj is to replace the

response function R(www) by its second-order Taylor series approximation R̂(www) aboutwww = 000, given by

R̂(www) = R(000) +
J∑

j=1

djwj +
1

2

J∑
j=1

J∑
j′=1

djj′wjwj′ , (13)

where

dj :=
∂R(000)

∂wj
and djj′ :=

∂2R(000)

∂wj∂wj′

are the first- and second-order partial derivatives of R atwww = 000, and set

σ̂j :=
V̂j

V̂
, η̂j :=

Ûj

V̂
, (14)

where

V̂ :=

J∑
j=1

V̂j +

J−1∑
j=1

J∑
j′=j+1

V̂jj′

Ûj :=

J∑
j′=1,j′ ̸=ĵ

Vjj′

V̂j = Var[E[R̂(WWW ) |Wj ]]

V̂jj′ = Var[E[R̂(WWW ) |Wj ,Wj′ ]]− V̂j − V̂j′ . (15)

Equation (13) and the statistical independence and zero-mean Gaussianity of the biochemical factors Wj

imply that

V̂j = λ2jd
2
j +

1

2
λ4jd

2
jj and V̂jj′ = λ2jλ

2
j′d

2
jj′ , (16)

where λj is the standard deviation of Wj , for j = 1, 2, . . . , J . As a consequence, we obtain an analytical

expression for the sensitivity indices σ̂j and η̂j , which requires evaluation of the first- and second-order

partial derivatives of the response function R(www), with respect to the biochemical factors, atwww = 000.
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Although many techniques have been developed to compute response derivatives [40], for reasons we

explain in Additional file 1, we choose to approximate the partial derivatives by symmetric finite

differences. We refer to σ̂j and η̂j , given by (14), (15), and (16), as the (second-order) SESI’s and JESI’s

obtained by Derivative Approximation (DA). The resulting method requires 2J(J + 1) + 1 system

integrations, which is quadratic in terms of the number J of the biochemical factors and is much smaller

than the number 2L(J + 1) of system integrations required by MC, since J ≪ L.

Polynomial approximation

Another way to approximate the sensitivity indices σj and ηj is to replace the response function R(www) by

R̂(www) = R(000)

+
J∑

j=1

(αj,1wj + αj,2w
2
j )

+

J−1∑
j=1

J∑
j′=j+1

αjj′,1wjwj′+

J−1∑
j=1

J∑
j′=j+1

αjj′,2w
2
j wj′

+

J−1∑
j=1

J∑
j′=j+1

αjj′,3wjw
2
j′+

J−1∑
j=1

J∑
j′=j+1

αjj′,4w
2
j w

2
j′ , (17)

where the α’s are parameters whose values must be appropriately determined so that R̂(www) sufficiently

approximates the response function R(www) in an appropriately chosen neighborhood around 000. Note that

R̂(www) provides a polynomial approximation of the response function R(www). If R̂(www) is sufficiently close to

R(www) in a neighborhood around 000, then the parameters α coincide with the partial derivatives

∂ κ1+κ2R(000)/∂wκ1
j ∂w

κ2
j′ , 1 ≤ κ1, κ2 ≤ 2, of R atwww = 000.

By using (17) and the statistical independence and zero-mean Gaussianity of the biochemical factors Wj ,

we can show that, in this case, σ̂j and η̂j are given by (14) and (15), with

V̂j =λ2j α
2
j,1 + 2λ4j α

2
j,2

+2λ2j αj,1

j−1∑
m=1

λ2mαmj,2 +

J∑
m=j+1

λ2mαjm,3


+λ2j

j−1∑
m=1

λ2mαmj,2+
J∑

m=j+1

λ2mαjm,3

2
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+ 4λ4j αj,2

j−1∑
m=1

λ2mαmj,4 +

J∑
m=j+1

λ2mαjm,4


+ 2λ4j

j−1∑
m=1

λ2mαmj,4 +

J∑
m=j+1

λ2mαjm,4

2

V̂jj′ = λ2j λ
2
j′α

2
jj′,1 + 2λ4j λ

2
j′α

2
jj′,2

+2λ2j λ
4
j′α

2
jj′,3 + 4λ4j λ

4
j′α

2
jj′,4. (18)

As a consequence, we obtain again an analytical expression for the sensitivity indices σ̂j and η̂j , which

requires evaluation of the α parameters. This can be done by the polynomial regression approach we

discuss in Additional file 1. We refer to σ̂j and η̂j , given by (14), (15), and (18), as the (second-order)

SESI’s and JESI’s obtained by Polynomial Approximation (PA). The resulting method is based on the

approach proposed in [41] and requires J(J − 1)S2/2 + JS + 1 system integrations, which is quadratic

both in terms of the number J of biochemical factors and the number S of the samples per factor used in the

regression. Note that J(J − 1)S2/2 + JS + 1 ≃ 2J2(S/2)2, for sufficiently large J . This number is much

smaller than the number 2L(J + 1) ≃ 2LJ of system integrations required by MC, since L≫ J(S/2)2,

but larger than the number 2J(J + 1) + 1 ≃ 2J2 of system integrations required by DA, since S > 2.

Gauss-Hermite integration

We can obtain a more accurate approximation R̂(www) of the response function R(www) than the one given by

(13) if we truncate the Taylor series expansion of R(www) aboutwww = 000 by removing all terms that involve

partial derivatives with respect to more than two factors [note that the approximation given by (13) is

obtained from the Taylor series expansion by truncating all terms that involve partial derivatives of order

greater than two]. In this case, we can show that

R̂(www) = ψ0 − (J − 2)

J∑
j=1

ψj(wj)

+

J−1∑
j=1

J∑
j′=j+1

ψjj′(wj , wj′),
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where

ψ0 :=
(J − 1)(J − 2)

2
R(0, 0, . . . , 0)

ψj(wj):=R(0, . . . , wj , . . . , 0)

ψjj′(wj , wj′):=R(0, . . . , wj , . . . , wj′ , . . . , 0), (19)

as we explain in Additional file 1. The approximations σ̂j and η̂j are now given by (14) and (15), with

V̂j = E[e2j (Wj)]− e20

V̂jj′ = E[e2jj′(Wj ,Wj′)]− V̂j − V̂j′ − e20, (20)

where e0, ej , and ejj′ are given by

e0 = ψ0 − (J − 2)
J∑

m=1

E[ψm(Wm)]

+

J−1∑
m=1

J∑
m′=m+1

E[ψmm′(Wm,Wm′)]

ej(wj) = ψ0

−(J−2)
J∑

m=1

E[ψm(Wm) |Wj = wj ]

+

J−1∑
m=1

J∑
m′=m+1

E[ψmm′(Wm,Wm′) |Wj = wj ]

ejj′(wj , wj′) = ψ0

−(J−2)

J∑
m=1

E[ψm(Wm) |Wj = wj ,Wj′ = wj′ ]

+
J−1∑
m=1

J∑
m′=m+1

E[ψmm′(Wm,Wm′) |
Wj = wj ,Wj′ = wj′ ]. (21)

Note that evaluation of V̂j and V̂jj′ requires only one- and two-dimensional integrations, which can be

numerically done by a standard Gauss-Hermite integration approach. For this reason, we refer to σ̂j and η̂j ,

given by (14), (15), (19), (20), and (21), as the (second-order) SESI’s and JESI’s obtained by Gauss
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Hermite Integration (GHI). The resulting method is based on the approach proposed in [42, 43] and

requires 2J(J − 1)⌊Q/2⌋2 + 2J⌊Q/2⌋ + 1 system integrations, which is quadratic both in terms of the

number J of biochemical factors and the order Q of Gauss-Hermite integration used. Note that, if the

number S of the samples per factor used in the regression associated with the PA is even, and Q = S or

Q = S + 1, then GHI requires the same number of system integrations as PA.

Orthonormal Hermite approximation

The last method we consider for approximating the sensitivity indices σj and ηj is based on replacing the

response function R(www) by

R̂(www)= ρ̂0

+
J∑

j=1

[
αj,1

wj
λj

+
αj,2√
2

(
w2
j

λ2j
− 1

)]

+

J−1∑
j=1

J∑
j′=j+1

αjj′,1
wjwj′

λjλj′

+

J−1∑
j=1

J∑
j′=j+1

αjj′,2√
2

(
w2
j

λ2j
− 1

)
wj′

λj′

+

J−1∑
j=1

J∑
j′=j+1

αjj′,3√
2

wj

λj

(
w2
j′

λ2j′
− 1

)

+
J−1∑
j=1

J∑
j′=j+1

αjj′,4

2

(
w2
j

λ2j
− 1

)(
w2
j′

λ2j′
− 1

)
, (22)

where the α’s and ρ̂0 are parameters whose values must be appropriately determined so that R̂(www)

sufficiently approximates the response function R(www) over the entire space of biochemical factor values.

Note that R̂(www) provides a polynomial approximation of the response function R(www), similar to the one

given by (17). However, the polynomials used in the approximation given by (22) are orthonormal Hermite

polynomials, as opposed to the polynomials used in the approximation given by (17), which are standard

second- and fourth-order polynomials. Note also that the approximation given by (22) is “global,” in the

sense that it is based on approximating the system response function R(www) over the entire factor space,

whereas, the approximation given by (17) is “local,” in the sense that it approximates the system response

function R(www) in a neighborhood aroundwww = 000.
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By using (22), the orthonormality of the Hermite polynomials, and the statistical independence and

zero-mean Gaussianity of the biochemical factors Wj , we can show that σ̂j and η̂j are given by (14) and

(15), with

V̂j = α2
j,1 + α2

j,2

V̂jj′ = α2
jj′,1 + α2

jj′,2 + α2
jj′,3 + α2

jj′,4. (23)

As a consequence, we obtain again an analytical expression for the sensitivity indices σ̂j and η̂j , which

requires evaluation of the α parameters. This can be done by polynomial regression based on the Monte

Carlo Latin hypercube sampling approach we discuss in Additional file 1. We refer to σ̂j and η̂j , given by

(14), (15), and (23), as the (second-order) SESI’s and JESI’s obtained by Orthonormal Hermite

Approximation (OHA). The resulting method is based on the approach suggested in [44–47] and requires L

system integrations, where L is the number of regression points obtained by Latin hypercube sampling. We

here take the number of regression points used to be the same as the number of Latin hypercube samples

employed by MC, although these two numbers can be different in general. As a consequence, the number

of system integrations performed by OHA is smaller than the number 2L(J + 1) of system integrations

used in MC by a factor of 2(J + 1), but it could be larger than the number of system integrations required

by DA, PA, or GHI.

Results

We now employ the previously discussed techniques to estimate the variance-based sensitivity indices σj

and ηj associated with the duration, integrated response, and strength of ERK-PP activity. We do this by

considering the dynamic behavior, within a time frame of 6 hours, of the MAPK signaling cascade model

depicted in Figure 1 (see Additional file 2 for more details on this model). As we have explained in the

previous section, we consider two cases: ROSA and SOSA. In each case, we need to set values for the

standard deviations {λ‡m, m = 1, 2, . . . ,M} of the standard chemical potentials of the activated complexes

of the reactions and the standard deviations {λn, n = 1, 2, . . . , N} of the standard chemical potentials of

the molecular species. Due to difficulties in obtaining these values in practice, we assume here that

λ‡m = λ‡, for m = 1, 2, . . . ,M , and λn = λ, for n = 1, 2, . . . , N , and consider λ‡, λ as two “user-defined”

parameters that quantify the perturbation levels in biochemical factor values. By following our previous

work in [16], we perform sensitivity analysis with λ‡, λ = 0.1, 0.2, 0.3, 0.4. Finally, we employ L = 6,000

Latin hypercube samples in MC and OHA, S = 4 regression samples per factor in PA, and a

Gauss-Hermite integration of order Q = 5 in GHI.
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In our simulations, we use S = 4 regression points per biochemical factor, located at −2w,−w,w, and 2w,

where w = λ‡ for ROSA and w = λ for SOSA (i.e., we use regression points located at ± one and two

standard deviations from 000). Note also that, as a consequence of equation (6), if Yn = 0, for

n = 1, 2, . . . , N , then a ±λ‡ variation in the values of Y ‡
m about zero will produce a variation in the

nominal values of the rate constants of the mth reaction within the percentage interval

100[exp{−λ‡m} − 1, exp{λ‡m} − 1]%. This corresponds to variations in the nominal values of the reaction

rate constants within the interval [−9.52%, 10.52%], for λ‡ = 0.1, [−18.13%, 22.14%], for λ‡ = 0.2,

[−25.92%, 34.99%], for λ‡ = 0.3, and [−32.97%, 49.18%], for λ‡ = 0.4.

In Table 1, we summarize the number of system integrations and the equations used by each method. For

ROSA-based sensitivity analysis (J = 21), the number of system integrations required by DA, PA, GHI,

and OHA, are respectively only 0.35%, 1.30%, 1.30%, and 2.27% of that required by MC. For

SOSA-based sensitivity analysis (J = 23), the number of system integrations required by DA, PA, GHI,

and OHA, are respectively only 0.38%, 1.44%, 1.44%, and 2.08% of that required by MC.

