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Abstract

Subspace clustering refers to the task of finding a multi-subspace representation that best fits
a collection of points taken from a high-dimensional space. This paper introduces an algorithm
inspired by sparse subspace clustering (SSC) [18] to cluster noisy data, and develops some
novel theory demonstrating its correctness. In particular, the theory uses ideas from geometric
functional analysis to show that the algorithm can accurately recover the underlying subspaces
under minimal requirements on their orientation, and on the number of samples per subspace.
Synthetic as well as real data experiments complement our theoretical study, illustrating our
approach and demonstrating its effectiveness.

Keywords. Subspace clustering, spectral clustering, LASSO, Dantzig selector, `1 minimiza-
tion, true and false discoveries, geometric functional analysis, nonasymptotic random matrix theory.

1 Introduction

1.1 Motivation

In many problems across science and engineering, a fundamental step is to find a lower dimensional
subspace which best fits a collection of points taken from a high-dimensional space; this is classically
achieved via Principal Component Analysis (PCA). Such a procedure makes perfect sense as long
as the data points are distributed around a lower dimensional subspace, or expressed differently, as
long as the data matrix with points as column vectors has approximately low rank. A more general
model might sometimes be useful when the data come from a mixture model in which points do not
lie around a single lower-dimensional subspace but rather around a union of subspaces. For instance,
consider an experiment in which gene expression data are gathered on many cancer cell lines with
unknown subsets belonging to different tumor types. One can imagine that the expressions from
each cancer type may span a distinct lower dimensional subspace. If the cancer labels were known
in advance, one would apply PCA separately to each group but we here consider the case where
the observations are unlabeled. Finding the components of the mixture and assigning each point to
a fitted subspace is called subspace clustering. Even when the mixture model holds, the full data
matrix may not have low rank at all, a situation which is very different from that where PCA is
applicable.
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In recent years, numerous algorithms have been developed for subspace clustering and applied to
various problems in computer vision/machine learning [47] and data mining [37]. At the time of this
writing, subspace clustering techniques are certainly gaining momentum as they begin to be used in
fields as diverse as identification and classification of diseases [33], network topology inference [20],
security and privacy in recommender systems [51], system identification [3], hyper-spectral imaging
[17], identification of switched linear systems [31,35], and music analysis [25] to name just a few. In
spite of all these interesting works, tractable subspace clustering algorithms either lack a theoretical
justification, or are guaranteed to work under restrictive conditions rarely met in practice. (We
note that although novel and often efficient clustering techniques come about all the time, there
seems to be very little theory about clustering in general.) Furthermore, proposed algorithms are
not always computationally tractable. Thus, one important issue is whether tractable algorithms
that can (provably) work in less than ideal situations—that is, under severe noise conditions and
relatively few samples per subspace—exist.

Elhamifar and Vidal [18] have introduced an approach to subspace clustering, which relies on
ideas from the sparsity and compressed sensing literature, please see also the longer version [19]
which was submitted while this manuscript was under preparation. Sparse subspace clustering
(SSC) [18, 19] is computationally efficient since it amounts to solving a sequence of `1 minimiza-
tion problems and is, therefore, tractable. Now the methodology in [18] is mainly geared towards
noiseless situations where the points lie exactly on lower dimensional planes, and theoretical per-
formance guarantees in such circumstances are given under restrictive assumptions. Continuing on
this line of work, [41] showed that good theoretical performance could be achieved under broad
circumstances. However, the model supporting the theory in [41] is still noise free.

This paper considers the subspace clustering problem in the presence of noise. We introduce
a tractable clustering algorithm, which is a natural extension of SSC, and develop rigorous theory
about its performance. In a nutshell, we propose a statistical mixture model to represent data
lying near a union of subspaces, and prove that in this model, the algorithm is effective as long as
there are sufficiently many samples from each subspace and that the subspaces are not too close to
each other. In this theory, the performance of the algorithm is explained in terms of interpretable
and intuitive parameters such as (1) the values of the principal angles between subspaces, (2) the
number of points per subspace, (3) the noise level and so on. In terms of these parameters, our
theoretical results indicate that the performance of the algorithm is in some sense near the limit of
what can be achieved by any algorithm, regardless of tractability.

1.2 Problem formulation and model

We assume we are given data points lying near a union of unknown linear subspaces; there are
L subspaces S1, S2, . . . , SL of Rn of dimensions d1, d2, . . . , dL. These together with their number
are completely unknown to us. We are given a point set Y ⊂ Rn of cardinality N , which may be
partitioned as Y = Y1 ∪ Y2 ∪ . . . ∪ YL; for each ` ∈ {1, . . . , L}, Y` is a collection of N` vectors that
are ‘close’ to subspace S`. The goal is to approximate the underlying subspaces using the point set
Y. One approach is first to assign each data point to a cluster, and then estimate the subspaces
representing each of the groups with PCA.

Our statistical model assumes that each point y ∈ Y is of the form

y = x + z, (1.1)

where x belongs to one of the subspaces and z is an independent stochastic noise term. We

2



suppose that the inverse signal-to-noise ratio (SNR) defined as E ∥z∥2
2/∥x∥2

`2
is bounded above.

Each observation is thus the superposition of a noiseless sample taken from one of the subspaces
and of a stochastic perturbation whose Euclidean norm is about σ times the signal strength so that
E ∥z∥2

`2
= σ2∥x∥2

`2
. All the way through, we assume that

σ < σ⋆, and max
`
d` < c0

n

(logN)2
, (1.2)

where σ⋆ < 1 and c0 are fixed numerical constants. The second assumption is here to avoid unnec-
essarily complicated expressions later on. While more substantial, the first is not too restrictive
since it just says that the signal x and the noise z may have about the same magnitude. (With
an arbitrary perturbation of Euclidean norm equal to two, one can move from any point x on the
unit sphere to just about any other point.)

This is arguably the simplest model providing a good starting point for a theoretical investiga-
tion. For the noiseless samples x, we consider the intuitive semi-random model introduced in [41],
which assumes that the subspaces are fixed with points distributed uniformly at random on each
subspace. One can think of this as a mixture model where each component in the mixture is a
lower dimensional subspace. (One can extend the methods to affine subspace clustering as briefly
explained in Section 2.)

1.3 What makes clustering hard?

Two important parameters fundamentally affect the performance of subspace clustering algorithms:
(1) the distance between subspaces and (2) the number of samples we have on each subspace.

1.3.1 Distance/affinity between subspaces

Intuitively, any subspace clustering algorithm operating on noisy data will have difficulty segmenting
observations when the subspaces are close to each other. We of course need to quantify closeness,
and the following definition captures a notion of distance or similarity/affinity between subspaces.

Definition 1.1 The principal angles θ(1), . . . , θ(d∧d
′) between two subspaces S and S′ of dimensions

d and d′, are recursively defined by

cos(θ(i)) = max
u∈S

max
v∈S′

uTv

∥u∥`2 ∥v∥`2
∶= uTi vi

∥ui∥`2 ∥vi∥`2

with the orthogonality constraints uTuj = 0, vTvj = 0, j = 1, . . . , i − 1.

Alternatively, if the columns of U and V are orthobases for S and S′, then the cosine of the
principal angles are the singular values of UTV .

Definition 1.2 The normalized affinity between two subspaces is defined by

aff(S,S′) =
√

cos2 θ(1) + . . . + cos2 θ(d∧d′)

d ∧ d′ .
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The affinity is a measure of correlation between subspaces. It is low when the principal angles are
nearly right angles (it vanishes when the two subspaces are orthogonal) and high when the principal
angles are small (it takes on its maximum value equal to one when one subspace is contained in the
other). Hence, when the affinity is high, clustering is hard whereas it becomes easier as the affinity
decreases. Ideally, we would like our algorithm to be able to handle higher affinity values—as close
as possible to the maximum possible value.

There are other ways of measuring the affinity between subspaces; for instance, by taking the
cosine of the first principal angle. We prefer the definition above as it offers the flexibility of allowing
for some principal angles to be small or zero. As an example, suppose we have a pair of subspaces
with a nontrivial intersection. Then ∣ cos θ(1)∣ = 1 regardless of the dimension of the intersection
whereas the value of the affinity would depend upon this dimension.

1.3.2 Sampling density

Another important factor affecting the performance of subspace clustering algorithms has to do
with the distribution of points on each subspace. In the model we study here, this essentially
reduces to the number of points we have on each subspace.1

Definition 1.3 The sampling density ρ of a subspace is defined as the number of samples on that
subspace per dimension. In our multi-subspace model the density of S` is, therefore, ρ` = N`/d`.2

With noisy data, one expects the clustering problem to become easier as the sampling density
increases. Obviously, if the sampling density of a subspace S is smaller than one, then any algorithm
will fail in identifying that subspace correctly as there are not sufficiently many points to identify
all the directions spanned by S. Hence, we would like a clustering algorithm to be able to operate
at values of the sampling density as low as possible, i.e. as close to one as possible.

2 Robust subspace clustering: methods and concepts

This section introduces our methodology through heuristic arguments confirmed by numerical ex-
periments. Section 3 presents theoretical guarantees showing that the entire approach is math-
ematically valid. From now on, we arrange the N observed data points as columns of a matrix
Y = [y1, . . . ,yN ] ∈ Rn×N . With obvious notation, Y =X +Z.

2.1 The normalized model

In practice, one may want to normalize the columns of the data matrix so that for all i, ∥yi∥`2 = 1.

Since with our SNR assumption, we have ∥y∥`2 ≈ ∥x∥`2
√

1 + σ2 before normalization, then after
normalization:

y ≈ 1√
1 + σ2

(x + z),

where x is unit-normed, and z has i.i.d. random Gaussian entries with variance σ2/n.

1In a general deterministic model where the points have arbitrary orientations on each subspace, we can imagine that
the clustering problem becomes harder as the points align along an even lower dimensional structure.