We list the ROSA results in Tables 2, 3, and 4, whereas, we list the SOSA results in Tables S-3.1, S-3.2,

and S-3.3 of Additional file 3. The results are given in percentages and have been truncated to the nearest

integers. To reduce the size of the tables, we depict only the results associated with reactions whose

truncated SESI or JESI values, estimated by MC, are at least 5%. We consider the SESI and JESI values

obtained by MC as the “true” values. By following our previous work in [16], we classify reactions and

molecular species into one of four categories of interest: singularly influential, jointly influential,

singularly/jointly influential, and noninfluential. We do this by comparing their SESI and JESI values to a

10% threshold. Bold reaction numbers indicate SESI or JESI values, obtained by MC, that are above the

10% threshold. Note that a reaction is singularly influential if the corresponding SESI value is at least 10%

and the JESI value is smaller than 10%, jointly influential if the JESI value is at least 10% and the SESI

value is smaller than 10%, singularly/jointly influential if both the SESI and JESI values are at least 10%,

and noninfluential if both the SESI and JESI values are smaller than 10%.

In the remaining of this section, we discuss the ROSA results separately for each response characteristic.

A similar discussion applies for the SOSA results presented in Additional file 3.
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Duration

Estimation, by MC, of the ROSA-based sensitivity indices associated with the duration of ERK-PP activity

produces values that change little with the size λ‡ of the underlying perturbations; see Table 2. Moreover,

the estimated SESI and JESI values indicate that the duration is primarily affected by reactions 4, 6, and 13

(refer to Figure 1 and Additional file 2 for identifying these reactions), which exert their influence only

singularly (since the SESI values are larger than 10%, whereas the corresponding JESI values are less than

10%). As a matter of fact, all JESI values are negligible, which indicates that the log-duration may be

approximately additive, at least within the range of the applied perturbations. Note that a multivariate

response function is called additive if it can be decomposed into a sum of one-dimensional functions of one

variable. Additive response functions do not produce high-order (≥ 2) joint effects and result in zero JESI

values [2]. Although a linear response function is additive, the inverse is not necessarily true. It turns out

that the SESI’s associated with an additive response function can be well estimated by all previous

approximation techniques.

From the results depicted in Table 2 (and Table S-3.1 in Additional file 3), it is clear that, as compared to

MC, the DA, PA, GHI, and OHA consistently provide good approximations to the SESI and JESI values at

all perturbation levels. Moreover, all methods can be used to correctly classify reactions 4, 6, and 13 as

being singularly influential.

Integrated response

Estimation, by MC, of the ROSA-based sensitivity indices associated with the integrated response of

ERK-PP activity produces the SESI and JESI values depicted in Table 3. These values indicate that the

integrated response is primary influenced by reactions 4 and 6 (refer to Figure 1 and Additional file 2 for

identifying these reactions). For small to moderate perturbations (i.e., for λ‡ = 0.1, 0.2), reactions 4 and 6

influence the integrated response only singularly. However, for large perturbations (i.e., for λ‡ = 0.3, 0.4),

reaction 4 influences the integrated response both singularly and jointly (since both SESI and JESI values

are at least 10%), whereas, reaction 6 still influences the integrated response only singularly.

It is clear from the results depicted in Table 3 (and Table S-3.2 in Additional file 3) that all approximation

techniques work relatively well for small to moderate perturbation levels (i.e., for λ‡ = 0.1, 0.2), providing

accurate SESI and JESI values, as compared to the values obtained by MC, and produce correct

classification of the reactions. This is true, since the log integrated response may be approximately additive
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in this case, as indicated by the negligible JESI values. However, for large perturbations (i.e., for

λ‡ = 0.3, 0.4), the log integrated response is not additive anymore and the results obtained by DA

deteriorate noticeably, deeming the use of DA inappropriate. For example, using the JESI results produced

by ROSA, the largest differences between the values obtained by DA and MC are 8% and 12% for

λ‡ = 0.3, 0.4, respectively. As a matter of fact, the DA is not capable of capturing second-order joint

effects and the resulting JESI values are very small. If we use the DA results to classify the reactions, then

we will erroneously conclude that reaction 4 influences the integrated response only singularly, when

λ‡ = 0.3, 0.4.

From the results depicted in Table 3 (and Table S-3.2 in Additional file 3), it is clear that, for large

perturbations, GHI and OHA provide good approximations to the sensitivity indices. Moreover, the results

indicate that OHA may be a better approximation technique than GHI (e.g., compare the SESI results

obtained by GHI and OHA for reaction 4). On the other hand, the results obtained by PA are much better

than the results obtained by DA. However, the performance of PA may deteriorate at high perturbation

levels and may become inferior to GHI and OHA (e.g., compare the results obtained by PA, GHI, and OHA

for reaction 4). Finally, it is clear that the sensitivity results obtained by GHI and OHA can be used to

correctly classify all reactions.

Strength

Estimation, by MC, of the ROSA-based sensitivity indices associated with the strength of ERK-PP activity

produces the SESI and JESI values depicted in Table 4. These values indicate that the log strength may be

approximately additive when λ‡ = 0.1. However, the log strength becomes nonadditive when

λ‡ = 0.2, 0.3, 0.4, since the estimated JESI values are not negligible at these perturbation levels. Note that,

when λ‡ = 0.1, the strength is primarily affected by reactions 4, 6, 8, and 19, which exert their influence

only singularly. However, when λ‡ = 0.2, reaction 8 becomes noninfluential, reaction 4 influences the

strength both singularly and jointly, whereas, reactions 6 and 19 still influence the strength singularly. On

the other hand, when λ‡ = 0.3, 0.4, reactions 4 and 6 influence the strength both singularly and jointly,

whereas, reaction 8 influences the strength only jointly (since the JESI values are larger than 10%, whereas,

the corresponding SESI values are less than 10%).

It is clear from the results depicted in Table 4 (and Table S-3.3 in Additional file 3) that all approximation

techniques work relatively well when λ‡ = 0.1, producing accurate SESI and JESI values, as compared to
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the values obtained by MC, and resulting in correct classification of the reactions. However, when

λ‡ = 0.2, 0.3, 0.4, DA produces inaccurate results, while the performance of PA and GHI deteriorates

noticeably. For example, using the JESI results produced by ROSA, the largest differences between the

values obtained by DA and MC are 11%, 20% and 23% for λ‡ = 0.2, 0.3, 0.4, respectively. Moreover, the

largest differences between the values obtained by PA and MC are 10%, 8% and 5% for λ‡ = 0.2, 0.3, 0.4,

respectively. Finally, the largest differences between the values obtained by GHI and MC are 5%, 7% and

5% for λ‡ = 0.2, 0.3, 0.4, respectively. Once more, OHA consistently provides good results, which can be

used to correctly classify the reactions at all perturbation levels.

Discussion

The previous numerical results demonstrate that, in terms of estimation accuracy, OHA is the best method

and DA is the worst, whereas, PA and GHI are in between, with GHI slightly better than PA. To explain

why this is so, we must investigate the sources of error introduced by each technique, which we summarize

in Table 1.

The estimation error produced by the MC approach is mainly due to the finite number L of samples used

and decreases slowly as L increases, regardless of the number J of biochemical factors used, at least

theoretically. Note, however, that to achieve a certain level of accuracy in practice, we may also need to

increase L as the number J of biochemical factors increases, due to the exponential growth in the volume

of the biochemical factor space when adding extra dimensions (“curse of dimensionality”).

There are two sources of error associated with DA. First, substantial errors may be introduced due to the

fact that DA locally approximates the response function by a Taylor series expansion that includes only

first- and second-order partial derivatives. Consequently, DA may not produce good estimates of the

sensitivity indices under large perturbations, since a second-order Taylor series approximation of the

response function may not be sufficiently accurate over the range of factor values generated by such

perturbations. This is especially true when the response function is nonadditive (as it is the case with the

log integrated response and the log strength of ERK-PP in the MAPK example). In such cases, large factor

variations may produce substantial joint effects, which cannot be captured by a local second-order Taylor

series approximation. This is evident by the fact that, under large perturbations, the JESI values obtained

by DA, associated with the integrated response and strength, are significantly different than the ones

produced by MC.
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A second source of error associated with DA is the approximation of the first- and second-order derivatives

of the response function by finite-differences. In our simulations, we approximate the first- and

second-order partial derivatives of the response function by using equations (S-1.35) and (S-1.36) in

Additional file 1, with ∆ = 0.1. It has been pointed out in [1] that the resulting approximations must be

carefully used, since it is difficult to theoretically predict, control, and numerically evaluate their accuracy.

Although a number of techniques have been developed to deal with this problem [40], exact evaluation of

the response derivatives usually requires simultaneous integration of a set of “sensitivity equations,”

together with the differential equations governing the underlying molecular concentration dynamics, which

turns out to be a very difficult task due to stiffness of the resulting system of differential equations [1].

PA attempts to improve the accuracy of DA by adding high-order derivative terms in the Taylor series

expansion of the response function. In addition to the first- and second-order partial derivatives used by the

DA, the Taylor series expansion now includes third- and fourth-order partial derivatives that involve only

two biochemical factors. Moreover, instead of approximating the derivatives by finite differences, the

method avoids such computations by expanding the response function using FD-HDMR, by truncating all

components of order ≥ 3, by respectively approximating the first- and second-order FD-HDMR

components with second- and fourth-order polynomials, and by estimating the coefficients of these

polynomials using regression (see Additional file 1 for details). Errors are introduced by truncating the

FD-HDMR and locally approximating the resulting response function by a fourth-order polynomial

including only single biochemical factors and pairs of factors. As a consequence, PA may not be able to

accurately estimate some SESI and JESI values under large perturbations, since the underlying truncation

and polynomial approximation of the response function may not be sufficiently accurate over the range of

factor values generated by such perturbations. Note also that errors can be introduced due to estimating the

polynomial coefficients by regression, a situation that cannot be evaluated and controlled easily. As a

matter of fact, and counter to intuition, we cannot necessarily increase accuracy of estimation by using

more samples per biochemical factor, especially when dealing with polynomial regression [48, 49].

GHI attempts to improve the accuracy of estimating the sensitivity indices by employing the exact first-

and second-order FD-HDMR components, and numerically calculating the required expectations and

variances using Gauss-Hermite integrations (see Additional file 1 for details). Errors are introduced when

truncating the FD-HDMR and evaluating the expectations and variances by one- and two-dimensional
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Gauss-Hermite integrations. Evaluating and controlling these errors is practically impossible. Note that

higher-order Gauss-Hermite integrations do not necessarily produce higher accuracy. This is true only

when the integrands are sufficiently smooth, in the sense that can be well-approximated by

polynomials [49]. Truncation of the FD-HDMR essentially corresponds to a local approximation of the

response function, although this approximation is expected to be more accurate than the Taylor series and

polynomial approximations used by DA and PA, respectively. As a consequence, GHI may not be able to

accurately estimate some SESI and JESI values under large perturbations, since the underlying FD-HDMR

truncation may not be sufficiently accurate over the range of factor values generated by such perturbations.

Finally, the errors introduced by OHA are due to approximating the ANOVA-HDMR expansion of the

response function by first- and second-order ANOVA-HDMR components, approximating these

components with first- and second-order orthonormal Hermite polynomials, and estimating the coefficients

of these polynomials using regression (see Additional file 1 for details). Here, the truncation of high-order

ANOVA-HDMR components does not correspond to a local approximation of the response function, which

is why this approximation is more accurate than truncating the FD-HDMR components, as in GHI. In fact,

if we consider perturbation levels at which the higher-order (≥ 3) terms in the variance decomposition

scheme given by (7) are negligible, then the higher-order (≥ 3) terms in the ANOVA-HDMR

decomposition of the response function will be negligible as well [see equation (S-1.30) in Additional

file 1]. This is not necessarily true for the higher-order terms in the FD-HDMR decomposition. Therefore,

truncating the ANOVA-HDMR decomposition of the response function, as opposed to the FD-HDMR

decomposition, is well justified for perturbation levels at which the response variance is not appreciably

influenced by high-order joint effects. Under very large perturbations, OHA may not accurately estimate

the sensitivity indices, since the underlying truncation of ANOVA-HDMR may not be accurate enough due

to appreciable high-order (≥ 3) joint effects in the response variance. However, the global nature of the

approximation methodology employed by OHA, the direct relationship between ANOVA-HDMR and the

response variance decomposition scheme given by (7), and the orthonormality properties of the Hermite

polynomials, make OHA the most desirable technique for approximating the sensitivity indices, among the

techniques considered in this paper.

Although we have also obtained simulation results for other biochemical reaction systems, due to lack of

space, we have limited our presentation in this paper to the results obtained for the MAPK model depicted
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in Figure 1. To illustrate various aspects of the approximation techniques and their relative merits, we have

chosen the response functions to represent three types of high-dimensional system responses: the log

duration, lnD, is approximately additive for the levels of biochemical factor uncertainty considered in this

paper, the log integrated response, lnI , is moderately nonadditive, whereas, the log strength, lnS, is highly

nonadditive. Based on our experience so far, all our simulation results are consistent with each other and

perfectly agree with the theoretical analysis presented in this paper. We therefore believe that the

conclusions based on the MAPK model are general and can be applied to other biochemical reaction

systems as well.

It is very important to keep in mind that the four approximation techniques considered in this paper are

based on the assumption that, for most biochemical reaction systems of interest, perturbations of input

biochemical factors will produce only single and second-order joint effects at the output. As a

consequence, truncating the HDMR of the response function to a second-order is a natural thing to do.

Note that this assumption depends on the particular choice of the biochemical factors used, on how the

system response relates to these factors, and on the perturbation levels used for sensitivity analysis. In

general, the approximation methods discussed in this paper are expected to fail in the presence of

high-order ≥ 3 joint effects among biochemical factors. Therefore, it may be necessary in these cases to

consider truncated HDMR’s that include higher-order basis functions. Extension to this case is

straightforward but computationally demanding, since higher-order cases require evaluation of a large

number of variance terms in the decomposition scheme given by (7), which can be a tedious thing to do for

large biochemical reaction systems.

We should point out here that GHI is based on the methodology proposed in [42, 43], which has been

effectively used to calculate statistical moments of the responses of high-dimensional mechanical systems

subject to randomly fluctuating loads. In this paper, we have reformulated this method to fit the framework

of variance-based sensitivity analysis and have applied it to biochemical reaction systems. On the other

hand, OHA is based on the methodology proposed in [25, 44, 45, 50] for approximating ANOVA-HDMR’s

using orthonormal basis functions. OHA can also be viewed as a special case of the polynomial chaos

expansion (PCE) approach to sensitivity analysis discussed in [46, 47, 51], and has been recently employed

in [52] for estimating variance-based sensitivity indices in order to learn the topology of a functional

network of interactions from given data. To our knowledge, this is the first time that the four approximation
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techniques presented in this paper are systematically compared to each other and used to study the

sensitivity properties of biochemical reaction systems.

To conclude, we would like to stress the fact that the approximation techniques presented in this paper have

been derived by assuming that the biochemical factors used for sensitivity analysis are statistically

independent and that each factor follows a Gaussian distribution. The assumption of statistical

independence between the random variables {Y ‡
m,m = 1, 2, . . . ,M} and {Yn, n = 1, 2, . . . , N} has been

justified in [16]. However, justifying mutual independence within the sets {Y ‡
m,m = 1, 2, . . . ,M} and

{Yn, n = 1, 2, . . . , N} is a very difficult thing to do. We simply view this assumption as a convenient

approximation that allows us to proceed with the sensitivity analysis approaches discussed in this paper.

Developing variance-based sensitivity analysis for correlated biochemical factors is a challenging problem

that needs careful investigation [2, 53]. On the other hand, if the biochemical factors follow non-Gaussian

distributions, such as uniform, gamma, binomial, etc., the approximation techniques must be appropriately

modified to accommodate these distributions. For example, if each biochemical factor follows a uniform

distribution, then we must replace the Gauss-Hermite integration step in GHI by Gauss-Legendre

integration [49]. Moreover, if the biochemical factors follow gamma distributions, then we must replace

the orthonormal Hermite polynomials in OHA by orthonormal Laguerre polynomials [47, 51].

Conclusions

In this paper, we discussed four methods that one can use to analytically approximate the second-order

sensitivity indices associated with a previously introduced variance-based sensitivity analysis methodology

for biochemical reaction systems. The need for developing such methods stems from an effort to remedy

the large computational burden associated with Monte Carlo estimation. We highlighted important

theoretical, numerical, and computational aspects of each method, in an attempt to provide a

comprehensive understanding of the advantages and disadvantages of each technique. Our simulation

results, based on a mathematical model for the MAPK signalling cascade, clearly demonstrate the

inferiority of second-order derivative-based sensitivity analysis at moderate to high levels of uncertainty. It

also shows the superiority of OHA, which is constructed by truncating the ANOVA-HDMR of the response

function of a biochemical reaction system and approximating the first- and second-order ANOVA-HDMR

component functions with orthonormal Hermite polynomials.
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50. Aliş ÖF, Rabitz H: Efficient implementation of high dimensional model representations. J. Math. Chem.
2001, 29:127–142.

51. Choi SK, Grandhi RV, Canfield RA, Pettit CL: Polynomial chaos expansion with Latin hypercube sampling
for estimating response variability. AIAA J. 2004, 42:1191–1198.

52. Castillo E, Sánchez-Maroño N, Alonso-Betanzos A, Castillo C: Functional network topology learning and
sensitivity analysis based on ANOVA decomposition. Neural. Comput. 2007, 19:231–257.

27



53. Li G, Hu J, Wang SW, Georgopoulos PG, Schoendorf J, Rabitz H: Random sampling-high dimensional model
represenattion (RS-HDMR) and orthogonality of its different order component functions. J. Phys. Chem. A
2006, 110:2474–2485.

28



Figure legends

Figure 1: A biochemical reaction model of the MAPK signaling cascade, adopted from Zhang et al. [16].
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Tables

Table 1: Required system integrations, equations used, and sources of error.

Method System Integrations ROSA SOSA Equations Used Error Sources

MC 2L(J + 1) 264000 288000 (10)–(12) • number of MC samples used

DA 2J(J + 1) + 1 925 1105 (14)–(16) • local approximation
• truncation of Taylor series
• derivative approximation

PA J(J − 1)S2/2 + JS + 1 3445 4141 (14), (15), (18) • local approximation
• truncation of FD-HDMR
• polynomial approximation
• polynomial regression

GHI 2J(J − 1)⌊Q/2⌋2 + 2J⌊Q/2⌋+ 1 3445 4141 (14), (15), (19)–(21) • local approximation
• truncation of FD-HDMR
• Gauss-Hermite integration

OHA L 6000 6000 (14), (15), (23) • truncation of ANOVA-HDMR
• Hermite approximation
• polynomial regression

L: number of Monte Carlo (Latin hypercube) samples.
J : number of biochemical factors.
S: number of regression samples per factor.
Q: order of Gauss-Hermite integration.
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Table 2: ROSA-based sensitivity analysis results for the duration of ERK-PP activity.

SESI - DURATION (λ‡ = 0.1)(λ‡ = 0.1)(λ‡ = 0.1) JESI - DURATION (λ‡ = 0.1)(λ‡ = 0.1)(λ‡ = 0.1)

Reaction MC DA PA GHI OHA Reaction MC DA PA GHI OHA
4 28 28 28 27 28 4 1 0 0 0 0
6 24 26 25 22 25 6 1 0 0 0 0
11 7 7 7 9 8 11 0 0 0 0 0
13 18 18 20 18 19 13 1 0 0 0 0

SESI - DURATION (λ‡ = 0.2)(λ‡ = 0.2)(λ‡ = 0.2) JESI - DURATION (λ‡ = 0.2)(λ‡ = 0.2)(λ‡ = 0.2)

Reaction MC DA PA GHI OHA Reaction MC DA PA GHI OHA
4 26 27 27 29 27 4 2 1 1 1 1
6 22 25 25 25 23 6 2 1 1 1 1
11 7 7 7 8 8 11 1 0 0 0 0
13 16 17 18 16 17 13 1 1 0 0 0
17 5 5 6 4 5 17 1 1 1 1 1
21 5 5 5 6 5 21 1 1 0 1 1

SESI - DURATION (λ‡ = 0.3)(λ‡ = 0.3)(λ‡ = 0.3) JESI - DURATION (λ‡ = 0.3)(λ‡ = 0.3)(λ‡ = 0.3)

Reaction MC DA PA GHI OHA Reaction MC DA PA GHI OHA
4 26 26 26 24 26 4 1 2 2 2 2
6 21 24 20 21 21 6 1 2 1 1 1
11 7 6 7 7 8 11 0 1 0 0 0
13 15 16 13 15 15 13 1 1 1 1 1
17 5 4 6 5 5 17 1 2 2 2 1
21 6 5 8 8 6 21 2 2 3 2 1

SESI - DURATION (λ‡ = 0.4)(λ‡ = 0.4)(λ‡ = 0.4) JESI - DURATION (λ‡ = 0.4)(λ‡ = 0.4)(λ‡ = 0.4)

Reaction MC DA PA GHI OHA Reaction MC DA PA GHI OHA
4 23 24 23 21 25 4 4 3 2 3 3
6 19 22 20 19 21 6 4 3 2 2 2
11 8 6 6 7 9 11 1 1 0 0 0
13 14 15 12 11 15 13 1 2 1 1 1
17 5 4 6 8 5 17 2 3 2 3 1
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Table 3: ROSA-based sensitivity analysis results for the integrated response of ERK-PP activity.

SESI - I-RESPONSE (λ‡ = 0.1)(λ‡ = 0.1)(λ‡ = 0.1) JESI - I-RESPONSE (λ‡ = 0.1)(λ‡ = 0.1)(λ‡ = 0.1)

Reaction MC DA PA GHI OHA Reaction MC DA PA GHI OHA
4 39 39 39 39 39 4 1 0 0 0 0
6 26 27 27 27 27 6 1 0 0 0 0
11 9 10 9 9 9 11 0 0 0 0 0
13 8 8 8 8 8 13 0 0 0 0 0

SESI - I-RESPONSE (λ‡ = 0.2)(λ‡ = 0.2)(λ‡ = 0.2) JESI - I-RESPONSE (λ‡ = 0.2)(λ‡ = 0.2)(λ‡ = 0.2)

Reaction MC DA PA GHI OHA Reaction MC DA PA GHI OHA
4 37 38 40 40 39 4 5 1 1 2 2
6 25 27 26 26 25 6 4 0 0 1 1
8 5 5 5 5 6 8 2 0 0 1 1
11 7 9 8 8 8 11 1 0 0 0 0
13 6 8 7 7 7 13 1 1 0 0 0

SESI - I-RESPONSE (λ‡ = 0.3)(λ‡ = 0.3)(λ‡ = 0.3) JESI - I-RESPONSE (λ‡ = 0.3)(λ‡ = 0.3)(λ‡ = 0.3)

Reaction MC DA PA GHI OHA Reaction MC DA PA GHI OHA
4 38 37 43 41 36 4 10 2 9 10 11
6 21 26 22 21 21 6 7 1 4 4 6
8 8 4 7 7 7 8 4 0 3 4 5

SESI - I-RESPONSE (λ‡ = 0.4)(λ‡ = 0.4)(λ‡ = 0.4) JESI - I-RESPONSE (λ‡ = 0.4)(λ‡ = 0.4)(λ‡ = 0.4)

Reaction MC DA PA GHI OHA Reaction MC DA PA GHI OHA
4 36 36 43 40 34 4 15 3 18 15 16
6 18 25 16 19 18 6 8 2 7 7 8
8 8 4 8 9 8 8 7 1 6 6 7
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Table 4: ROSA-based sensitivity analysis results for the strength of ERK-PP activity.

SESI - STRENGTH (λ‡ = 0.1)(λ‡ = 0.1)(λ‡ = 0.1) JESI - STRENGTH (λ‡ = 0.1)(λ‡ = 0.1)(λ‡ = 0.1)

Reaction MC DA PA GHI OHA Reaction MC DA PA GHI OHA
4 38 38 36 30 38 4 1 0 0 0 0
6 17 15 15 14 17 6 1 1 0 0 0
8 10 10 9 6 10 8 1 0 0 0 0
11 8 9 9 4 8 11 0 0 0 0 0
19 12 10 12 15 13 19 1 1 0 0 0

SESI - STRENGTH (λ‡ = 0.2)(λ‡ = 0.2)(λ‡ = 0.2) JESI - STRENGTH (λ‡ = 0.2)(λ‡ = 0.2)(λ‡ = 0.2)

Reaction MC DA PA GHI OHA Reaction MC DA PA GHI OHA
4 32 34 40 39 33 4 13 2 3 8 11
6 14 14 14 12 13 6 8 3 1 3 6
8 8 9 11 12 9 8 7 1 1 2 5
17 6 4 6 3 6 17 6 1 1 2 4
19 10 9 11 12 12 19 5 2 1 1 4

SESI - STRENGTH (λ‡ = 0.3)(λ‡ = 0.3)(λ‡ = 0.3) JESI - STRENGTH (λ‡ = 0.3)(λ‡ = 0.3)(λ‡ = 0.3)

Reaction MC DA PA GHI OHA Reaction MC DA PA GHI OHA
4 31 30 37 37 27 4 23 3 22 25 26
6 10 12 12 11 10 6 17 5 9 10 15
8 9 8 10 9 8 8 11 2 8 9 11
19 6 8 7 6 5 19 5 4 3 3 4

SESI - STRENGTH (λ‡ = 0.4)(λ‡ = 0.4)(λ‡ = 0.4) JESI - STRENGTH (λ‡ = 0.4)(λ‡ = 0.4)(λ‡ = 0.4)

Reaction MC DA PA GHI OHA Reaction MC DA PA GHI OHA
4 28 25 40 36 26 4 28 5 29 27 29
5 2 1 1 0 2 5 6 5 2 2 5
6 10 10 9 11 10 6 16 7 11 11 15
8 8 7 8 10 8 8 15 3 11 11 14
15 1 0 0 0 2 15 7 5 4 4 7
21 1 0 0 0 1 21 7 4 4 4 8
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Additional files

Additional file 1: Approximation methods and implementations. This file contains the mathematical

details associated with the five approximation methods presented in the paper and discusses their numerical

implementation.