2Throughout, we take ρ` ≤ ed`/2. Our results hold for all other values by substituting ρ` with ρ` ∧ ed`/2 in all the
expressions.
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For ease of presentation, we work—in this section and in the proofs—with a model y = x + z
in which ∥x∥`2 = 1 instead of ∥y∥`2 = 1 (the numerical Section 6 is the exception). The normalized
model with ∥x∥`2 = 1 and z i.i.d. N (0, σ2/n) is nearly the same as before. In particular, all of our
methods and theoretical results in Section 3 hold with both models in which either ∥x∥`2 = 1 or
∥y∥`2 = 1.

2.2 The SSC scheme

We describe the approach in [18], which follows a three-step procedure:

I Compute an affinity matrix encoding similarities between sample pairs as to construct a
weighted graph W .

II Construct clusters by applying spectral clustering techniques (e.g. [34]) to W .

III Apply PCA to each of the clusters.

The novelty in [18] concerns step I, the construction of the affinity matrix. This work is mainly
concerned with the noiseless situation in which Y =X and the idea is then to express each column
xi of X as a sparse linear combination of all the other columns. The reason is that under any
reasonable condition, one expects that the sparsest representation of xi would only select vectors
from the subspace in which xi happens to lie in. Applying the `1 norm as the convex surrogate of
sparsity leads to the following sequence of optimization problems

min
β∈RN

∥β∥`1 subject to xi =Xβ and βi = 0. (2.1)

Here, βi denotes the ith element of β and the constraint βi = 0 removes the trivial solution that
decomposes a point as a linear combination of itself. Collecting the outcome of these N optimization
problems as columns of a matrix B, [18] sets the similarity matrix to be W = ∣B∣ + ∣B∣T .3 (This
algorithm clusters linear subspaces but can also cluster affine subspaces by adding the constraint
βT1 = 1 to (2.1).)

The issue here is that we only have access to the noisy data Y : this makes the problem
challenging, as unlike conventional sparse recovery problems where only the response vector xi is
corrupted, here both the covariates (columns of X) and the response vector are corrupted. In
particular, it may not be advisable to use (2.1) with yi and Y in place of xi and X as, strictly
speaking, sparse representations no longer exist. Observe that the expression xi = Xβ can be
rewritten as yi = Y β + (zi −Zβ). Viewing (zi −Zβ) as a perturbation, it is natural to use ideas
from sparse regression to obtain an estimate β̂, which is then used to construct the similarity
matrix. In this paper, we follow the same three-step procedure and shall focus on the first step in
Algorithm 1; that is, on the construction of reliable similarity measures between pairs of points.
Since we have noisy data, we shall not use (2.1) here. Also, we add denoising to Step III, check the
output of Algorithm 1.

2.3 Performance metrics for similarity measures

Given the general structure of the method, we are interested in sparse regression techniques, which
tend to select points in the same clusters (share the same underlying subspace) over those that do

3We use the terminology similarity graph or matrix instead of affinity matrix as not to overload the word ‘affinity’.
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Algorithm 1 Robust SSC procedure

Input: A data set Y arranged as columns of Y ∈ Rn×N .
1. For each i ∈ {1, . . . ,N}, produce a sparse coefficient sequence β̂ by regressing the ith vector
yi onto the other columns of Y . Collect these as columns of a matrix B.
2. Form the similarity graph G with nodes representing the N data points and edge weights
given by W = ∣B∣ + ∣B∣T .
3. Sort the eigenvalues δ1 ≥ δ2 ≥ . . . ≥ δN of the normalized Laplacian of G in descending order,
and set

L̂ = N − arg max
i=1,...,N−1

(δi − δi+1).

4. Apply a spectral clustering technique to the similarity graph using L̂ as the estimated number
of clusters to obtain the partition Y1, . . . ,YL̂.
5. Use PCA to find the best subspace fits ({S`}L1 ) to each of the partitions ({Y`}L1 ) and denoise
Y as to obtain clean data points X̂.

Output: Subspaces {S`}L1 and cleaned data points X̂.

not share this property. Expressed differently, the hope is that whenever Bij ≠ 0, yi and yj belong
to the same subspace. We introduce metrics to quantify performance.

Definition 2.1 (False discoveries) Fix i and j ∈ {1, . . . ,N} and let B be the outcome of Step
1 in Algorithm 1. Then we say that (i, j) obeying Bij ≠ 0 is a false discovery if yi and yj do not
belong to the same subspace.

Definition 2.2 (True discoveries) In the same situation, (i, j) obeying Bij ≠ 0 is a true discov-
ery if yj and yi belong to the same cluster/subspace.

When there are no false discoveries, we shall say that the subspace detection property holds. In this
case, the matrixB is block diagonal after applying a permutation which makes sure that columns in
the same subspace are contiguous. In some cases, the sparse regression method may select vectors
from other subspaces and this property will not hold. However, it might still be possible to detect
and construct reliable clusters by applying steps 2–5 in Algorithm 1.

2.4 LASSO with data-driven regularization

A natural sparse regression strategy is the LASSO:

min
β∈RN

1

2
∥yi −Y β∥2

`2
+ λ ∥β∥`1 subject to βi = 0. (2.2)

Whether such a methodology should succeed is unclear as we are not under a traditional model for
both the response yi and the covariates Y are noisy, see [38] for a discussion of sparse regression
under matrix uncertainty and what can go wrong. The main contribution of this paper is to show
that if one selects λ in a data-driven fashion, then compelling practical and theoretical performance
can be achieved.
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2.4.1 About as many true discoveries as dimension?

The nature of the problem is such that we wish to make few false discoveries (and not link too
many pairs belonging to different subspaces) and so we would like to choose λ large. At the same
time, we wish to make many true discoveries, whence a natural trade off. The reason why we need
many true discoveries is that spectral clustering needs to assign points to the same cluster when
they indeed lie near the same subspace. If the matrix B is too sparse, this will not happen.

We now introduce a principle for selecting the regularization parameter. Suppose we have
noiseless data so that Y = X, and thus solve (2.1) with equality constraints. Under our model,
assuming there are no false discoveries the optimal solution is guaranteed to have exactly d—the
dimension of the subspace the sample under study belongs to—nonzero coefficients with probability
one. That is to say, when the point lies in a d-dimensional space, we find d ‘neighbors’.

The selection rule we shall analyze in this paper is to take λ as large as possible (as to prevent
false discoveries) while making sure that the number of true discoveries is also on the order of the
dimension d, typically in the range [0.5d,0.8d]. We can say this differently. Imagine that all the
points lie in the same subspace of dimension d so that every discovery is true. Then we wish to
select λ in such a way that the number of discoveries is a significant fraction of d, the number
one would get with noiseless data. Which value of λ achieves this goal? We will see in Section
2.4.2 that the answer is around 1/

√
d. To put this in context, this means that we wish to select a

regularization parameter which depends upon the dimension d of the subspace our point belongs
to. (We are aware that the dependence on d is unusual as in sparse regression the regularization
parameter usually does not depend upon the sparsity of the solution.) In turn, this immediately
raises another question: since d is unknown, how can we proceed? In Section 2.4.4 we will see that
it is possible to guess the dimension and construct fairly reliable estimates.

2.4.2 Data-dependent regularization

We now discuss values of λ obeying the demands formulated in the previous section. Our arguments
are informal and we refer the reader to Section 3 for rigorous statements and to Section 8 for proofs.
First, it simplifies the discussion to assume that we have no noise (the noisy case assuming σ ≪ 1 is
similar). Following our earlier discussion, imagine we have a vector x ∈ Rn lying in the d-dimensional
span of the columns of an n ×N matrix X. We are interested in values of λ so that the minimizer
β̂ of the LASSO functional

K(β, λ) = 1

2
∥x −Xβ∥2

`2
+ λ ∥β∥`1

has a number of nonzero components in the range [0.5d,0.8d], say. Now let β̂eq be the solution of
the problem with equality constraints, or equivalently of the problem above with λ→ 0+. Then

1

2
∥x −Xβ̂∥2

`2
≤K(β̂, λ) ≤K(β̂eq, λ) = λ ∥β̂eq∥`1 . (2.3)

We make two observations: the first is that if β̂ has a number of nonzero components in the
range [0.5d,0.8d], then ∥x −Xβ̂∥2

`2
has to be greater than or equal to a fixed numerical constant.

The reason is that we cannot approximate to arbitrary accuracy a generic vector living in a d-
dimensional subspace as a linear combination of about d/2 elements from that subspace. The
second observation is that ∥β̂eq∥`1 is on the order of

√
d, which is a fairly intuitive scaling (we have

d coordinates, each of size about 1/
√
d). This holds with the proviso that the algorithm operates
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Figure 1: Average number of true discoveries normalized by subspace dimension for
values of λ in an interval including the heuristic λo = 1/

√
d. (a) σ = 0.25. (b) σ = 0.5.

correctly in the noiseless setting and does not select columns from other subspaces. Then (2.3)
implies that λ has to scale at least like 1/

√
d. On the other hand, β̂ = 0 if λ ≥ ∥XTx∥`∞ . Now the

informed reader knows that ∥XTx∥`∞ scales at most like
√

(logN)/d so that choosing λ around
this value yields no discovery (one can refine this argument to show that λ cannot be higher than a
constant times 1/

√
d as we would otherwise have a solution that is too sparse). Hence, λ is around

1/
√
d.
It might be possible to compute a precise relationship between λ and the expected number of

true discoveries in an asymptotic regime in which the number of points and the dimension of the
subspace both increase to infinity in a fixed ratio by adapting ideas from [5, 6]. We will not do so
here as this is beyond the scope of this paper. Rather, we investigate this relationship by means of
a numerical study.

Here, we fix a single subspace in R
n with n = 2,000. We use a sampling density equal to

ρ = 5 and vary the dimension d ∈ {10,20,50,100,150,200} of the subspace as well as the noise
level σ ∈ {0.25,0.5}. For each data point, we solve (2.2) for different values of λ around the
heuristic λo = 1/

√
d, namely, λ ∈ [0.1λo,2λo]. In our experiments, we declare a discovery if an

entry in the optimal solution exceeds 10−3. Figures 1a and 1b show the number of discoveries per
subspace dimension (the number of discoveries divided by d). One can clearly see that the curves
corresponding to various subspace dimensions stack up on top of each other, thereby confirming
that a value of λ on the order of 1/

√
d yields a fixed fraction of true discoveries. Further inspection

also reveals that the fraction of true discoveries is around 50% near λ = λo, and around 75% near
λ = λo/2.