Additional file 2: MAPK signaling cascade model. This file lists the biochemical reactions associated

with the MAPK signaling cascade model and provides nominal values for the normalized reaction rate

constants and initial molecular concentrations.

Additional file 3: SOSA-based sensitivity analysis results. This file summarizes the SOSA-based

sensitivity analysis results for the three response characteristics (duration, integrated response, and

strength) of ERK-PP activity in the MAPK signaling cascade obtained by the five approximation methods

discussed in the paper.
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In this document, we present several methods for approximating the indices σj and ηj associated with the

second-order variance-based sensitivity analysis technique discussed in the Main text. We first review a

number of multivariate representation schemes for the response function of a biochemical reaction system

that can be used to analytically map the complex relationship between the biochemical factors and the

system response. We then discuss how to use these schemes in order to approximate σj and ηj . Finally, we

present details regarding the numerical implementation of the resulting approximation techniques.

1 Response function representation schemes

For ease of presentation, we will often base our discussion on a response function R(www) = R(w1, w2, w3)

that depends only on three factors of interestwww = {w1, w2, w3}. Although extension to the case of J

biochemical factors is straightforward, the required notation is cumbersome and makes key steps difficult

to follow. For this reason, we use a trivariate response function to derive key equations and state the

general form of these equations without proof.

1.1 TSMR

If the response function R is continuously differentiable in a neighborhood ofwww = 0, then its Taylor series

expansion about 0 is given by

R(w1, w2, w3) = r0 + r1(w1) + r2(w2) + r3(w3) + r12(w1, w2)

+ r13(w1, w3) + r23(w2, w3) + r123(w1, w2, w3), (S-1.1)
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where

r0 := R(0)

r1(w1) :=

∞∑
m=1

1

m!

∂mR(0)

∂wm
1

wm
1

r2(w2) :=

∞∑
m=1

1

m!

∂mR(0)

∂wm
2

wm
2

r3(w3) :=
∞∑

m=1

1

m!

∂mR(0)

∂wm
3

wm
3

r12(w1, w2) :=

∞∑
m1=1

∞∑
m2=1

1

m1!m2!

∂m1+m2R(0)

∂wm1
1 ∂wm2

2

wm1
1 wm2

2

r13(w1, w3) :=

∞∑
m1=1

∞∑
m3=1

1

m1!m3!

∂m1+m3R(0)

∂wm1
1 ∂wm3

3

wm1
1 wm3

3

r23(w2, w3) :=
∞∑

m2=1

∞∑
m3=1

1

m2!m3!

∂m2+m3R(0)

∂wm2
2 ∂wm3

3

wm2
2 wm3

3

r123(w1, w2, w3) :=

∞∑
m1=1

∞∑
m2=1

∞∑
m3=1

1

m1!m2!m3!

∂m1+m2+m3R(0)

∂wm1
1 ∂wm2

2 ∂wm3
3

wm1
1 wm2

2 wm3
3 . (S-1.2)

Clearly, the Taylor series expansion provides a representation of the system response R in terms of

functions r, given by (S-1.2). We refer to the r’s as basis functions. Note that r0 is the value of R at the

reference point 0. On the other hand, r1(w1) summarizes the singular contribution of factor w1 to the

value of R, whereas, r12(w1, w2) summarizes the joint contribution of factors w1 and w2. Finally,

r123(w1, w2, w3) summarizes the joint contribution of all three factors to the value of R. Similar remarks

apply for r2, r3, r13, and r23.

Although (S-1.2) provides analytical formulas for the basis functions, calculating these functions at a point

www requires knowledge of the partial derivatives of R at the reference point 0, as well as evaluation of

infinite sums, which is very difficult to do in practice. Note however that any basis function r given
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by (S-1.2) is zero if one of its arguments equals zero. By using this property and (S-1.1), we have that

R(w1, w2, 0) = r0 + r1(w1) + r2(w2) + r12(w1, w2)

R(w1, 0, w3) = r0 + r1(w1) + r3(w3) + r13(w1, w3)

R(0, w2, w3) = r0 + r2(w2) + r3(w3) + r23(w2, w3)

R(w1, 0, 0) = r0 + r1(w1)

R(0, w2, 0) = r0 + r2(w2)

R(0, 0, w3) = r0 + r3(w3)

R(0, 0, 0) = r0,

which results in
r0 = R(0, 0, 0)

r1(w1) = R(w1, 0, 0)−R(0, 0, 0)

r2(w2) = R(0, w2, 0)−R(0, 0, 0)

r3(w3) = R(0, 0, w3)−R(0, 0, 0)

r12(w1, w2) = R(w1, w2, 0)−R(w1, 0, 0)−R(0, w2, 0) +R(0, 0, 0)

r13(w1, w3) = R(w1, 0, w3)−R(w1, 0, 0)−R(0, 0, w3) +R(0, 0, 0)

r23(w2, w3) = R(0, w2, w3)−R(0, w2, 0)−R(0, 0, w3) +R(0, 0, 0)

r123(w1, w2, w3) = R(w1, w2, w3)−R(w1, w2, 0)−R(w1, 0, w3)−R(0, w2, w3)

+R(w1, 0, 0) +R(0, w2, 0) +R(0, 0, w3)

−R(0, 0, 0). (S-1.3)

These formulas provide a method for evaluating the basis functions r at some pointwww. This can be done by

calculating the system response at the corresponding w values suggested by the formulas. For example,

evaluation of r0 requires calculation of the system response at w1 = w2 = w3 = 0, whereas, evaluation of

r1(w1) requires an additional calculation of the system response at w1, w2 = w3 = 0. This can be done by

solving the system of ordinary differential equations given by equations (1) and (2) in the Main text. We

refer to the representation scheme given by (S-1.1) and (S-1.2) as Taylor Series Model Representation

(TSMR).
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1.2 FD-HDMR

We can extend the decomposition scheme given by (S-1.1) to the case of J biochemical factors and to

functions that are not necessarily continuously differentiable. As a matter of fact, we can represent any

response function R with J factorswww = {w1, w2, . . . , wJ} by

R(www) = r0 +
J∑

j=1

∑
· · ·
∑

1≤m1<···<mj≤J

rm1m2···mj (wm1 , wm2 , . . . , wmj ). (S-1.4)

The only requirement is that we must be able to uniquely determine the basis functions r from R. The

representation of a multidimensional function R by (S-1.4) is known in the literature as High-Dimensional

Model Representation (HDMR) [1, 2].

A way to guarantee that we can uniquely determine r from the response function R is to consider basis

functions that become zero if one of their arguments is zero. In this case, r can be determined by the

classical Möbius inversion formula

rm1m2···mj (wm1 , wm2 , . . . , wmj ) =
∑
J⊆I

(−1)|I\J |R(wwwJ), (S-1.5)

which generalizes (S-1.3). In this formula, I = {m1,m2, . . . ,mj}, A \B denotes the set difference

between two sets A and B, |A| denotes the number of elements in a set A (by convention, we set |∅| = 0),

andwwwJ iswww with all variables, except the one indexed by J , set to zero.

Equations (S-1.4) and (S-1.5) express R(www) as a superposition of system response values on lines, planes

and hyperplanes passing through the reference point 0. For this reason, these equations lead to a system

representation scheme known in the literature as cut-HDMR [1–3] or Finite Difference (FD) HDMR [4].

We adopt the second terminology here as being more appropriate for characterizing this type of HDMR.

Clearly, the Taylor series expansion is a special case of FD-HDMR, with basis functions given by (S-1.2).

1.3 ANOVA-HDMR

Let us now assume that we can find invertible differentiable transformations gj , which we can use to map

the biochemical factors wj into factors uj := gj(wj) that take values between 0 and 1. Let

P (u1, u2, u3) := R(g−1
1 (u1), g

−1
2 (u2), g

−1
3 (u3)). (S-1.6)
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The HDMR representation of P is given by

P (u1, u2, u3) = p0 + p1(u1) + p2(u2) + p3(u3) + p12(u1, u2)

+ p13(u1, u3) + p23(u2, u3) + p123(u1, u2, u3). (S-1.7)

If we consider basis functions p that integrate to zero over a single variable, then we can readily verify

from (S-1.7) that

p0 =

∫ 1

0

∫ 1

0

∫ 1

0
P (u1, u2, u3)du1du2du3

p1(u1) =

∫ 1

0

∫ 1

0
P (u1, u2, u3)du2du3 − p0

p2(u2) =

∫ 1

0

∫ 1

0
P (u1, u2, u3)du1du3 − p0

p3(u3) =

∫ 1

0

∫ 1

0
P (u1, u2, u3)du1du2 − p0

p12(u1, u2) =

∫ 1

0
P (u1, u2, u3)du3 − p1(u1)− p2(u2)− p0

p13(u1, u3) =

∫ 1

0
P (u1, u2, u3)du2 − p1(u1)− p3(u3)− p0

p23(u2, u3) =

∫ 1

0
P (u1, u2, u3)du1 − p2(u2)− p3(u3)− p0

p123(u1, u2, u3) = P (u1, u2, u3)− p12(u1, u2)− p13(u1, u3)− p23(u2, u3)

−p1(u1)− p2(u2)− p3(u3)− p0. (S-1.8)

Therefore, we can uniquely determine the basis functions p from P . By setting uj = gj(wj) in (S-1.7)

and (S-1.8), and by employing (S-1.6), we obtain

R(w1, w2, w3) = ρ0 + ρ1(w1) + ρ2(w2) + ρ3(w3) + ρ12(w1, w2)

+ ρ13(w1, w3) + ρ23(w2, w3) + ρ123(w1, w2, w3), (S-1.9)
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where

ρ0 := p0 =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
R(w1, w2, w3)g

′
1(w1)g

′
2(w2)g

′
3(w3)dw1dw2dw3

ρ1(w1) := p1(g1(w1)) =

∫ ∞

−∞

∫ ∞

−∞
R(w1, w2, w3)g

′
2(w2)g

′
3(w3)dw2dw3 − ρ0

ρ2(w2) := p2(g2(w2)) =

∫ ∞

−∞

∫ ∞

−∞
R(w1, w2, w3)g

′
1(w1)g

′
3(w3)dw1dw3 − ρ0

ρ3(w3) := p3(g3(w3)) =

∫ ∞

−∞

∫ ∞

−∞
R(w1, w2, w3)g

′
1(w1)g

′
2(w2)dw1dw2 − ρ0

ρ12(w1, w2) := p12(g1(w1), g2(w2)) =

∫ ∞

−∞
R(w1, w2, w3)g

′
3(w3)dw3 − ρ1(w1)− ρ2(w2)− ρ0

ρ13(w1, w3) := p13(g1(w1), g3(w3)) =

∫ ∞

−∞
R(w1, w2, w3)g

′
2(w2)dw2 − ρ1(w1)− ρ3(w3)− ρ0

ρ23(w2, w3) := p23(g2(w2), g3(w3)) =

∫ ∞

−∞
R(w1, w2, w3)g

′
1(w1)dw1 − ρ2(w2)− ρ3(w3)− ρ0

ρ123(w1, w2, w3) := p123(g1(w1), g2(w2), g3(w3))

= R(w1, w2, w3)− ρ12(w1, w2)− ρ13(w1, w3)− ρ23(w2, w3)

−ρ1(w1)− ρ2(w2)− ρ3(w3)− ρ0, (S-1.10)

with g′ being the first-order derivative of g. For reasons to be explained in Section 2.3, the representation of

a response function R by (S-1.9) and (S-1.10) is referred to in the literature as Analysis-of-Variance

(ANOVA) HDMR [1–5]. Note that the basis functions ρ satisfy the following orthogonality conditions:∫ ∞

−∞
· · ·
∫ ∞

−∞
ρj1,...,jk(wj1 , . . . , wjk)g

′
1(w1) · · · g′J(wJ)dw1 · · · dwJ = 0,

∫ ∞

−∞
· · ·
∫ ∞

−∞
ρj1,...,jk(wj1 , . . . , wjk)ρj′1,...,j′k′

(wj′1 , . . . , wj′k′
)g′1(w1) · · · g′J(wJ)dw1 · · · dwJ = 0,

(j1, . . . , jk) ̸= (j′1, . . . , j
′
k′), (S-1.11)

provided that the derivatives g′j(wj) integrate to one.