2.4.3 The false-true discovery trade off

We now show empirically that in our model choosing λ around 1/
√
d typically yields very few false

discoveries as well as many true discoveries; this holds with the proviso that the subspaces are of
course not very close to each other.

In this simulation, 22 subspaces of varying dimensions in R
n with n = 2,000 have been in-

dependently selected uniformly at random; there are 5, 4, 3, 4, 4, and 2 subspaces of respective
dimensions 200, 150, 100, 50, 20 and 10. This is a challenging regime since the sum of the subspace
dimensions equals 2,200 and exceeds the ambient dimension (the clean data matrix X has full
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Figure 2: Performance of LASSO for values of λ in an interval including the heuristic
λo = 1/

√
d. (a) Average number of false discoveries normalized by (n − d) (FPR)

on all m sampled data points). (b) FPR for different subspace dimensions. Each
curve represents the average FPR over those samples originating from subspaces of
the same dimension. (c) Average number of true discoveries per dimension for various
dimensions (TPR). (d) TPR vs. FPR (ROC curve). The point corresponding to λ = λo
is marked as a red dot.

rank). We use a sampling density equal to ρ = 5 for each subspace and set the noise level to σ = 0.3.
To evaluate the performance of the optimization problem (2.2), we proceed by selecting a subset of
columns as follows: for each dimension, we take 100 cases at random belonging to subspaces of that
dimension. Hence, the total number of test cases is m = 600 so that we only solve m optimization

problems (2.2) out of the total N possible cases. Below, β(i) is the solution to (2.2) and β
(i)
S its

restriction to columns with indices in the same subspace. Hence, a nonvanishing entry in β
(i)
S is

a true discovery and, likewise, a nonvanishing entry in β
(i)
Sc is false. For each data point we sweep

the tuning parameter λ in (2.2) around the heuristic λo = 1/
√
d and work with λ ∈ [0.05λo,2.5λo].

In our experiments, a discovery is a value obeying ∣Bij ∣ > 10−3.

In analogy with the signal detection literature we view the empirical averages of ∥β(i)Sc ∥`0/(n−d)
and ∥β(i)S ∥`0/d as False Positive Rate (FPR) and True Positive Rate (TPR). On the one hand,
Figures 2a and 2b show that for values around λ = λo, the FPR is zero (so there are no false
discoveries). On the other hand, Figure 2c shows that the TPR curves corresponding to different
dimensions are very close to each other and resemble those in Figure 1 in which all the points
belong to the same cluster with no opportunity of making a false discovery. Hence, taking λ near
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1/
√
d gives a performance close to what can be achieved in a noiseless situation. That is to say, we

have no false discovery and a number of true discoveries about d/2 if we choose λ = λo. Figure 2d
plots TPR versus FPR (a.k.a. the Receiver Operating Characteristic (ROC) curve) and indicates
that λ = λo (marked by a red dot) is an attractive trade-off as it provides no false discoveries and
sufficiently many true discoveries.

2.4.4 A two-step procedure

Returning to the selection of the regularization parameter, we would like to use λ on the order of
1/

√
d. However, we do not know d and proceed by substituting an estimate. In the next section,

we will see that we are able to quantify theoretically the performance of the following proposal: (1)
run a hard constrained version of the LASSO and use an estimate d̂ of dimension based on the `1
norm of the fitted coefficient sequence; (2) impute a value for λ constructed from d̂. The two-step
procedure is explained in Algorithm 2.

Algorithm 2 Two-step procedure with data-driven regularization

for i = 1, . . . ,N do
1. Solve

β⋆ = arg min
β∈RN

∥β∥`1 subject to ∥yi −Y β∥`2 ≤ τ and βi = 0. (2.4)

2. Set λ = f(∥β⋆∥`1).
3. Solve

β̂ = arg min
β∈RN

1

2
∥yi −Y β∥2

`2
+ λ ∥β∥`1 subject to βi = 0.

4. Set Bi = β̂.
end for

To understand the rationale behind this, imagine we have noiseless data—i. e. Y =X—and are
solving (2.1), which simply is our first step (2.4) with the proviso that τ = 0. When there are no
false discoveries, one can show that the `1 norm of β⋆ is roughly of size

√
d as shown in Lemma

8.2 from Section 8. This suggests using a multiple of ∥β⋆∥`1 as a proxy for
√
d. To drive this point

home, take a look at Figure 3a which solves (2.4) with the same data as in the previous example
and τ = 2σ. The plot reveals that the values of ∥β⋆∥`1 fluctuate around

√
d. This is shown more

clearly in Figure 3b, which shows that ∥β⋆∥`1 is concentrated around 1
4

√
d with, as expected, higher

volatility at lower values of dimension.
Under suitable assumptions, we shall see in Section 3 that with noisy data, there are simple

rules for selecting τ that guarantee, with high probability, that there are no false discoveries. To
be concrete, one can take τ = 2σ and f(t) ∝ t−1. Returning to our running example, we have
∥β⋆∥`1 ≈ 1

4

√
d. Plugging this into λ = 1/

√
d suggests taking f(t) ≈ 0.25t−1. The plots in Figure

4 demonstrate that this is indeed effective. Experiments in Section 6 indicate that this is a good
choice on real data as well.

The two-step procedure requires solving two LASSO problems for each data point and is useful
when there are subspaces of large dimensions (in the hundreds, say) and some others of low-
dimensions (three or four, say). In some applications such as motion segmentation in computer
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Figure 3: Optimal values of (2.4) for 600 samples using τ = 2σ. The first 100 values
correspond to points originating from subspaces of dimension d = 200, the next 100
from those of dimension d = 150, and so on through d ∈ {100,50,20,10}. (a) Value of
∥β∗∥`1 . (b) Value of ∥β∗∥`1 /

√
d.

vision, the dimensions of the subspaces are all equal and known in advance. In this case, one can
forgo the two-step procedure and simply set λ = 1/

√
d.

3 Theoretical Results

This section presents our main theoretical results concerning the performance of the two-step pro-
cedure (Algorithm 2). We make two assumptions:

• Affinity condition. We say that a subspace S` obeys the affinity condition if

max
k ∶k≠`

aff(S`, Sk) ≤ κ0/logN, (3.1)

where κ0 a fixed numerical constant.

• Sampling condition. We say that subspace S` obeys the sampling condition if

ρ` ≥ ρ⋆, (3.2)

where ρ⋆ is a fixed numerical constant.

The careful reader might argue that we should require lower affinity values as the noise level
increases. The reason why σ does not appear in (3.1) is that we assumed a bounded noise level.
For higher values of σ, the affinity condition would read as in (3.1) with a right-hand side equal to

κ = κ0

logN
− σ

√
d`

2n logN
.

3.1 Main results

From here on we use d(i) to refer to the dimension of the subspace the vector yi originates from.
N(i) and ρ(i) are used in a similar fashion for the number and density of points on this subspace.
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Figure 4: Performance of the two-step procedure using τ = 2σ and f(t) = ct−1 for
values of c around the heuristic c = 0.25. (a) False positive rate (FPR). (b) FPR for
various subspace dimensions. (c) True positive rate (TPR). (d) TPR vs. FPR.
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Theorem 3.1 (No false discoveries) Assume that the subspace attached to the ith column obeys
the affinity and sampling conditions and that the noise level σ is bounded as in (1.2), where σ⋆ is
a sufficiently small numerical constant. In Algorithm 2, take τ = 2σ and f(t) obeying f(t) ≥
0.707σt−1. Then with high probability,4 there is no false discovery in the ith column of B.

Theorem 3.2 (Many true discoveries) Consider the same setup as in Theorem 3.1 with f also
obeying f(t) ≤ ct−1 for some numerical constant c. Then with high probability,5 there are at least

c0
d(i)

log2(ρ(i))

true discoveries in the ith column (c0 is a positive numerical constant).

The above results indicate that the algorithm works correctly in fairly broad conditions. To give
an example, assume two subspaces of dimension d overlap in a smaller subspace of dimension s but
are orthogonal to each other in the remaining directions (equivalently, the first s principal angles
are 0 and the rest are π/2). In this case, the affinity between the two subspaces is equal to

√
s/d

and (3.1) allows s to grow almost linearly in the dimension of the subspaces. Hence, subspaces can
have intersections of large dimensions. In contrast, previous work with perfectly noiseless data [18]
would impose to have a first principal angle obeying ∣ cos θ(1)∣ ≤ 1/

√
d so that the subspaces are

practically orthogonal to each other. Whereas our result shows that we can have an average of the
cosines practically constant, the condition in [18] asks that the maximum cosine be very small.

In the noiseless case, [41] showed that when the sampling condition holds and

max
k ∶k≠`

aff(S`, Sk) ≤ κ0

√
log ρ`

logN
,

(albeit with slightly different values κ0 and ρ⋆), then applying the noiseless version (2.1) of the
algorithm also yields no false discoveries. Hence, with the proviso that the noise level is not too
large, conditions under which the algorithm is provably correct are essentially the same.

Earlier, we argued that we would like to have, if possible, an algorithm provably working at
(1) high values of the affinity parameters and (2) low values of the sampling density as these are
the conditions under which the clustering problem is challenging. (Another property on the wish
list is the ability to operate properly with high noise or low SNR and this is discussed next.) In
this context, since the affinity is at most one, our results state that the affinity can be within a log
factor from this maximum possible value. The number of samples needed per subspace is minimal
as well. That is, as long as the density of points on each subspace is larger than a constant ρ > ρ⋆,
the algorithm succeeds.

We would like to have a procedure capable of making no false discoveries and many true discov-
eries at the same time. Now in the noiseless case, whenever there are no false discoveries, the ith
column contains exactly d(i) true discoveries. Theorem 3.2 states that as long as the noise level σ is
less than a fixed numerical constant, the number of true discoveries is roughly on the same order as
in the noiseless case. In other words, a noise level of this magnitude does not fundamentally affect

4probability at least 1 − 2e−γ1n − 6e−γ2d(i) − e−
√
N(i)d(i) −N(i)−(2d(i)−1) − 12

N
, for fixed numerical constants γ1, γ2.

5probability at least 1 − 2e−γ1n − 6e−γ2d(i) − e−
√
N(i)d(i) −N(i)−(2d(i)−1) − 10

N
− 4
N(i)

, for fixed numerical constants γ1,
γ2.
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Figure 5: Histograms of the true discovery values from the two step procedure with
c = 0.25 (multiplied by

√
d). (a) d = 200. (b) d = 20.

the performance of the algorithm. This holds even when there is great variation in the dimensions
of the subspaces, and is possible because λ is appropriately tuned in an adaptive fashion.

The number of true discoveries is shown to scale at least like dimension over the squared log of
the density (we conjecture that it should just be the log of the density). This may suggest that the
number of true discoveries decreases (albeit very slowly) as the sampling density increases. This
behavior is to be expected: when the sampling density becomes exponentially large (in terms of
the dimension of the subspace) the number of true discoveries become small since we need fewer
columns to synthesize a point.

Theorem 3.2 establishes that there are many true discoveries. This would not be useful for
clustering purposes if there were only a handful of very large true discoveries and all the others of
negligible magnitude. The reason is that the similarity matrix W would then be close to a sparse
matrix and we would run the risk of splitting true clusters. This is not what happens and our proofs
can show this although we do not do this in this paper for lack of space. Rather, we demonstrate
this property empirically. On our running example, Figures 5a and 5b show that the histograms of
appropriately normalized true discovery values resemble a bell-shaped curve.

Finally, we would like to comment on the fact that our main results hold when λ belongs to a
fairly broad range of values. First, when all the subspaces have small dimensions, one can choose
the same value of λ for all the data points since 1/

√
d is essentially constant. Hence, when we know

a priori that we are in such a situation, there may be no need for the two step procedure. (We would
still recommend the conservative two-step procedure because of its superior empirical performance
on real data.) Second, the proofs also reveal that if we have knowledge of the dimension of the
largest subspace dmax, the first theorem holds with a fixed value of λ proportional to σ/

√
dmax.

Third, when the subspaces themselves are drawn at random, the first theorem holds with a fixed
value of λ proportional to σ(logN)/√n. (Both these statements follow by plugging these values
of λ in the proofs of Section 8 and we omit the calclulations.) We merely mention these variants
to give a sense of what our theorems can also give. As explained earlier, we recommend the more
conservative two-step procedure with the proxy for 1/

√
d. The reason is that using a higher value of

λ allows for a larger value of κ0, which says that the subspaces can be even closer. In other words,
we can function in a more challenging regime. To drive this point home, consider the noiseless
problem. When the subspaces are close, the equality constrained `1 problem may yield some false
discoveries. However, if we use the LASSO version—even though the data is noiseless—we may
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end up with no false discoveries while maintaining sufficiently many true discoveries.

4 The Bias-corrected Dantzig Selector

One can think of other ways of performing the first step in Algorithm 1 and this section discusses
another approach based on a modification of the Dantzig selector, a popular sparse regression
technique [15]. Unlike the two-step procedure, we do not claim any theoretical guarantees for this
method and shall only explore its properties on real and simulated data.

Applied directly to our problem, the Dantzig selector takes the form

min
β∈RN

∥β∥`1 subject to ∥Y T
(−i)(yi −Y β)∥`∞ ≤ λ and βi = 0, (4.1)

where Y(−i) is Y with the ith column deleted. However, this is hardly suitable since the design
matrix Y is corrupted. Interestingly, recent work [38, 39] has studied the problem of estimating a
sparse vector from the standard linear model under uncertainty in the design matrix. The setup
in these papers is close to our problem and we propose a modified Dantzig selection procedure
inspired but not identical to the methods set forth in [38,39].

4.1 The correction

If we had clean data, we would solve (2.1); this is (4.1) with Y =X and λ = 0. Let βI be the solution
to this ideal noiseless problem. Applied to our problem, the main idea in [38, 39] would be to find
a formulation that resembles (4.1) with the property that βI is feasible. Since xi = X(−i)βI(−i),
observe that we have the following decomposition:

Y T
(−i)(yi −Y β

I) = (X(−i) +Z(−i))T (zi −ZβI)
=XT

(−i)(zi −Zβ
I) +ZT

(−i)zi −Z
T
(−i)Zβ

I .

Then the conditional mean is given by

E[Y T
(−i)(yi −Y β

I) ∣X] = −EZT
(−i)Z(−i)β

I
(−i) = −σ2βI(−i).

In other words,
σ2βI(−i) +Y T

(−i)(yi −Y β
I) = ξ

where ξ has mean zero. In Section 4.2, we compute the variance of the jth component ξj , given by

E ξ2
j =

σ2

n
(1 + ∥βI∥2

`2) +
σ4

n
(1 + (βIj )2 + ∥βI∥2

`2
). (4.2)

Owing to our Gaussian assumptions, ∣ξj ∣ shall be smaller than 3 or 4 times this standard deviation,
say, with high probability.

Hence, we may want to consider a procedure of the form

min
β∈RN

∥β∥`1 subject to ∥Y T
(−i)(yi −Y β) + σ

2β(−i)∥`∞ ≤ λ and βi = 0. (4.3)

It follows that if we take λ to be a reasonable multiple of (4.2), then βI would obey the constraint
in (4.3) with high probability. Hence, we would need to approximate the variance (4.2). Numerical
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Figure 6: Performance of the bias-corrected Dantzig selector for values of λ that are
multiples of the heuristic λo =

√
2/nσ

√
1 + σ2. (a) False positive rate (FPR). (b) FPR

for different subspace dimensions. (c) True positive rate (TPR). (d) TPR vs. FPR.

simulations together with asymptotic calculations presented in Appendix C give that ∥βI∥`2 ≤ 1
with very high probability. Thus neglecting the term in (βIj )2,

E ξ2
j ≈

σ2

n
(1 + σ2)(1 + ∥βI∥2

`2) ≤ 2
σ2

n
(1 + σ2).

This suggests taking λ to be a multiple of
√

2/nσ
√

1 + σ2. This is interesting because the parameter
λ does not depend on the dimension of the underlying subspace. We shall refer to (4.3) as the bias-
corrected Dantzig selector, which resembles the proposal in [38,39] for which the constraint is a bit
more complicated and of the form ∥Y T

(−i)(yi −Y β) +D(−i)β∥`∞ ≤ µ∥β∥`1 + λ.
To get a sense about the validity of this proposal, we test it on our running example by varying

λ ∈ [λo,8λo] around the heuristic λo =
√

2/nσ
√

1 + σ2. Figure 6 shows that good results are
achieved around factors in the range [4,6].

In our synthetic simulations, both the two-step procedure and the corrected Dantzig selector
seem to be working well in the sense that they yield many true discoveries while making very few
false discoveries, if any. Comparing Figures 6b and 6c with those from Section 2 show that the
corrected Dantzig selector has more true discoveries for subspaces of small dimensions (they are
essentially the same for subspaces of large dimensions); that is, the two-step procedure is more
conservative when it comes to subspaces of smaller dimensions. As explained earlier this is due to
our conservative choice of λ resulting in a TPR about half of what is obtained in a noiseless setting.
Having said this, it is important to keep in mind that in these simulations the planes are drawn
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at random and as a result, they are sort of far from each other. This is why a less conservative
procedure can still achieve a low FPR. When smaller subspaces are closer to each other or when
the statistical model does not hold exactly as in real data scenarios, a conservative procedure may
be more effective. In fact, experiments on real data in Section 6 confirm this and show that for the
corrected Dantzig selector, one needs to choose values much larger than λo to yield good results.

4.2 Variance calculation

By definition,

ξj = ⟨xj ,zi −ZβI⟩ + ⟨zj ,zi⟩ − (zTj zj − σ2)βIj − ∑
k∶k≠i,j

zTj zkβ
I
k ∶= I1 + I2 + I3 + I4.

A simple calculation shows that for `1 ≠ `2, Cov(I`1 , I`2) = 0 so that

E ξ2
j =

4

∑
`=1

Var(I`).

We compute

Var(I1) =
σ2

n
(1 + ∥βI∥2

`2),

Var(I2) =
σ4

n
,

Var(I3) =
σ4

n
2(βIj )2,

Var(I4) =
σ4

n
[∥βI∥2

`2 − (βIj )2]

and (4.2) follows.

5 Comparisons With Other Works

We now briefly comment on other approaches to subspace clustering. Since this paper is theoretical
in nature, we shall focus on comparing theoretical properties and refer to [19], [47] for a detailed
comparison about empirical performance. Three themes will help in organizing our discussion.

• Tractability. Is the proposed method or algorithm computationally tractable?

• Robustness. Is the algorithm provably robust to noise and other imperfections?

• Efficiency. Is the algorithm correctly operating near the limits we have identified above? In
our model, how many points do we need per subspace? How large can the affinity between
subspaces be?

One can broadly classify existing subspace clustering techniques into three categories, namely,
algebraic, iterative and statistical methods.

Methods inspired from algebraic geometry have been introduced for clustering purposes. In this
area, a mathematically intriguing approach is the generalized principal component analysis (GPCA)
presented in [48]. Unfortunately, this algorithm is not tractable in the dimension of the subspaces,
meaning that a polynomial-time algorithm does not exist. Another feature is that GPCA is not
robust to noise although some heuristics have been developed to address this issue, see e.g. [32].
As far as the dependence upon key parameters is concerned, GPCA is essentially optimal. An
interesting approach to make GPCA robust is based on semidefinite programming [36]. However,
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this novel formulation is still intractable in the dimension of the subspaces and it is not clear how
the performance of the algorithm depends upon the parameters of interest.