2 Approximation of response variances

In this section, we assume that the biochemical factors of interest are statistically independent random

variables W1,W2, . . . ,WJ that follow zero-mean Gaussian distributions with standard deviations

6



λ1, λ2, . . . , λJ , respectively. In this case, the response R(WWW ) of the biochemical reaction system, where

WWW = {W1,W2, . . . ,WJ}, will be a random variable as well. We are interested in evaluating the following

response variances:

Vj := Var[E[R(WWW ) |Wj ]]

Vjj′ := Var[E[R(WWW ) |Wj ,Wj′ ]]− Vj − Vj′ . (S-1.12)

We can then calculate the (second-order) SESI’s and JESI’s by means of

σj =
Vj
V

and ηj =
Uj
V
, (S-1.13)

where

Uj :=
J∑

j′=1,j′ ̸=j

Vjj′ and V :=
J∑

j=1

Vj +
J−1∑
j=1

J∑
j′=j+1

Vjj′ . (S-1.14)

In most applications of interest however it is very difficult to evaluate the previous variances due to the

complexity of the response function R. We can address this problem by replacing the response function

with a simpler function R̂(w1, w2, . . . , wJ) that will allow us to approximate the response variances given

by (S-1.12). In the following, we discuss various approximations obtained by employing the previously

discussed representation schemes.

2.1 TSMR

As we mentioned in Section 1.1, the two main problems associated with the basis functions of TSMR,

given by (S-1.2), is the need to calculate high-order partial derivatives of the response function and evaluate

infinite sums. To address these problems, we can approximate the basis functions by assuming that the

response function is sufficiently smooth in a neighborhood around 0 so that partial derivatives of order

greater than two are negligible. In this case, we can approximate the response function R(w1, w2, w3) by

R̂(w1, w2, w3) = r̂0 + r̂1(w1) + r̂2(w2) + r̂3(w3) + r̂12(w1, w2) + r̂13(w1, w3) + r̂23(w2, w3),

where

r̂0 := R(0)

r̂1(w1) :=
∂R(0)

∂w1
w1 +

1

2

∂2R(0)

∂w2
1

w2
1

r̂2(w2) :=
∂R(0)

∂w2
w2 +

1

2

∂2R(0)

∂w2
2

w2
2

7



r̂3(w3) :=
∂R(0)

∂w3
w3 +

1

2

∂2R(0)

∂w2
3

w2
3

r̂12(w1, w2) :=
∂2R(0)

∂w1∂w2
w1w2

r̂13(w1, w3) :=
∂2R(0)

∂w1∂w3
w1w3

r̂23(w2, w3) :=
∂2R(0)

∂w2∂w3
w2w3 ,

since r123(w1, w2, w3) = 0 in this case. By employing the statistical independence of W1, W2, and W3, we

can show that the variances associated with the approximate response function R̂(w1, w2, w3) satisfy:

V̂ = d21λ
2
1 + d22λ

2
2 + d23λ

2
3 +

1

2
d211λ

4
1 +

1

2
d222λ

4
2 +

1

2
d233λ

4
3 + d212λ

2
1λ

2
2 + d213λ

2
1λ

2
3 + d223λ

2
2λ

2
3

V̂1 = d21λ
2
1 +

1

2
d211λ

4
1

V̂2 = d22λ
2
2 +

1

2
d222λ

4
2

V̂3 = d23λ
2
3 +

1

2
d233λ

4
3

V̂12 = d212λ
2
1λ

2
2

V̂13 = d213λ
2
1λ

2
3

V̂23 = d223λ
2
2λ

2
3 , (S-1.15)

where dj is the first-order partial derivative of R with respect to wj at 0 and djj′ is the second-order partial

derivative of R with respect to wj and wj′ at 0. To show (S-1.15), we have used the fact that Wj follows a

Gaussian distribution with zero mean and standard deviation λj , which implies E[W 3
j ] = 0, E[W 4

j ] = 3λ4j .

As a consequence of (S-1.13), (S-1.14), and (S-1.15), we obtain the following approximations to the

SESI’s and JESI’s (expressed for the general case of J biochemical factors):

σ̂j =
V̂j

V̂
, η̂j =

Ûj

V̂

V̂j = λ2jd
2
j +

1

2
λ4jd

2
jj

V̂jj′ = λ2jλ
2
j′d

2
jj′

Ûj =

J∑
j′=1,j′ ̸=ĵ

Vjj′

V̂ =
J∑

j=1

V̂j +
J−1∑
j=1

J∑
j′=j+1

V̂jj′

(S-1.16)
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We respectively refer to σ̂j and η̂j , given by (S-1.16), as the SESI’s and JESI’s obtained by Derivative

Approximation (DA).

2.2 FD-HDMR

2.2.1 Polynomial approximation

We may obtain a better approximation of the sensitivity indices σj and ηj by assuming that the response

function is sufficiently smooth in a neighborhood around 0 so that partial derivatives of order greater than

two with respect to one variable and partial derivatives that involve more than two variables are negligible.

In this case, we can approximate the response function R(w1, w2, w3) by

R̂(w1, w2, w3) = r̂0 + r̂1(w1) + r̂2(w2) + r̂3(w3) + r̂12(w1, w2) + r̂13(w1, w3) + r̂23(w2, w3), (S-1.17)

where

r̂0 := R(0)

r̂1(w1) :=
∂R(0)

∂w1
w1 +

1

2

∂2R(0)

∂w2
1

w2
1

r̂2(w2) :=
∂R(0)

∂w2
w2 +

1

2

∂2R(0)

∂w2
2

w2
2

r̂3(w3) :=
∂R(0)

∂w3
w3 +

1

2

∂2R(0)

∂w2
3

w2
3

r̂12(w1, w2) :=
∂2R(0)

∂w1∂w2
w1w2 +

1

2

∂3R(0)

∂w2
1∂w2

w2
1w2 +

1

2

∂3R(0)

∂w1∂w2
2

w1w
2
2 +

1

4

∂4R(0)

∂w2
1∂w

2
2

w2
1w

2
2

r̂13(w1, w3) :=
∂2R(0)

∂w1∂w3
w1w3 +

1

2

∂3R(0)

∂w2
1∂w3

w2
1w3 +

1

2

∂3R(0)

∂w1∂w2
3

w1w
2
3 +

1

4

∂4R(0)

∂w2
1∂w

2
3

w2
1w

2
3

r̂23(w2, w3) :=
∂2R(0)

∂w2∂w3
w2w3 +

1

2

∂3R(0)

∂w2
2∂w3

w2
2w3 +

1

2

∂3R(0)

∂w2∂w2
3

w2w
2
3 +

1

4

∂4R(0)

∂w2
2∂w

2
3

w2
2w

2
3. (S-1.18)

Due to difficulties in numerically evaluating high-order derivatives with sufficient accuracy, we may not be

able to use (S-1.18) to derive sufficiently good DA approximations of the sensitivity indices. However, this

equation motivates us to set

r̂j(wj) = αj,1wj + αj,2 w
2
j

r̂jj′(wj , wj′) = αjj′,1 wjwj′ + αjj′,2 w
2
jwj′ + αjj′,3 wjw

2
j′ + αjj′,4 w

2
jw

2
j′ , (S-1.19)
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where the α’s are parameters whose values must be appropriately determined so that R̂, given by (S-1.17)

and (S-1.19), sufficiently approximates the response function R. We will be discussing a practical method

to address this problem in Section 3 of this supplement.

Clearly, the previous approach is based on approximating the first- and second-order basis functions

associated with the FD-HDMR given by (S-1.4) with the polynomials given by (S-1.19). If R̂(www) is

sufficiently close to R(www) in a neighborhood around 0, then the parameters α will coincide with the partial

derivatives of R associated with (S-1.18). Note that the approximating basis functions r̂ given by (S-1.19)

satisfy the necessary condition of becoming zero if one of their arguments equals zero.

As a consequence of (S-1.13) and (S-1.14), by employing the statistical independence of the Wj’s, and by

using the fact that Wj follows a Gaussian distribution with zero mean and standard deviation λj , in which

case E[W 3
j ] = 0 and E[W 4

j ] = 3λ4j , we obtain the following approximations to the SESI’s and JESI’s:

σ̂j =
V̂j

V̂
, η̂j =

Ûj

V̂

V̂j = λ2j α
2
j,1 + 2λ4j α

2
j,2 + 2λ2j αj,1

 j−1∑
m=1

λ2mαmj,2 +

J∑
m=j+1

λ2mαjm,3


+ λ2j

 j−1∑
m=1

λ2mαmj,2 +
J∑

m=j+1

λ2mαjm,3

2

+ 4λ4j αj,2

 j−1∑
m=1

λ2mαmj,4 +
J∑

m=j+1

λ2mαjm,4


+ 2λ4j

 j−1∑
m=1

λ2mαmj,4 +

J∑
m=j+1

λ2mαjm,4

2

V̂jj′ = λ2j λ
2
j′α

2
jj′,1 + 2λ4j λ

2
j′α

2
jj′,2 + 2λ2j λ

4
j′α

2
jj′,3 + 4λ4j λ

4
j′α

2
jj′,4

Ûj =

J∑
j′=1,j′ ̸=ĵ

Vjj′

V̂ =
J∑

j=1

V̂j +
J−1∑
j=1

J∑
j′=j+1

V̂jj′

(S-1.20)

Note that (S-1.20) is a special case of equations 35 and 36 in [6]. We respectively refer to σ̂j and η̂j , given

by (S-1.20), as the SESI’s and JESI’s obtained by Polynomial Approximation (PA) of the FD-HDMR.
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2.2.2 Gauss-Hermite integration

We can derive another approximation of the sensitivity indices by assuming that the partial derivatives of

the response function in a neighborhood of 0 that involve more than two factors are negligible. In this case,

we can approximate the response function R(w1, w2, w3) by

R̂(w1, w2, w3) = r0 + r1(w1) + r2(w2) + r3(w3) + r12(w1, w2) + r13(w1, w3) + r23(w2, w3), (S-1.21)

where

r0 = R(0)

r1(w1) =

∞∑
m=1

1

m!

∂mR(0)

∂wm
1

wm
1

r2(w2) =

∞∑
m=1

1

m!

∂mR(0)

∂wm
2

wm
2

r3(w3) =
∞∑

m=1

1

m!

∂mR(0)

∂wm
3

wm
3

r12(w1, w2) =

∞∑
m1=1

∞∑
m2=1

1

m1!m2!

∂m1+m2R(0)

∂wm1
1 ∂wm2

2

wm1
1 wm2

2

r13(w1, w3) =
∞∑

m1=1

∞∑
m3=1

1

m1!m3!

∂m1+m3R(0)

∂wm1
1 ∂wm3

3

wm1
1 wm3

3

r23(w2, w3) =

∞∑
m2=1

∞∑
m3=1

1

m2!m3!

∂m2+m3R(0)

∂wm2
2 ∂wm3

3

wm2
2 wm3

3 , (S-1.22)

since r123(w1, w2, w3) = 0 in this case. We expect that this approximation will be more accurate than the

one considered in (S-1.17) and (S-1.18), since the first- and second-order basis functions are exactly the

same as the corresponding basis functions given by (S-1.2). Note that we can obtain the approximation

given by (S-1.21) by simply truncating the third- and higher-order terms in the FD-HDMR of the response

function R, given by (S-1.4), without making any reference to the derivatives of R.

Since the basis functions r given by( S-1.22) become zero if one of their arguments is zero, we can relate

them to the system response R by means of (S-1.3). As a consequence of (S-1.3) and (S-1.21), we obtain
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the following decomposition for R̂ (expressed for the general case of J biochemical factors):

R̂(www) = ψ0 − (J − 2)

J∑
j=1

ψj(wj) +

J−1∑
j=1

J∑
j′=j+1

ψjj′(wj , wj′), (S-1.23)

where

ψ0 :=
(J − 1)(J − 2)

2
R(0, 0, . . . , 0)

ψj(wj) := R(0, . . . , 0, wj , 0, . . . , 0)

ψjj′(wj , wj′) := R(0, . . . , 0, wj , 0, . . . , 0, wj′ , 0, . . . , 0) .

By taking conditional and unconditional expectations on both sides of (S-1.23), and by using the statistical

independence of the biochemical factors, we obtain

e0 := E[R̂(WWW )]

= ψ0 − (J − 2)
J∑

m=1

E[ψm(Wm)] +
J−1∑
m=1

J∑
m′=m+1

E[ψmm′(Wm,Wm′)]

ej(wj) := E[R̂(WWW ) |Wj = wj ]

= ψ0 − (J − 2)

J∑
m=1

E[ψm(Wm) |Wj = wj ]

+

J−1∑
m=1

J∑
m′=m+1

E[ψmm′(Wm,Wm′) |Wj = wj ]

ejj′(wj , wj′) := E[R(WWW ) |Wj = wj ,Wj′ = wj′ ]

= ψ0 − (J − 2)
J∑

m=1

E[ψm(Wm) |Wj = wj ,Wj′ = wj′ ]

+

J−1∑
m=1

J∑
m′=m+1

E[ψmm′(Wm,Wm′) |Wj = wj ,Wj′ = wj′ ], (S-1.24)
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where

E[ψm(Wm) |Wj = wj ] =

{
ψj(wj), if m = j

E[ψm(Wm)], otherwise

E[ψm(Wm) |Wj = wj ,Wj′ = wj′ ] =


ψj(wj), if m = j

ψj′(wj′), if m = j′

E[ψm(Wm)], otherwise

, for j < j′

E[ψmm′(Wm,Wm′) |Wj = wj ] =


E[ψmj(Wm, wj)], if m < j, m′ = j

E[ψjm′(wj ,Wm′)], if m = j, m′ > j

E[ψmm′(Wm,Wm′)], otherwise

E[ψmm′(Wm,Wm′) |Wj = wj ,Wj′ = wj′ ] =



ψjj′(wj , wj′), if m = j, m′ = j′

E[ψmj(Wm, wj)], if m < j,m′ = j

E[ψmj′(Wm, wj′)], if m ̸= j,m′ = j′

E[ψjm′(wj ,Wm′)], if m = j,m′ ̸= j′

E[ψj′m′(wj′ ,Wm′)], if m = j′,m′ > j′

E[ψmm′(Wm,Wm′)], otherwise

, for j < j′.

(S-1.25)

Finally, to compute the conditional variances of the response function R̂, note that

Var[E[R̂(WWW ) |Wj ]] = Var[ej(Wj)] = E[e2j (Wj)]− e20

Var[E[R̂(WWW ) |Wj ,Wj′ ]] = Var[ejj′(Wj ,Wj′)] = E[e2jj′(Wj ,Wj′)]− e20, (S-1.26)

since

E[ej(Wj)] = E[E[R̂(WWW ) |Wj ]] = E[R̂(WWW )]

E[ejj′(Wj ,Wj′)] = E[E[R̂(WWW ) |Wj ,Wj′ ]] = E[R̂(WWW )],

by virtue of the fact that E[E[Y |X]] = E[Y ].
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As a consequence of (S-1.13), (S-1.14), and (S-1.26), we now obtain the following approximations to the

SESI’s and JESI’s:

σ̂j =
V̂j

V̂
, η̂j =

Ûj

V̂

V̂j = E[e2j (Wj)]− e20

V̂jj′ = E[e2jj′(Wj ,Wj′)]− V̂j − V̂j′ − e20

Ûj =

J∑
j′=1,j′ ̸=ĵ

Vjj′

V̂ =
J∑

j=1

V̂j +
J−1∑
j=1

J∑
j′=j+1

V̂jj′

(S-1.27)

with e0, ej , and ejj′ given by (S-1.24). Note that evaluation of the expectations of these quantities requires

only one- and two-dimensional integrations. This can be done by a standard Gauss-Hermite integration

procedure, as we explain in Section 3. We respectively refer to σ̂j and η̂j , given by Equation S-1.27, as the

SESI’s and JESI’s obtained by Gauss-Hermite Integration (GHI) of the FD-HDMR.

2.3 ANOVA-HDMR

Equation (S-1.7) and the fact that the basis functions p integrate to zero over a single variable imply∫ 1

0

∫ 1

0

∫ 1

0
P 2(u1, u2, u3)du1du2du3 = p20 +

∫ 1

0
p21(u1)du1 +

∫ 1

0
p22(u2)du2 +

∫ 1

0
p23(u3)du3

+

∫ 1

0

∫ 1

0
p212(u1, u2)du1du2

+

∫ 1

0

∫ 1

0
p213(u1, u3)du1du3

+

∫ 1

0

∫ 1

0
p223(u2, u3)du2du3

+

∫ 1

0

∫ 1

0

∫ 1

0
p2123(u1, u2, u3)du1du2du3 . (S-1.28)

If we assume that the biochemical factors of interest are statistically independent random variables W1,

W2, and W3, with cumulative distribution functions g1(w1), g2(w2), and g3(w3), respectively,

then (S-1.28), together with (S-1.6), (S-1.8), and (S-1.10), implies that

V = V1 + V2 + V3 + V12 + V13 + V23 + V123, (S-1.29)
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where

V := Var[R(W1,W2,W3)]

V1 := Var[E[R(W1,W2,W3) |W1]] =

∫ ∞

−∞
ρ21(w1)g

′
1(w1)dw1

V2 := Var[E[R(W1,W2,W3) |W2]] =

∫ ∞

−∞
ρ22(w2)g

′
2(w2)dw2

V3 := Var[E[R(W1,W2,W3) |W3]] =

∫ ∞

−∞
ρ23(w3)g

′
3(w3)dw3

V12 := Var[E[R(W1,W2,W3) |W1,W2]]− V1 − V2 =

∫ ∞

−∞

∫ ∞

−∞
ρ212(w1, w2)g

′
1(w1)g

′
2(w2)dw1dw2 ≥ 0

V13 := Var[E[R(W1,W2,W3) |W1,W3]]− V1 − V3 =

∫ ∞

−∞

∫ ∞

−∞
ρ213(w1, w3)g

′
1(w1)g

′
3(w3)dw1dw3 ≥ 0

V23 := Var[E[R(W1,W2,W3) |W2,W3]]− V2 − V3 =

∫ ∞

−∞

∫ ∞

−∞
ρ223(w2, w3)g

′
2(w2)g

′
3(w3)dw2dw3 ≥ 0

V123 := V − V12 − V13 − V23 − V1 − V2 − V3

=

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
ρ2123(w1, w2, w3)g

′
1(w1)g

′
2(w2)g

′
3(w3)dw1dw2dw3 ≥ 0, (S-1.30)

since g′1(w1), g′2(w2), and g′3(w3) are the probability density functions of W1, W2, and W3, respectively.

The variance decomposition scheme given by Equations 7 and 8 in the Main text is a general version of the

decomposition given by (S-1.29) and (S-1.30) for the case of J biochemical factors. This decomposition is

closely related to analysis of variance (ANOVA) techniques in statistics [5, 7, 8]. For this reason, the

representation of the response function R by (S-1.9) and (S-1.10) is referred to in the literature as

ANOVA-HDMR.

Note that (S-1.29) can be shown in a trivial manner by adding all V ’s in (S-1.30). However, by

using (S-1.6), (S-1.8), (S-1.10), and (S-1.28), we can show that, when W1, W2, and W3 are statistically

independent, then V12, V13, V23, V123 ≥ 0, which is a crucial property for appropriately defining the

variance-based sensitivity indices we consider in this paper. Moreover, we can show that these quantities

can be directly evaluated from the basis functions of the ANOVA-HDMR of the response function R(www)

by means of (S-1.30). As a consequence, we can use ANOVA-HDMR to develop an efficient

approximation technique for the sensitivity indices σj and ηj . We can do this by sufficiently approximating

the response R(w1, w2, w3) by a function

R̂(w1, w2, w3) = ρ̂0+ ρ̂1(w1)+ ρ̂2(w2)+ ρ̂3(w3)+ ρ̂12(w1, w2)+ ρ̂13(w1, w3)+ ρ̂23(w2, w3), (S-1.31)

where the approximating basis functions ρ̂ must be appropriately chosen so that they satisfy the necessary
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orthogonality conditions, given by (S-1.11), and allow efficient evaluation of the integrals in (S-1.30).

There are several potential choices for the approximating basis functions ρ̂, such as polynomials,

exponentials, splines, etc. However, for the case of statistically independent zero-mean Gaussian

biochemical factors, the simplest choice is based on the following first- and second-order Hermite

polynomials:

H1(x) = x and H2(x) =
x2 − 1√

2
.

Note that these polynomials are orthonormal over the standard Gaussian distribution, satisfying∫ ∞

−∞
H1(x)

1√
2π

e−x2/2dx =

∫ ∞

−∞
H2(x)

1√
2π

e−x2/2dx = 0

∫ ∞

−∞
H2

1 (x)
1√
2π

e−x2/2dx =

∫ ∞

−∞
H2

2 (x)
1√
2π

e−x2/2dx = 1

∫ ∞

−∞
H1(x)H2(x)

1√
2π

e−x2/2dx = 0. (S-1.32)

In this case, we set

ρ̂j(wj) = αj,1
wj

λj
+
αj,2√
2

(
w2
j

λ2j
− 1

)

ρ̂jj′(wj , wj′) = αjj′,1
wjwj′

λjλj′
+
αjj′,2√

2

(
w2
j

λ2j
− 1

)
wj′

λj′
+
αjj′,3√

2

wj

λj

(
w2
j′

λ2j′
− 1

)

+
αjj′,4

2

(
w2
j

λ2j
− 1

)(
w2
j′

λ2j′
− 1

)
. (S-1.33)

Note that, since the biochemical factors Wj are statistically independent zero-mean Gaussian random

variables with standard deviations given by λj , these approximations satisfy the necessary orthogonality

conditions given by (S-1.11).

By using (S-1.30) and the orthonormality of the Hermite polynomials H1 and H2, given by (S-1.32), we

can obtain the following approximations to the SESI’s and JESI’s (expressed for the general case of J

biochemical factors):
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σ̂j =
V̂j

V̂
, η̂j =

Ûj

V̂

V̂j = α2
j,1 + α2

j,2

V̂jj′ = α2
jj′,1 + α2

jj′,2 + α2
jj′,3 + α2

jj′,4

Ûj =

J∑
j′=1,j′ ̸=ĵ

Vjj′

V̂ =

J∑
j=1

V̂j +

J−1∑
j=1

J∑
j′=j+1

V̂jj′

(S-1.34)

We respectively refer to σ̂j and η̂j , given by (S-1.34), as the SESI’s and JESI’s obtained by Orthonormal

Hermite Approximation (OHA) of the ANOVA-HDMR.

3 Numerical implementation

We now discuss the numerical implementation of the approximation techniques we presented in the

previous section. Some techniques can be implemented in a straightforward manner, while others require

more involved implementation steps.

3.1 TSMR

Approximation of the SESI’s and JESI’s by means of (S-1.16) requires evaluation of the first- and

second-order partial derivatives of the response function R(www) atwww = 0, given by

dj =
∂R(0)

∂wj
and djj′ =

∂2R(0)

∂wj∂wj′
.

Unfortunately, accurate evaluation of these derivatives is not an easy task [9]. We may express them in

terms of concentration sensitivities and analytically derive a system of differential equations that govern

the dynamic evolution of such sensitivities. Then, evaluation of the response derivatives will require

simultaneous integration of the sensitivity equations together with the differential equations governing the

underlying molecular concentration dynamics. Most often, this step cannot be implemented in a reasonable

time due to stiffness of the resulting differential equations [10]. As a consequence, the derivatives are

usually approximated by finite-differences. However, the resulting approximations must be carefully used,

since it is difficult to theoretically predict, control, and numerically evaluate the accuracy of

finite-difference approximations of derivatives [10].
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In this work, we use symmetric finite-difference approximations of the derivatives. A symmetric

finite-difference approximation of the first-order partial derivative dj of R(www) with respect to wj at 0, leads

to

dj ≃
R(∆eeej)−R(−∆eeej)

2∆
, (S-1.35)

for a sufficiently small differential step size ∆ > 0, where eeej denotes a J-dimensional vector with its jth

element being equal to one and the remaining elements being zero. By applying the previous equation

twice, we obtain the following finite-difference approximation for the second-order partial derivative djj′ of

R(www) with respect to wj and wj′ at 0:

djj′ ≃
R(∆eeej +∆eeej′)−R(−∆eeej +∆eeej′)−R(∆eeej −∆eeej′) +R(−∆eeej −∆eeej′)

4∆2
. (S-1.36)

To compute these approximations, we need 2J(J + 1) + 1 system integrations, which is quadratic in terms

of the number J of the underlying biochemical factors.

3.2 FD-HDMR

3.2.1 Polynomial approximation

The approximation of the SESI’s and JESI’s by means of (S-1.20) requires knowledge of the values of the

α parameters associated with the polynomial approximation of the basis functions r, given by (S-1.19).

This can be done by polynomial regression [11], as we explain next.

Our problem here is to estimate the parameters α, so that

rj(wj) = r̂j(wj) + ϵj = αj,1wj + αj,2w
2
j + ϵj ,

and

rjj′(wj , wj′) = r̂jj′(wj , wj′) + ϵjj′

= αjj′,1wjwj′ + αjj′,2w
2
jwj′ + αjj′,3wjw

2
j′ + αjj′,4w

2
jw

2
j′ + ϵjj′ ,

for every j, j′, where the ϵ’s are zero-mean random variables that model the errors of approximating the

basis functions r by r̂. We can now use (S-1.3) to evaluate the basis functions r at a set

{wj(q), q ∈ S, j ∈ J} of prespecified factor values around zero. Then, the least-squares error estimates

α̂j,1, α̂j,2 of the parameters αj,1, αj,2 associated with the basis function rj(wj) are given by [11]:

α̂ααj = (WT
j Wj)

−1WT
j rrrj ,
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where

α̂ααj :=

[
α̂j,1

α̂j,2

]
2×1

rrrj :=


rj(wj(1))

rj(wj(2))

...

rj(wj(S))


S×1

Wj :=


wj(1) w2

j (1)

wj(2) w2
j (2)

...
...

wj(S) w2
j (S)


S×2

,

provided that the matrix WT
j Wj is invertible (which is always true if no column of the Wj matrix is a linear

combination of the other columns). On the other hand, the least-squares error estimates α̂jj′,1, α̂jj′,2,

α̂jj′,3, α̂jj′,4 of the parameters αjj′,1, αjj′,2, αjj′,3, αjj′,4 associated with the basis function r̂jj′(wj , wj′)

are given by [11]:

α̂ααjj′ = (WT
jj′ Wjj′)

−1WT
jj′ rrrjj′ ,

where

α̂ααjj′ :=


α̂jj′,1

α̂jj′,2

α̂jj′,3

α̂jj′,4


4×1

rrrjj′ :=



rjj′(wj(1), wj′(1))

...

rjj′(wj(1), wj′(S))

rjj′(wj(2), wj′(1))

...

rjj′(wj(2), wj′(S))

...

rjj′(wj(S), wj′(1))

...

rjj′(wj(S), wj′(S))


S2×1

Wjj′ :=



wj(1)wj′(1) w2
j (1)wj′(1) wj(1)w

2
j′(1) w2

j (1)w
2
j′(1)

...
...