A representative example of an iterative method—the term is taken from the tutorial [47]—is
the K-subspace algorithm [43], a procedure which can be viewed as a generalization of K-means.
Here, the subspace clustering problem is formulated as a non-convex optimization problem over the
choice of bases for each subspace as well as a set of variables indicating the correct segmentation.
A cost function is then iteratively optimized over the basis and the segmentation variables. Each
iteration is computationally tractable. However, due to the non-convex nature of the problem, the
convergence of the sequence of iterates is only guaranteed to a local minimum. As a consequence,
the dependence upon the key parameters is not well understood. Furthermore, the algorithm can
be sensitive to noise and outliers. Other examples of iterative methods may be found in [1,9,29,52].

Statistical methods typically model the subspace clustering problem as a mixture of degenerate
Gaussian observations. Two such approaches are mixtures of probabilistic PCA (MPPCA) [42]
and agglomerative lossy compression (ALC) [30]. MPPCA seeks to compute a maximum-likelihood
estimate of the parameters of the mixture model by using an expected-maximization (EM) style
algorithm. ALC searches for a segmentation of the data by minimizing the code length necessary
(with a code based on Gaussian mixtures) to fit the points up to a given distortion. Once more,
due to the non-convex nature of these formulations, the dependence upon the key parameters and
the noise level is not understood.

Many other methods apply spectral clustering to a specially constructed graph [2,8,16,23,50,53].
They share the same difficulties as stated above and [47] discusses advantages and drawbacks. An
approach similar to SSC is called low-rank representation (LRR) [27]. The LRR algorithm is
tractable but its robustness to noise and its dependence upon key parameters is not understood.
The work in [26] formulates the robust subspace clustering problem as a non-convex geometric
minimization problem over the Grassmanian. Because of the non-convexity, this formulation may
not be tractable. On the positive side, this algorithm is provably robust and can accommodate
noise levels up to O(1/(Ld3/2)). However, the density ρ required for favorable properties to hold
is an unknown function of the dimensions of the subspaces (e.g. ρ could depend on d in a super
polynomial fashion). Also, the bound on the noise level seems to decrease as the dimension d
and number of subspaces L increases. In contrast, our theory requires ρ ≥ ρ⋆ where ρ⋆ is a
fixed numerical constant. While this manuscript was under preparation we learned of [20] which
establishes robustness to sparse outliers but with a dependence on the key parameters that is super-
polynomial in the dimension of the subspaces demanding ρ ≥ C0 d

logn. (Numerical simulations
in [20] seem to indicate that ρ cannot be a constant.)

Finally, the papers [28,38,39] also address regression under corrupted covariates. However, there
are three key differences between these studies and our work. First, our results show that LASSO
without any change is robust to corrupted covariates whereas these works require modifications
to either LASSO or the Dantzig selector. Second, the modeling assumptions for the uncorrupted
covariates are significantly different. These papers assume that X has i.i.d. rows and obeys the
restricted eigenvalue condition (REC) whereas we have columns sampled from a mixture model
so that the design matrices do not have much in common. Last, for clustering and classification
purposes, we need to verify that the support of the solution is correct whereas these works establish
closeness to an oracle solution in an `2 sense. In short, our work is far closer to multiple hypothesis
testing.
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6 Numerical Experiments

In this section, we perform numerical experiments corroborating our main results and suggesting
their applications to temporal segmentation of motion capture data. In this application we are given
sensor measurements at multiple joints of the human body captured at different time instants. The
goal is to segment the sensory data so that each cluster corresponds to the same activity. Here,
each data point corresponds to a vector whose elements are the sensor measurements of different
joints at a fixed time instant.

We use the Carnegie Mellon Motion Capture dataset (available at http://mocap.cs.cmu.edu),
which contains 149 subjects performing several activities (data are provided in [54]). The motion
capture system uses 42 markers per subject. We consider the data from subject 86 in the dataset,
consisting of 15 different trials, where each trial comprises multiple activities. We use trials 2
and 5, which feature more activities (8 activities for trial 2 and 7 activities for trial 5) and are,
therefore, harder examples relative to the other trials. Figure 7 shows a few snapshots of each
activity (walking, squatting, punching, standing, running, jumping, arms-up, and drinking) from
trial 2. The right plot in Figure 7 shows the singular values of three of the activities in this trial.
Notice that all the curves have a low-dimensional knee, showing that the data from each activity
lie in a low-dimensional subspace of the ambient space (n = 42 for all the motion capture data).

0 5 10 15 20
0

5

10

15

20

25

30

35

Index

S
in

g
u

la
r 

V
al

u
es

 

 

Walking

Jumping

Drinking

Figure 7: Left: eight activities performed by subject 86 in the CMU motion cap-
ture dataset: walking, squatting, punching, standing, running, jumping, arms-up, and
drinking. Right: singular values of the data from three activities (walking, jumping,
drinking) show that the data from each activity lie approximately in a low-dimensional
subspace.

We compare three different algorithms: a baseline algorithm, the two-step procedure and the
bias-corrected Dantzig selector. We evaluate these algorithms based on the clustering error. That
is, we assume knowledge of the number of subspaces and apply spectral clustering to the similarity
matrix built by the algorithm. After the spectral clustering step, the clustering error is simply
the ratio of misclassified points to the total number of points. We report our results on half of
the examples—downsampling the video by a factor 2 keeping every other frame—as to make the
problem more challenging. (As a side note, it is always desirable to have methods that work well
on a smaller number of examples as one can use split-sample strategies for tuning purposes).6

As a baseline for comparison, we apply spectral clustering to a standard similarity graph built

6We have adopted this subsampling strategy to make our experiments reproducible. For tuning purposes, a random
strategy may be preferrable.
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Figure 8: Minimum clustering error (%) for each K in the baseline algorithm.

by connecting each data point to its K-nearest neighbors. For pairs of data points, yi and yj ,
that are connected in the K-nearest neighbor graph, we define the similarities between them by
Wij = exp(−∥yi −yj∥2

2/t), where t > 0 is a tuning parameter (a.k.a. temperature). For pairs of data
points, yi and yj , that are not connected in the K-nearest neighbor graph, we set Wij = 0. Thus,
pairs of neighboring data points that have small Euclidean distances from each other are considered
to be more similar, since they have high similarity Wij . We then apply spectral clustering to the
similarity graph and measure the clustering error. For each value of K, we record the minimum
clustering error over different choices of the temperature parameter t > 0 as shown in Figures 8a
and 8b. The minimum clustering error for trials 2 and 5 are 17.06% and 12.47%.

For solving the LASSO problems in the two-step procedure, we developed a computational
routine made publicly available [44] based on TFOCS [7] solving the optimization problems in
parallel. For the corrected Dantzig selector we use a homotopy solver in the spirit of [45].

For both the two-step procedure and the bias-corrected Dantzig selector we normalize the data
points as a preprocessing step. We work with a noise σ in the interval [0.001,0.045], and for
each value of σ, we vary λ around 1/λo = 4 ∥β⋆∥`1 and λo =

√
2/nσ

√
1 + σ2. After building the

similarity graph from the sparse regression output, we apply spectral clustering as explained earlier.
Figures 9a, 9b and 10 show the clustering error (on trial 5) and the red point indicates the location
where the minimum clustering error is reached. Figures 9a and 9b show that for the two-step
procedure the value of the clustering error is not overly sensitive to the choice of σ—especially
around λ = λo. Notice that the clustering error for the robust versions of SSC are significantly
lower than the baseline algorithm for a wide range of parameter values. The reason the baseline
algorithm performs poorly in this case is that there are many points that are in small Euclidean
distances from each other, but belong to different subspaces.

Finally a summary of the clustering errors of these algorithms on the two trials are reported in
Table 1. Robust versions of SSC outperform the baseline algorithm. This shows that the multiple
subspace model is better for clustering purposes. The two-step procedure seems to work slightly
better than the corrected Dantzig selector for these two examples. Table 2 reports the optimal
parameters that achieve the minimum clustering error for each algorithm. The table indicates that
on real data, choosing λ close to λo also works very well. Also, one can see that in comparison with
the synthetic simulations of Section 4, a more conservative choice of the regularization parameter λ
is needed for the corrected Dantzig selector as λ needs to be chosen much higher than λo to achieve
the best results. This may be attributed to the fact that the subspaces in this example are very
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Figure 9: Clustering error (%) for different values of λ and σ on trial 5 using the two
step procedure (a) 3D plot (minimum clustering error appears in red). (b) 2D cross
sections.
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corrected Dantzig Selector.
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Figure 11: Box plot of the affinities between subspaces for trials 2 and 5.

close to each other and are not drawn at random as was the case with our synthetic data. To get
a sense of the affinity values, we fit a subspace of dimension d` to the N` data points from the `th
group, where d` is chosen as the smallest nonnegative integer such that the partial sum of the d`
top singular values is at least 90% of the total sum. Figure 11 shows that the affinities are higher
than 0.75 for both trials.

7 Discussion and Open Problems

In this paper, we have developed a tractable algorithm that can provably cluster data points in a
fairly challenging regime in which subspaces can overlap along many dimensions and in which the
number of points per subspace is rather limited. Our results about the performance of the robust
SSC algorithm are expressed in terms of interpretable parameters. This is not a trivial achievement:
one of the challenges of the theory for subspace clustering is precisely that performance depends
on many different aspects of the problem such as the dimension of the ambient space, the number
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Baseline Algorithm Two-step procedure Corrected Dantzig selector

Trial 2 17.06% 3.54% 9.53%

Trial 5 12.47% 4.35% 4.92%

Table 1: Minimum clustering error.

Baseline algorithm Two-step procedure Corrected Dantzig selector

Trial 2 K=9, t=0.0769 σ = 0.03 , λ = 1.25λo σ = 0.004 , λ = 41.5λo
Trial 5 K=6, t=0.0455 σ = 0.01, λ = λo σ = 0.03 , λ = 45.5λo

Table 2: Optimal parameters.

of subspaces, their dimensions, their relative orientations, the distribution of points around each
subspace, the noise level, and so on. Nevertheless, these results only offer a starting point as
our work leaves open lots of questions, and at the same time, suggests topics for future research.
Before presenting the proofs, we would like to close by listing a few questions colleagues may find
of interest.

• We have shown that while having the affinities and sampling densities near what is information
theoretically possible, robust versions of SSC that can accommodate noise levels σ of order
one exist. It would be interesting to establish fundamental limits relating the key parameters
to the maximum allowable noise level. What is the maximum allowable noise level for any
algorithm regardless of tractability?

• It would be interesting to extend the results of this paper to a deterministic model where
both the orientation of the subspaces and the noiseless samples are non-random. We leave
this to a future publication.

• Our work in this paper concerns the construction of the similarity matrix and the correctness
of sparse regression techniques. The full algorithm then applies clustering techniques to clean
up errors introduced in the first step. It would be interesting to develop theoretical guarantees
for this step as well. A potential approach is the interesting formulation developed in [4].

• A natural direction is the development of clustering techniques that can provably operate with
missing and/or sparsely corrupted entries (the work [41] only deals with grossly corrupted
columns). The work in [20] provides one possible approach but requires a very high sampling
density as we already mentioned. The paper [19] develops another heuristic approach without
any theoretical justification.

• One of the advantages of the suggested scheme is that it is highly parallelizable. When the al-
gorithm is run sequentially, it would be interesting to see whether one can reuse computations
to solve all the `1-minimization problems more effectively.

8 Proofs

We prove all of our results in this section. Before we begin, we introduce some notation. If A is
a matrix with N columns and T a subset of {1, . . . ,N}, AT is the submatrix with columns in T .
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Similarly, xT is the restriction of the vector x to indices in T . Throughout we use Lm to denote
logm up to a fixed numerical constant. The value of this constant may change from line to line.
Likewise, C is a generic numerical constant whose value may change at each occurrence.

Next, we work with y ∶= y1 for convenience, assumed to originate from S1, which is no loss of
generality. It is also convenient to partition Y as {Y (1),Y (2), . . . ,Y (L)}, where for each `, Y (`)

are those noisy columns from subspace S`; when ` = 1, we exclude the response y1 from Y (1). With
this notation, the problem (2.2) takes the form

min
β∈RN−1

1

2
∥y − (Y (1)β(1) + . . . +Y (L)β(L))∥

2

`2
+ λ ∥β(1)∥

`1
+ . . . + λ ∥β(L)∥

`1
. (8.1)

Throughout, y∥/Y
(1)
∥ denotes the projection of the vector/matrix y/Y (1) onto S1. Similarly, we

use y⊥ to denote projection onto the orthogonal complement S⊥1 ; hence, y = y∥ + y⊥ and Y (1) =
Y
(1)
∥ +Y (1)⊥ . Moreover, U1 ∈ Rn×d and U⊥1 ∈ Rn×(n−d) are orthonormal bases for S1 and S⊥1 .

Since y∥ = x + z∥ with ∥x∥`2 = 1 and E ∥z∥∥2
`2

= σ2d/n, it is obvious that under the stated
assumptions, ∥y∥∥`2 ∈ [3/4,5/4] with very high probability as shown in Lemma A.4. The same

applies to all the columns of Y
(1)
∥ . From now on, we will operate under these two assumptions,

which hold simultaneously over an event of probability at least 1 − 1/N2d1−1
1 .

8.1 Intermediate results

In this section, we record a few important results that shall be used to establish the no-false and
many true discoveries theorems. Now the reader interested in our proofs may first want to pass
over this section rather quickly, and return to it once it is clear how our arguments reduce to the
technical lemmas below.

8.1.1 Preliminaries

Our first lemma rephrases Lemma 7.5 in [41] and bounds the size of the dot product between
random vectors. We omit the proof.

Lemma 8.1 Let A ∈ Rd1×N1 be a matrix with columns sampled uniformly at random from the unit
sphere of Rd1, w ∈ Rd2 be a vector sampled uniformly at random from the unit sphere of Rd2 and
independent of A and Σ ∈ Rd1×d2 be a deterministic matrix. We have

∥ATΣw∥
`∞

≤
√

log a log b
∥Σ∥F√
d1

√
d2

, (8.2)

with probability at least 1 − 2√
a
− 2N1√

b
.

We are interested in this because (8.2) relates the size of the dot products with the affinity between
subspaces as follows: suppose the unit-norm vector xi is drawn uniformally at random from Si,
then

X(j)
T
xi =ATΣw;

A and w are as in the lemma and Σ = U (j)TU (i), where U (j) (resp. U (i)) is an orthobasis for Sj
(resp. Si). By definition, ∥Σ∥F =

√
dj ∧ di aff(Sj , Si).

24



8.1.2 The first step of Algorithm 2

As claimed in Section 2, the first step of Algorithm 2 returns an optimal value that is a reasonable
proxy for the unknown dimension.

Lemma 8.2 Let Val(Step 1)be the optimal value of (2.4) with τ = 2σ. Assume ρ1 > ρ⋆ as earlier.
Then

1

10

√
d1

log ρ1
≤ Val(Step 1) ≤ 2

√
d1. (8.3)

The upper bound holds with probability at least 1 − eγ1n − e−γ2d1. The lower bound holds with
probability at least 1 − e−γ3d1 − 10

N .

Proof We begin with the upper bound. Let β0 =X(1)
T (X(1)X(1)T )

−1
x be the minimum `2-norm

solution to the noiseless problem Xβ0 = x. We show that β0 is feasible for (2.4). We have

y −Y β0 = x −Xβ0 + (z −Zβ0) = z −Zβ0,

which gives
L(z −Zβ0 ∣X,x) = N (0, V In), V = (1 + ∥β0∥2

`2
)σ2/n

(the notation L(Y ∣X) is the conditional law of Y given X). Hence, the conditional distribution of
∥z −Zβ0∥2

`2
is that of a chi square and (A.1) gives

∥z −Zβ0∥`2 ≤
√

2(1 + ∥β0∥2
`2
)σ

with probability at least 1 − e−γ1n. On the other hand,

∥β0∥`2 ≤
∥x∥`2

σmin(X(1))

and applying Lemma A.2 gives

∥β0∥`2 ≤
1√
N1

d1
− 2

,

which holds with probability at least 1− e−γ2d1 . If N1 > 9d1, then ∥β0∥`2 ≤ 1 and thus β0 is feasible.
Therefore,

∥β⋆∥`1 ≤ ∥β0∥`1 ≤
√
N1 ∥β0∥`2 ≤

√
d1

1 − 2
√

d1
N1

≤ 2
√
d1,

where the last inequality holds provided that N1 ≥ 16d1.
We now turn to the lower bound and let β⋆ be an optimal solution. Notice that ∥y∥−Y∣∣β⋆∥`2 ≤

∥y −Y β⋆∥`2 ≤ 2σ so that β⋆ is feasible for

min ∥β∥`1 subject to ∥y∥ −Y∥β∥`2 ≤ 2σ. (8.4)

We bound the optimal value of this program from below. The dual of (8.4) is

max ⟨y∥,ν⟩ − 2σ ∥ν∥`2 subject to ∥Y T
∣∣ ν∥`∞ ≤ 1. (8.5)
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Slater’s condition holds and the primal and dual optimal values are equal. To simplify notation set

A = Y (1)∥ . Define

ν⋆ ∈ arg max ⟨y∥,ν⟩ subject to ∥ATν∥
`∞

≤ 1.

Notice that ν⋆ has random direction on subspace S1. Therefore, combining Lemmas 8.1, A.1,

and B.4 together with the affinity condition implies that for ` ≠ 1, ∥Y (`)∣∣
T
ν∗∥`∞ ≤ 1 with high

probability. In short, ν⋆ is feasible for (8.5).
Since y∥ has random direction, the arguments (with t = 1/6) in Step 2 of the proof of Theorem

2.9 in [41] give

⟨y∥,ν⋆⟩ ≥
1√
2πe

√
d1

log ρ1
.

Also, by Lemma B.4,

∥ν⋆∥`2 ≤
16

3

√
d1

log ρ1
.

Since ν⋆ is feasible for (8.5), the optimal value of (8.5) is greater or equal than

⟨y∥,ν⋆⟩ − 2σ ∥ν⋆∥`2 ≥
1

10

√
d1

log ρ1
,

where the inequality follows from the bound on the noise level. This concludes the proof.

8.1.3 The reduced and projected problems

When there are no false discoveries, the solution to (8.1) coincides with that of the reduced problem

β̂(1) ∈ arg min
1

2
∥y −Y (1)β(1)∥

2

`2
+ λ ∥β(1)∥

`1
. (8.6)

Not surprisingly, we need to analyze the properties of the solution to this problem. In particular,
we would like to understand something about the orientation and the size of the residual vector
y −Y (1)β̂(1).

A problem close to (8.6) is the projected problem

β̃(1) ∈ arg min
1

2
∥y∥ −Y (1)∥ β(1)∥

2

`2
+ λ ∥β(1)∥

`1
. (8.7)

The difference with the reduced problem is that the goodness of fit only involves the residual sum
of squares of the projected residuals. Intuitively, the solutions to the two problems (8.6) and (8.7)
should be close. Our strategy is to gain some insights about the solution to the reduced problem
by studying the properties of the projected problem.

8.1.4 Properties of the projected problem

The sole purpose of this subsection is to state this:

26



Lemma 8.3 Let β̃(1) be any solution to the projected problem and assume that N1/d1 ≥ ρ⋆ as
before. Then there exists an absolute constant C such that for all λ > 0,

∥β̃(1)∥
`2
≤ C (8.8)

holds with probability at least 1 − 5e−γ1d1 − e−
√
N1d1.

This estimate shall play a crucial role in our arguments. It is a consequence of sharp estimates
obtained by Wojtaszczyk [49] in the area of compressed sensing. As not to interrupt the flow, we
postpone its proof to Section 8.3.

In the asymptotic regime (ρ1 = N1/d1 fixed and d1 → ∞), one can sharpen the upper bound
(8.8) by taking C = 1. This leverages the asymptotic theory developed in [5] and [6] as explained
in Appendix C.

8.1.5 Properties of the reduced problem

We now collect two important facts about the residuals to the reduced problem. The first concerns
their orientation.

Lemma 8.4 (Isotropy of the residuals) The projection of the residual vector r = y −Y (1)β̂(1)
onto either S1 or S⊥1 has uniform orientation.