...
...

wj(1)wj′(S) w2
j (1)wj′(S) wj(1)w

2
j′(S) w2

j (1)w
2
j′(S)

wj(2)wj′(1) w2
j (2)wj′(1) wj(2)w

2
j′(1) w2

j (2)w
2
j′(1)

...
...

...
...

wj(2)wj′(S) w2
j (2)wj′(S) wj(2)w

2
j′(S) w2

j (2)w
2
j′(S)

wj(S)wj′(1) w2
j (S)wj′(1) wj(S)w

2
j′(1) w2

j (S)w
2
j′(1)

...
...

...
...

wj(S)wj′(S) w2
j (S)wj′(S) wj(S)w

2
j′(S) w2

j (S)w
2
j′(S)


S2×4

,
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provided that the matrix WT
jj′Wjj′ is invertible. Note that calculation of α̂αα requires J(J − 1)S2/2 +JS +1

system integrations, which is quadratic both in terms of the number J of biochemical factors and the

number S of the samples per factor used in the regression.

3.2.2 Gauss-Hermite Integration

It is clear from (S-1.24) and (S-1.25) that evaluation of the SESI’s and JESI’s by (S-1.27) requires

calculation of the expectations E[ψm(Wm)], E[ψjm′(wj ,Wm)], E[ψmj(Wm, wj)], E[ψmm′(Wm,Wm′)],

E[e2j (wj)], and E[e2jj′(wj , wj′)] with respect to Gaussian distributions. We can evaluate these expectations

by using Gauss-Hermite integration [12], as we explain next.

Let us consider the one-dimensional expectation:

E1 = E[ψ1(W1)] =
1

λ
√
2π

∫ ∞

−∞
ψ1(w1)e

−w2
1/2λ

2
dw1.

If we set w1 =
√
2λu1, then

E1 =
1√
π

∫ ∞

−∞
ψ1(

√
2λu1)e

−u2
1du1.

In this form, we can use the Gauss-Hermite integration procedure to approximate E1 by

Ê1 =
1√
π

Q∑
q=1

ωqψ1(
√
2λaq),

where Q is the order of the approximation and aq, ωq are appropriately chosen abscissas and weights,

respectively [12].

Likewise, by setting w1 =
√
2λ1u1 and w2 =

√
2λ2u2, we can write the two-dimensional expectation

E2 = E[ψ2(W1,W2)] =
1

2πλ1λ2

∫ ∞

−∞

∫ ∞

−∞
ψ2(w1, w2)e

−w2
1/2λ

2
1e−w2

2/2λ
2
2dw1dw2

in the form

E2 =
1

π

∫ ∞

−∞

∫ ∞

−∞
ψ2(

√
2λ1u1,

√
2λ2u2)e

−u2
1e−u2

2du1du2.

A two-step (first for u1 and then for u2) application of one-dimensional Gauss-Hermite integration results

in the following approximation of E2:

Ê2 =
1

π

Q∑
q1=1

Q∑
q2=1

ωq1ωq2ψ2(
√
2λ1aq1 ,

√
2λ2aq2).
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It turns out that calculation of the expectations required by (S-1.27) involves J(J − 1)Q2/2+ JQ+ 1

system integrations, when Q is even, or J(J − 1)(Q− 1)2/2 + J(Q− 1) + 1 system integrations, when Q

is odd, which is quadratic both in terms of the number J of biochemical factors and the number Q of points

used by Gauss-Hermite integration.

3.3 ANOVA-HDMR

Approximating the sensitivity indices σj and ηj by (S-1.34) requires evaluation of the parameters α so that

the functions ρ̂, given by (S-1.33), result in a sufficiently good approximation of the response function R

by R̂, given by (S-1.31). Our problem here is to estimate the parameters α, so that

ρj(wj) = ρ̂j(wj) + ϵj = αj,1
wj

λj
+
αj,2√
2

(
w2
j

λ2j
− 1

)
+ ϵj , (S-1.37)

and

ρjj′(wj , wj′) = ρ̂jj′(wj , wj′) + ϵjj′

= αjj′,1
wjwj′

λjλj′
+
αjj′,2√

2

(
w2
j

λ2j
− 1

)
wj′

λj′
+
αjj′,3√

2

wj

λj

(
w2
j′

λ2j′
− 1

)

+
αjj′,4

2

(
w2
j

λ2j
− 1

)(
w2
j′

λ2j′
− 1

)
+ ϵjj′ , (S-1.38)

for every j, j′, where the ϵ’s are zero-mean random variables that model the errors in approximating the

basis functions ρ by ρ̂. From (S-1.37), note that

αj,1 =

∫ ∞

−∞

wj

λj
ρj(wj)Gj(wj)dwj

αj,2 =
1√
2

∫ ∞

−∞

(
w2
j

λ2j
− 1

)
ρj(wj)Gj(wj)dwj , (S-1.39)

where Gj(wj) is the Gaussian probability density function

Gj(wj) =
1√
2πλj

e−w2
j /2λ

2
j .
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This is a consequence of the zero-mean Gaussianity of the biochemical factors and the orthonormality of

the Hermite polynomials over the Gaussian distribution. Likewise, and from (S-1.38), we have that

αjj′,1 =

∫ ∞

−∞

wj

λj

wj′

λj′
ρjj′(wj , wj′)Gj(wj)Gj′(wj′)dwjdwj′

αjj′,2 =
1√
2

∫ ∞

−∞

(
w2
j

λ2j
− 1

)
wj′

λj′
ρjj′(wj , wj′)Gj(wj)Gj′(wj′)dwjdwj′

αjj′,3 =
1√
2

∫ ∞

−∞

wj

λj

(
w2
j′

λ2j′
− 1

)
ρjj′(wj , wj′)Gj(wj)Gj′(wj′)dwjdwj′

αjj′,4 =
1

2

∫ ∞

−∞

(
w2
j

λ2j
− 1

)(
w2
j′

λ2j′
− 1

)
ρjj′(wj , wj′)Gj(wj)Gj′(wj′)dwjdwj′ . (S-1.40)

Finally,

αj,1 = E
[
Wj

λj
R(WWW )

]

αj,2 =
1√
2

E

[(
W 2
j

λ2j
− 1

)
R(WWW )

]

αjj′,1 = E
[
Wj

λj

Wj′

λj′
R(WWW )

]

αjj′,2 =
1√
2

E

[(
W 2

j

λ2j
− 1

)
Wj′

λj′
R(WWW )

]

αjj′,3 =
1√
2

E

[
Wj

λj

(
W 2

j′

λ2j′
− 1

)
R(WWW )

]

αjj′,4 =
1

2
E

[(
W 2

j

λ2j
− 1

)(
W 2

j′

λ2j′
− 1

)
R(WWW )

]
, (S-1.41)

by virtue of (S-1.10), (S-1.39), and (S-1.40).

As a consequence of the previous analysis, to determine the parameters α, we need to evaluate the

expectations in (S-1.41). We can do this by Monte Carlo estimation based on a Latin hypercube sampling

strategy, which leads to a more efficient implementation than standard Monte Carlo sampling [13, 14]. In

particular, we can generate L Latin hypercube Gaussian sampleswww(l) = {w(l)
1 , w

(l)
2 , . . . , w

(l)
J },
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l = 1, 2, . . . , L, evaluate the responses R(www(l)), for l = 1, 2, . . . , L, and set

αj,1 ≃ α̂j,1 :=
1

L

L∑
l=1

w
(l)
j

λj
R(www(l))

αj,2 ≃ α̂j,2 :=
1√
2

1

L

L∑
l=1

(
[w

(l)
j ]2

λ2j
− 1

)
R(www(l))

αjj′,1 ≃ α̂jj′,1 :=
1

L

L∑
l=1

w
(l)
j

λj

w
(l)
j′

λj′
R(www(l))

αjj′,2 ≃ α̂jj′,2 :=
1√
2

1

L

L∑
l=1

(
[w

(l)
j ]2

λ2j
− 1

)
w

(l)
j′

λj′
R(www(l))

αjj′,3 ≃ α̂jj′,3 :=
1√
2

1

L

L∑
l=1

w
(l)
j

λj

 [w
(l)
j′ ]

2

λ2j′
− 1

R(www(l))

αjj′,4 ≃ α̂jj′,4 :=
1

2

1

L

L∑
l=1

(
[w

(l)
j ]2

λ2j
− 1

) [w
(l)
j′ ]

2

λ2j′
− 1

R(www(l)). (S-1.42)

Clearly, implementation of (S-1.42) requires L system integrations.

The problem with Monte Carlo estimation is that, most often, it requires a large number of system

integrations to produce sufficiently accurate estimates for the α parameters. As a consequence, it is a

computationally inefficient method for estimating α. An alternative approach is to use the previous L

samples {www(l), l = 1, 2, . . . , L} and estimate the α parameters by polynomial regression, as we did in

Section 3.2.1. We discuss this approach in the following.

As a consequence of (S-1.31) and (S-1.33), the polynomial regression problem amounts to estimating ρ̂0

and the parameters α, so that

R(www) = R̂(www) + ϵ

= ρ̂0 +
J∑

j=1

αj,1
wj

λj
+
αj,2√
2

(
w2
j

λ2j
− 1

)

+

J−1∑
j=1

J∑
j′=j+1

αjj′,1
wjwj′

λjλj′
+
αjj′,2√

2

(
w2
j

λ2j
− 1

)
wj′

λj′
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+

J−1∑
j=1

J∑
j′=j+1

αjj′,3√
2

wj

λj

(
w2
j′

λ2j′
− 1

)
+
αjj′,4

2

(
w2
j

λ2j
− 1

)(
w2
j′

λ2j′
− 1

)
+ ϵ ,

where ϵ is a zero-mean random variable that models the errors of approximating the response function R

by R̂. In this case, the least-squares error estimate α̂αα of the parameters α are given by

α̂αα = (WTW)−1WTρρρ , (S-1.43)

where

α̂αα :=



ρ̂0

α̂1,1
...

α̂1,2
...

α̂(J−1)J,4


(2J2+1)×1

ρρρ :=


R(www(1))

R(www(2))
...

R(www(L))


L×1

W :=


1 w

(1)
1 /λ1 · · · [(w

(1)
1 /λ1)

2 − 1]/
√
2 · · · [(w

(1)
J−1/λJ−1)

2 − 1][(w
(1)
J /λJ)

2 − 1]/2

1 w
(2)
1 /λ1 · · · [(w

(2)
1 /λ1)

2 − 1]/
√
2 · · · [(w

(2)
J−1/λJ−1)

2 − 1][(w
(2)
J /λJ)

2 − 1]/2

...
...

...
...

...
...

1 w
(L)
1 /λ1 · · · [(w(L)

1 /λ1)
2 − 1]/

√
2 · · · [(w(L)

J−1/λJ−1)
2 − 1][(w

(L)
J /λJ)

2 − 1]/2


L×(2J2+1)

, (S-1.44)

provided that the matrix WTW is invertible. Note that calculation of α̂αα requires the same number L of

system integrations as Monte Carlo estimation by (S-1.42).

It is not difficult to see from (S-1.43) that, if α̂ααMC is the Monte Carlo estimate of ρ̂0 and of the parameters α,

given by [recall (S-1.10)]

ρ̂0 = ρ0 = E[R(WWW )] ≃ 1

L

L∑
l=1

R(www(l)),

and (S-1.42), respectively, then

α̂ααMC =
1

L
WTρρρ =

1

L
WTW α̂αα .