Proof Consider any unitary transformation U∥ (resp. U⊥) leaving S1 (resp. S⊥1 ) invariant. Since

1

2
∥U∥(y∥ −Y (1)∥ β(1))∥

2

`2
+ 1

2
∥U⊥(y⊥ −Y (1)⊥ β(1))∥

2

`2
+ λ ∥β(1)∥

`1

= 1

2
∥y∥ −Y (1)∥ β(1)∥

2

`2
+ 1

2
∥y⊥ −Y (1)⊥ β(1)∥

2

`2
+ λ ∥β(1)∥

`1
,

the LASSO functional is invariant and this gives

β̂(1)(U∥y∥,U⊥y⊥,U∥Y (1)∥ ,U⊥Y
(1)
⊥ ) = β̂(1)(y∥,y⊥,Y (1)∥ ,Y

(1)
⊥ ).

Let r∥(y∥,Y (1)∥ ) = y∥−Y (1)∥ β̂(1) and r⊥(y⊥,Y (1)⊥ ) = y⊥−Y (1)⊥ β̂(1) be the projections of the residuals.

Since y∥ and Y
(1)
∥ are invariant under rotations leaving S1 invariant, we have

r∥(U∥y∥,U∥Y (1)∥ ) = U∥y∥ −U∥Y (1)∥ β̂(1)(U∥y∥,U⊥y⊥,U∥Y (1)∥ ,U⊥Y
(1)
⊥ )

= U∥y∥ −U∥Y (1)∥ β̂(1)(y∥,y⊥,Y (1)∥ ,Y
(1)
⊥ )

∼ y∥ −Y (1)∥ β̂(1)(y∥,y⊥,Y (1)∥ ,Y
(1)
⊥ )

= r∥(y∥,Y (1)∥ ),

where X ∼ Y means that the random variables X and Y have the same distribution. Therefore,

the distribution of r∥(y∥,Y (1)∥ ) = y∥ − Y (1)∥ β̂(1) is invariant under rotations leaving S1 invariant.

In other words, the projection r∥ has uniform orientation. In a similar manner we conclude that
r⊥ has uniform orientation has well.

The next result controls the size of the residuals.
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Lemma 8.5 (Size of residuals) If N1/d1 ≥ ρ⋆, then for all λ > 0,

∥y⊥ −Y (1)⊥ β̂(1)∥
`2
≤ C σ. (8.9)

Also,

∥y∥ −Y (1)∥ β̂(1)∥
`2
≤ 32

3
λ

√
d1

log(N1/d1)
+Cσ. (8.10)

Both these inequalities hold with probability at least 1− e−γ1(n−d1) − 5e−γ2d1 − e−
√
N1d1, where γ1 and

γ2 are fixed numerical constants. Thus if λ > σ/
√

8d1, then

∥y∥ −Y (1)∥ β̂(1)∥
`2
≤ Cλ

√
d1. (8.11)

Proof We begin with (8.9). Since β̂(1) is optimal for the reduced problem,

1

2
∥y −Y (1)β̂(1)∥

2

`2
+ λ ∥β̂(1)∥

`1
≤ 1

2
∥y −Y (1)β̃(1)∥

2

`2
+ λ ∥β̃(1)∥

`1
.

Conversely, since β̃(1) is optimal for the projected problem,

1

2
∥y∥ −Y (1)∥ β̃(1)∥

2

`2
+ λ ∥β̃(1)∥

`1
≤ 1

2
∥y∥ −Y (1)∥ β̂(1)∥

2

`2
+ λ ∥β̂(1)∥

`1
.

Now Parseval equality

∥y −Y (1)β̂(1)∥
2

`2
= ∥y∥ −Y (1)∥ β̂(1)∥

2

`2
+ ∥y⊥ −Y (1)⊥ β̂(1)∥

2

`2

(and similarly for β̃(1)) together with the last two inequalities give

∥y⊥ −Y (1)⊥ β̂(1)∥
`2
≤ ∥y⊥ −Y (1)⊥ β̃(1)∥

`2
.

Now observe that y∥, y⊥, Y
(1)
∥ and Y

(1)
⊥ are all independent from each other. Since β̃(1) is a

function of y∥ and Y
(1)
∥ , it is independent from y⊥ and Y

(1)
⊥ . Hence,

L(U⊥1
T (y⊥ −Y (1)⊥ β̃(1)) ∣y∥,Y (1)∥ ) = N (0, V In−d1), V = σ

2

n
(1 + ∥β̃(1)∥

2

`2
).

Conditionally then, it follows from the chi-square tail bound (A.1) with ε = 1 that

∥y⊥ −Y (1)⊥ β̃(1)∥
2

`2
≤ 2σ2(1 − d1

n
)(1 + ∥β̃(1)∥

2

`2
),

which holds with probability at least 1 − e−γ1(n−d1), where γ1 = (1−log 2)
2 . Unconditionally, our first

claim follows from Lemma 8.3.
We now turn our attention to (8.10). Our argument uses the solution to the noiseless projected

problem

β̄(1) ∈ arg min ∥β(1)∥
`1

subject to y∥ = Y (1)∥ β(1); (8.12)
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this is the solution to the projected problem as λ → 0+. With this, we proceed until (8.13) as
in [11,12]. Since β̂(1) is optimal for the reduced problem,

1

2
∥y −Y (1)β̂(1)∥

2

`2
+ λ ∥β̂(1)∥

`1
≤ 1

2
∥y −Y (1)β̄(1)∥

2

`2
+ λ ∥β̄(1)∥

`1
.

Put h = β̂(1) − β̄(1). Standard simplifications give

1

2
∥Y (1)h∥

2

`2
+ λ ∥β̄(1) +h∥

`1
≤ ⟨y −Y (1)β̄(1),Y (1)h⟩ + λ ∥β̄(1)∥

`1
.

Letting S be the support of β̄(1), we have

∥β̄(1) +h∥
`1
= ∥β̄S +hS∥`1 + ∥hSc∥`1 ≥ ∥β̄(1)∥

`1
+ ⟨sgn(β̄S),hS⟩ + ∥hSc∥`1 .

This yields
1

2
∥Y (1)h∥

2

`2
+ λ ∥hSc∥`1 ≤ ⟨y −Y (1)β̄(1),Y (1)h⟩ − λ⟨sgn(β̄(1)S ),hS⟩.

By definition, y∥ −Y (1)∥ β̄(1) = 0, and thus

1

2
∥Y (1)h∥

2

`2
+ λ ∥hSc∥`1 ≤ ⟨y⊥ −Y (1)⊥ β̄(1),Y

(1)
⊥ h⟩ − λ⟨sgn(β̄(1)S ),hS⟩. (8.13)

Continue with

⟨Y (1)⊥ h,y⊥ −Y (1)⊥ β̄(1)⟩ ≤ ∥Y (1)⊥ h∥
`2

∥y⊥ −Y (1)⊥ β̄(1)∥
`2
≤ 1

2
∥Y (1)⊥ h∥

2

`2
+ 1

2
∥y⊥ −Y (1)⊥ β̄(1)∥

2

`2

so that
1

2
∥Y (1)∥ h∥

2

`2
+ λ ∥hSc∥`1 ≤

1

2
∥y⊥ −Y (1)⊥ β̄(1)∥

2

`2
− λ⟨sgn(β̄(1)S ),hS⟩. (8.14)

Now set A = Y (1)∥ for notational convenience. Since β̄(1) is optimal, there exists ν such that

v =ATν, vS = sgn(β̄(1)S ) and ∥vSc∥`∞ ≤ 1.

Also, Corollary B.4 gives

∥ν∥2
`2 ≤

256

9

d1

log(N1/d1)
. (8.15)

With this
⟨sgn(β̄(1)S ),hS⟩ = ⟨vS ,hS⟩ = ⟨ν,Ah⟩ − ⟨vSc ,hSc⟩.

We have

∣⟨ν,Ah⟩∣ ≤ ∥Ah∥`2 ∥ν∥`2 ≤
1

4λ
∥Ah∥2

`2
+ λ ∥ν∥2

`2

and, therefore,

λ∣⟨sgn(β̄(1)S ),hS⟩∣ ≤
1

4
∥Ah∥2

`2
+ λ2 ∥ν∥2

`2
+ λ ∥hSc∥`1 .

Plugging this into (8.14), we obtain

1

4
∥Ah∥2

`2
≤ 1

2
∥y⊥ −Y (1)⊥ β̄(1)∥

2

`2
+ λ2 ∥ν∥2

`2
. (8.16)

This concludes the proof since by definition Ah = y∥ − Y (1)∥ β̂(1) and since we already know that

∥y⊥ −Y (1)⊥ β̄(1)∥2
`2
≤ C2σ2.
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8.2 Proof of Theorem 3.1

First, Lemma 8.2 asserts that by using τ and f(t) as stated, our choice of λ obeys

λ > σ√
8d1

. (8.17)

All we need is to demonstrate that when λ is as above, there are no false discoveries. To do this,
it is sufficient to establish that the solution β̂(1) to the reduced problem obeys

∥Y (`)T (y −Y (1)β̂(1))∥
`∞

< λ, for all ` ≠ 1. (8.18)

This is a consequence of this:

Lemma 8.6 Fix A ∈ Rd×N and T ⊂ {1,2, . . . ,N}. Suppose that there is a solution x⋆ to

min
1

2
∥y −Ax∥2

`2
+ λ ∥x∥`1 subject to xT c = 0

obeying ∥AT
T c(y −Ax⋆)∥`∞ < λ. Then any optimal solution x̂ to

min
1

2
∥y −Ax∥2

`2
+ λ ∥x∥`1

must also satisfy x̂T c = 0.

Proof Consider a perturbation x⋆ + th. For t > 0 sufficiently small, the value of the LASSO
functional at this point is equal to

1

2
∥y −A(x⋆ + th)∥2

`2
+ λ ∥x + th∥`1 =

1

2
∥y −Ax⋆∥2

`2
− t⟨AT (y −Ax⋆),h⟩ + t

2

2
∥Ah∥2

`2

+ λ ∥x∥`1 + λt⟨sgn(xT ),hT ⟩ + λt ∥hT c∥`1 .