Moreover,

lim
L→∞

1

L
WTW = I, (S-1.45)

where I is the identity matrix, by virtue of the biorthonormality conditions given by (S-1.32) and the fact

that the Monte Carlo estimate
∑L

l=1 f(x
(l))/L converges to the integral

∫∞
−∞ f(x)π(x)dx, as L→ ∞,

provided that x(l), l = 1, 2, . . . , L, are samples independently drawn from the probability density function
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π(x). As a consequence, the Monte Carlo estimate α̂ααMC and the regression estimate α̂αα are identical in the

limit as the number of Monte Carlo samples grows to infinity. Since ααα is obtained by minimizing the

least-squares error between R and R̂, we expect that the regression estimate ααα of the parameters α will be

more preferable than the Monte Carlo estimate α̂ααMC, in the sense that, for a relatively small number of

Monte Carlo samples, ααα may produce a better fit R̂ of the response function R than the one produced

by α̂ααMC. Finally, note from (S-1.45) that, for a sufficiently large number of Monte Carlo samples, WTW is

approximately equal to the identity matrix multiplied by L, which effectively reduces the risk of singularity

when evaluating the inverse matrix (WTW)−1 in (S-1.43). Therefore, if WTW turns out to be singular for

a chosen value of L, the user needs to increase L until a nonsingular matrix WTW is obtained.
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In this document, we list the biochemical reactions associated with the MAPK signaling cascade model we

consider in the Main text and provide nominal values for the normalized reaction rate constants (measured

in s−1) and the initial molecular concentrations (measured in molecules/cell). We depict this model

in Figure 1 of the Main text. We have adopted the data from Schoeberl et al. [1], with a few rate constant

values updated from the “JWS Online Cellular Systems Modeling” web site (http://jjj.biochem.sun.ac.za).

The first reaction in the model depicted in Figure 1 of the Main text compensates for Ras-GTP synthesis

which, in reality, is accomplished by a complex epidermal growth factor (EGF)-induced signalling

pathway [1]. We have set the reaction rate constant of Ras-GTP synthesis equal to 3s−1. This value results

in an ERK-PP concentration profile that is similar to the one reported by Schoeberl et al. [1], with 50ng/ml

EGF.
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Reactions

No. Reaction Rate Constant (s−1)

1 ∅ → Ras-GTP κ1 = 3
Ras-GTP → ∅ κ2 = 0

2 Ras-GTP + Raf → Raf-Ras-GTP κ3 = 1.6605× 10−6

Raf-Ras-GTP → Raf + Ras-GTP κ4 = 5.3× 10−3

3 Raf-Ras-GTP → Raf* + Ras-GTP* κ5 = 1
Raf* + Ras-GTP* → Raf-Ras-GTP κ6 = 1.1624× 10−6

4 Raf* + Pho1 → Raf*-Pho1 κ7 = 1.1790× 10−4

Raf*-Pho1 → Raf* + Pho1 κ8 = 0.2
5 Raf*-Pho1 → Raf + Pho1 κ9 = 1

Raf + Pho1 → Raf*-Pho1 κ10 = 0
6 MEK + Raf* → MEK-Raf* κ11 = 1.9428× 10−5

MEK-Raf* → MEK + Raf* κ12 = 3.3× 10−2

7 MEK-Raf* → MEK-P + Raf* κ13 = 3.5
MEK-P + Raf* → MEK-Raf* κ14 = 0

8 MEK-P + Raf* → MEK-P-Raf* κ15 = 1.9428× 10−5

MEK-P-Raf* → MEK-P + Raf* κ16 = 3.3× 10−2

9 MEK-P-Raf* → MEK-PP + Raf* κ17 = 2.9
MEK-PP + Raf* → MEK-P-Raf* κ18 = 0

10 MEK-PP + Pho2 → MEK-PP-Pho2 κ19 = 2.3746× 10−5

MEK-PP-Pho2 → MEK-PP + Pho2 κ20 = 0.8
11 MEK-PP-Pho2 → MEK-P + Pho2 κ21 = 5.8× 10−2

MEK-P + Pho2 → MEK-PP-Pho2 κ22 = 0
12 MEK-P + Pho2 → MEK-P-Pho2 κ23 = 4.4835× 10−7

MEK-P-Pho2 → MEK-P + Pho2 κ24 = 0.5
13 MEK-P-Pho2 → MEK + Pho2 κ25 = 5.8× 10−2

MEK + Pho2 → MEK-P-Pho2 κ26 = 0
14 ERK + MEK-PP → ERK-MEK-PP κ27 = 8.8673× 10−5

ERK-MEK-PP → ERK + MEK-PP κ28 = 1.833× 10−2

15 ERK-MEK-PP → ERK-P + MEK-PP κ29 = 16
ERK-P + MEK-PP → ERK-MEK-PP κ30 = 0

16 ERK-P + MEK-PP → ERK-P-MEK-PP κ31 = 8.8673× 10−5

ERK-P-MEK-PP → ERK-P + MEK-PP κ32 = 1.833× 10−2

17 ERK-P-MEK-PP → ERK-PP + MEK-PP κ33 = 5.7
ERK-PP + MEK-PP → ERK-P-MEK-PP κ34 = 0

18 ERK-PP + Pho3 → ERK-PP-Pho3 κ35 = 2.3414× 10−5

ERK-PP-Pho3 → ERK-PP + Pho3 κ36 = 0.6
19 ERK-PP-Pho3 → ERK-P + Pho3 κ37 = 0.246

ERK-P + Pho3 → ERK-PP-Pho3 κ38 = 0
20 ERK-P + Pho3 → ERK-P-Pho3 κ39 = 8.3027× 10−6

ERK-P-Pho3 → ERK-P + Pho3 κ40 = 0.5
21 ERK + Pho3 → ERK-P-Pho3 κ41 = 0

ERK-P-Pho3 → ERK + Pho3 κ42 = 0.246
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Initial Concentrations

No. species molecules/cell

1 Ras-GTP 7.20× 104

2 Raf 4.00× 104

3 Raf-Ras-GTP 0
4 Raf* 0
5 Pho1 4.00× 104

6 Raf*-Pho1 0
7 MEK 2.10× 108

8 MEK-Raf* 0
9 MEK-P 0
10 MEK-P-Raf* 0
11 MEK-PP 0
12 Pho2 4.00× 104

13 MEK-PP-Pho2 0
14 MEK-P-Pho2 0
15 ERK 2.21× 107

16 ERK-MEK-PP 0
17 ERK-P 0
18 ERK-P-MEK-PP 0
19 ERK-PP 0
20 Pho3 1.00× 107

21 ERK-PP-Pho3 0
22 ERK-P-Pho3 0
23 Ras-GTP* 0
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In this document, we provide the SOSA-based sensitivity analysis results for the three response

characteristics (duration, integrated response, and strength) of ERK-PP activity in the MAPK signaling

cascade obtained by the five techniques (MC, DA, PA, GHI, and OHA) considered in the Main text and for

four fluctuation levels (λ = 0.1, 0.2, 0.3, 0.4) in the values of the standard chemical potentials associated

with the molecular species. The results are given in percentages and have been truncated to the nearest

integer. Only results that correspond to SESI or JESI values obtained by MC that are at least 5% are shown.

Bold species numbers indicate SESI or JESI values that are at least 10%. According to our discussion in

the Main text, these species are classified by the variance-based sensitivity analysis method to be singularly

influential (if the SESI value is at least 10% but the JESI value is below 10%), jointly influential (if the

JESI value is at least 10% but the SESI value is below 10%), and singularly/jointly influential (if both the

SESI and JESI values are at least 10%). The remaining molecular species are deemed to be noninfluential.
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Table S-3.1. SOSA-based sensitivity analysis results for the duration of ERK-PP activity.

SESI - DURATION (λ = 0.1)(λ = 0.1)(λ = 0.1) JESI - DURATION (λ = 0.1)(λ = 0.1)(λ = 0.1)

Species MC DA PA GHI OHA Species MC DA PA GHI OHA
5 38 37 38 34 38 5 1 0 0 0 0
7 23 25 23 25 23 7 0 0 0 0 0

14 17 17 19 19 18 14 0 0 0 0 0

SESI - DURATION (λ = 0.2)(λ = 0.2)(λ = 0.2) JESI - DURATION (λ = 0.2)(λ = 0.2)(λ = 0.2)

Species MC DA PA GHI OHA Species MC DA PA GHI OHA
5 36 35 36 37 37 5 4 1 1 1 1
7 20 24 22 20 22 7 2 1 1 1 1

14 15 16 17 19 16 14 1 0 0 0 0

SESI - DURATION (λ = 0.3)(λ = 0.3)(λ = 0.3) JESI - DURATION (λ = 0.3)(λ = 0.3)(λ = 0.3)

Species MC DA PA GHI OHA Species MC DA PA GHI OHA
5 36 33 36 33 36 5 3 3 2 3 2
7 20 23 20 21 21 7 1 1 1 1 1

14 15 16 14 14 15 14 1 1 1 1 1
18 5 4 5 6 5 18 1 2 2 2 1

SESI - DURATION (λ = 0.4)(λ = 0.4)(λ = 0.4) JESI - DURATION (λ = 0.4)(λ = 0.4)(λ = 0.4)

Species MC DA PA GHI OHA Species MC DA PA GHI OHA
5 34 31 27 32 33 5 5 4 4 5 5
7 19 21 20 18 19 7 3 2 2 2 3
12 5 4 5 4 6 12 1 1 0 0 1
14 15 15 13 11 15 14 1 1 1 1 1
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Table S-3.2. SOSA-based sensitivity analysis results for the integrated response of ERK-PP activity.

SESI - I-RESPONSE (λ = 0.1)(λ = 0.1)(λ = 0.1) JESI - I-RESPONSE (λ = 0.1)(λ = 0.1)(λ = 0.1)

Species MC DA PA GHI OHA Species MC DA PA GHI OHA
5 46 47 47 47 47 5 1 0 0 0 0
7 23 23 23 23 23 7 0 0 0 0 0
9 9 9 9 9 9 9 1 0 0 0 0

14 11 12 12 12 12 14 0 0 0 0 0

SESI - I-RESPONSE (λ = 0.2)(λ = 0.2)(λ = 0.2) JESI - I-RESPONSE (λ = 0.2)(λ = 0.2)(λ = 0.2)

Species MC DA PA GHI OHA Species MC DA PA GHI OHA
5 47 46 50 49 46 5 7 1 2 5 5
7 19 23 21 20 21 7 4 0 1 2 2
9 8 9 9 8 9 9 3 0 1 2 3
14 8 12 9 9 9 14 1 0 0 0 0

SESI - I-RESPONSE (λ = 0.3)(λ = 0.3)(λ = 0.3) JESI - I-RESPONSE (λ = 0.3)(λ = 0.3)(λ = 0.3)

Species MC DA PA GHI OHA Species MC DA PA GHI OHA
5 47 45 50 52 44 5 14 2 16 14 15
7 16 23 15 15 16 7 7 1 6 5 6
9 9 9 9 8 9 9 5 1 6 5 7

SESI - I-RESPONSE (λ = 0.4)(λ = 0.4)(λ = 0.4) JESI - I-RESPONSE (λ = 0.4)(λ = 0.4)(λ = 0.4)

Species MC DA PA GHI OHA Species MC DA PA GHI OHA
5 45 44 45 48 46 5 16 3 22 17 15
7 15 22 13 14 15 7 8 1 8 7 7
9 9 8 9 10 9 9 7 1 8 7 7
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Table S-3.3. SOSA-based sensitivity analysis results for the strength of ERK-PP activity.

SESI - STRENGTH (λ = 0.1)(λ = 0.1)(λ = 0.1) JESI - STRENGTH (λ = 0.1)(λ = 0.1)(λ = 0.1)

Species MC DA PA GHI OHA Species MC DA PA GHI OHA
5 40 41 40 38 41 5 1 0 0 0 0
7 13 11 14 8 13 7 1 0 0 0 0
9 26 26 27 29 26 9 1 0 0 0 0
17 5 6 5 5 6 17 0 0 0 0 0
21 6 6 5 8 6 21 0 0 0 0 0

SESI - STRENGTH (λ = 0.2)(λ = 0.2)(λ = 0.2) JESI - STRENGTH (λ = 0.2)(λ = 0.2)(λ = 0.2)

Species MC DA PA GHI OHA Species MC DA PA GHI OHA
5 40 38 47 46 35 5 18 2 10 18 17
7 10 10 11 11 10 7 9 1 4 6 7
9 15 24 17 16 17 9 9 1 4 6 9

SESI - STRENGTH (λ = 0.3)(λ = 0.3)(λ = 0.3) JESI - STRENGTH (λ = 0.3)(λ = 0.3)(λ = 0.3)

Species MC DA PA GHI OHA Species MC DA PA GHI OHA
5 41 35 44 49 34 5 27 3 30 28 29
7 8 9 7 7 8 7 15 1 11 9 13
9 10 22 10 9 10 9 9 1 10 9 9
22 1 0 0 0 1 22 6 5 4 4 7

SESI - STRENGTH (λ = 0.4)(λ = 0.4)(λ = 0.4) JESI - STRENGTH (λ = 0.4)(λ = 0.4)(λ = 0.4)

Species MC DA PA GHI OHA Species MC DA PA GHI OHA
5 40 31 40 41 39 5 26 5 35 29 26
7 8 8 7 8 8 7 13 2 12 11 13
9 9 20 8 10 9 9 11 2 11 10 11
22 2 0 1 1 2 22 6 8 5 5 7
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