Now since the optimality conditions give that AT
T (y −Ax⋆) = λsgn(xT ) and that by assumption,

AT
T c(y −Ax⋆) = λεT c with ∥εT c∥`∞ < 1, the value of the LASSO functional is equal to

1

2
∥y −Ax⋆∥2

`2
+ λ ∥x∥`1 +

t2

2
∥Ah∥2

`2
+ λt(∥hT c∥`1 − ⟨εT c ,hT c⟩).

Clearly, when hT c ≠ 0, the value at x⋆ + th is strictly greater than that at x⋆, which proves the
claim.

We return to (8.18) and write

Y (`)
T (y −Y (1)β̂(1)) =X(`)T (y∥ −Y (1)∥ β̂(1)) +X(`)T (y⊥ −Y (1)⊥ β̂(1))

+Z(`)T (y∥ −Y (1)∥ β̂(1)) +Z(`)T (y⊥ −Y (1)⊥ β̂(1)).

To establish (8.18), we shall control the `∞ norm of each term by using Lemma 8.1 and the estimates
concerning the size of the residuals. For ease of presentation we assume d1 ≥ d` and d` ≤ n−d1—the
proof when d` > d1 is similar.

30



The term X(`)
T (y∥ −Y (1)∥ β̂(1)). Using Lemma 8.1 with a =

√
2 logN , b = 2

√
logN , we have

∥X(`)T (y∥ −Y (1)∥ β̂(1))∥
`∞

≤
√

8 logN
aff(S1,S`)√

d1

∥y∥ −Y (1)∥ β̂(1)∥
`2

;

this holds uniformly over ` ≠ 1 with probability at least 1− 4
N . Now applying Lemma 8.5 we conclude

that

∥X(`)T (y∥ −Y (1)∥ β̂(1))∥
`∞

≤ λLNaff(S1, S`) ∶= λI1.

The term X(`)
T (y⊥ −Y (1)⊥ β̂(1)). As before,

∥X(`)T (y⊥ −Y (1)⊥ β̂(1))∥
`∞

≤
√

8 logN
1√
n − d1

∥y⊥ −Y (1)⊥ β̂(1)∥
`2
,

which holds uniformly over ` ≠ 1 with probability at least 1 − 4
N (we used the fact that the affinity

is at most one.) Applying Lemma 8.5 gives

∥X(`)T (y⊥ −Y (1)⊥ β̂(1))∥
`∞

≤ LN
σ√
n
∶= I2.

The terms Z(`)
T (y∥ −Y (1)∥ β̂(1)) and Z(`)

T (y⊥ −Y (1)⊥ β̂(1)). Since Z(`) is a Gaussian matrix

with entries N (0, σ2/n), applying Lemma A.1 gives

∥Z(`)T (y∥ −Y (1)∥ β̂(1))∥
`∞

≤ 2σ

√
logN

n
∥y∥ −Y (1)∥ β̂(1)∥

`2

≤ Cλσ

√
d1 logN

n
∶= λI3.

with probability at least 1 − 2
N

In a similar fashion with probability at least 1 − 2
N , we have

∥Z(`)T (y⊥ −Y (1)⊥ β̂(1))∥
`∞

≤ σ2

√
LN
n

∶= I4.

Putting all this together, we need

(I1 + I3)λ + I2 + I4 < λ

to hold with high probability. It is easy to see that the affinity condition in Theorem 3.1 is equivalent
to I1 + I3 < 1 − 1√

3
. Therefore it suffices to have λ >

√
3(I2 + I4). The latter holds if

λ > LN
σ√
n
.

The calculations have been performed assuming (8.17). Therefore, it suffices to have

λ >
√

σ

8d1
max(1, LN

√
d1

n
).

The simplifying assumption d1 ≤ n/L2
N at the beginning of the paper concludes the proof.
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8.3 The size of the solution to the projected problem

This section proves Lemma 8.3. We begin with two definitions.

Definition 8.7 (Inradius) The inradius r(P) of a convex body P is the radius of the largest
Euclidean ball inscribed in P.

Definition 8.8 (Restricted isometry property (RIP)) We say that A ∈ Rd×N obeys RIP(s, δ)
if

(1 − δ) ∥x∥`2 ≤ ∥Ax∥`2 ≤ (1 + δ) ∥x∥`2
holds for all s-sparse vectors (vectors such that ∥x∥`0 ≤ s).

We mentioned that Lemma 8.3 is essentially contained in the work of Wojtaszczyk and now
make this clear. Below, x̂ is any optimal solution to

min ∥x∥`1 subject to y =Ax. (8.19)

Theorem 8.9 [49, Theorem 3.4] Suppose A ∈ Rd×N obeys RIP(s, δ) and r(P(A)) ≥ µ√
s
, where

P(A) is the symmetrized convex hull of the columns of A. Then there is a universal constant
C = C(δ, µ), such that for any solution x to y =Ax, we have

∥x̂ −x∥`2 ≤ C ∥x −x(s)∥`2 +C ∥y −Ax(s)∥`2 . (8.20)

Above, x(s) is the best s-sparse approximation to x (the vector x with all but the s-largest entries
set to zero).

We now prove Lemma 8.3 and begin with λ = 0. The expected squared Euclidean norm of a

column of Y
(1)
∥ is equal to 1 + σ2d/n. Rescaling Y

(1)
∥ as A = (1 + σ2d/n)−1/2Y

(1)
∥ , it is a simple

calculation to show that with s =
√
d1/LN1/d1 (recall that LN1/d1 is a constant times log(N1/d1)),

A obeys RIP(s, δ) for a fixed numerical constant δ. For the same value of s, a simple rescaling of
Lemma B.3 asserts that r(P(A)) ≥ µ/√s for a fixed numerical constant µ.

Now let A† be the pseudo-inverse of A, and set β =A†y∥. First, ∥y∥∥`2 ∈ [3/4,5/4] and second
∥β∥`2 ≤ 1 as shown in Lemma 8.2. Thus,

∥β̃(1) −β∥
`2
≤ C ∥β∥`2 +C ∥y∥ −Aβ(s)∥`2 ≤

9

4
C +C(1 + δ).

The second inequality comes from the RIP property ∥Aβ(s)∥`2 ≤ (1 + δ)∥β(s)∥`2 ≤ (1 + δ). This
completes the proof for λ = 0. For λ > 0, one simply applies the same argument with y∥ replaced

by Y
(1)
∥ β̃(1).

8.4 Proof of Theorem 3.2

We assume that f(t) = σ/(
√

2t); that for f(t) in the interval [σ/(
√

2t), c/t] is similar. We prove
Theorem 3.2 in two steps.
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Step 1: We develop a lower bound on the `1 norm of the optimal solution to (8.1); with high
probability,

∥β̂(1)∥
`1
≥ c1

√
d1

log ρ1

for some numerical constant c1.

Step 2: We develop an upper bound on the `2 norm of the optimal solution to (8.1);

∥β̂(1)∥
`2
≤ c2

√
log ρ1

holds with high probability.

Combining these, we have
∥β̂(1)∥

`1

∥β̂(1)∥
`2

≥ c3

log ρ1

√
d1.

Cauchy-Schwartz asserts that ∥β̂(1)∥`1 ≤
√

∥β̂(1)∥`0∥β̂(1)∥`2 and, therefore,

∥β̂(1)∥
`0
≥ Cd1/(log ρ1)2.

8.4.1 Proof of step 1

The proof is very similar to that of the lower bound in Lemma 8.2. By definition, the point β̂(1) is
a solution to

min ∥β∥`1 subject to ∥y −Y (1)β∥
`2
≤ τ

with τ = ∥y − Y (1)β̂(1)∥`2 . Now if we can take τ to be sufficiently smaller than one, then the
argument in the proof of Lemma 8.2 can be copied to establish the claim.

Lemma 8.5 gives

∥y −Y (1)β̂(1)∥
`2
≤ 32

3
λ

√
d1

log ρ1
+Cσ ≤ C ′ σ

Val(Step 1)

√
d1

log ρ1
+Cσ.

This is sufficiently small provided

σ ≤ CVal(Step 1)
√

log ρ1

d1
.

Since from Lemma 8.2, Val(Step 1) ≥
√
d1/Lρ1 , the inequality above holds whenever σ is bounded

by a fixed numerical constant (this is the reason why we need this assumption).

8.4.2 Proof of step 2

Lemma 8.10 Set h = β̂(1) − β̄(1). Then

∥h∥2
`2
≤ C2(

√
log(N1/d1)

d1
∥h∥`1 )

2

+C3 log(N1/d1) ∥y∥ −Y (1)∥ β̂(1)∥
2

`2
, (8.21)

holds with high probability.
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The proof is deferred to Section 8.4.3. We now proceed by bounding each of the terms in the above.
The claim follows from

∥β̂(1)∥`2 ≤ ∥β̄(1)∥`2 + ∥h∥`2 ≤ C
√

log ρ1

where the last inequality follows from Lemma 8.3, Lemma 8.5 and from (8.23) below.

By optimality of β̂(1) for (8.6) and the fact that y∥ −Y (1)∥ β̄(1) = 0 we have

1

2
∥y −Y β̂(1)∥

2

`2
+ λ ∥β̂(1)∥

`1
≤ 1

2
∥y⊥ −Y (1)⊥ β̄(1)∥

2

`2
+ λ ∥β̄(1)∥

`1
.

Therefore,

∥β̂(1)∥
`1
≤ 1

2λ
∥y⊥ −Y (1)⊥ β̄(1)∥

2

`2
+ ∥β̄(1)∥

`1
. (8.22)

Applying Lemma B.2 gives

∥β̄(1)∥
`1
≤

∥y∥∥`2
r(P(Y (1)∥ ))

≤ 20

3

√
d1

log(N1/d1)
,

with probability at least 1 − e−
√
N1d1 , where the second inequality comes from the lower bound on

r(P(Y (1)∥ )) in Lemma B.3. Also, using the same steps as in the proof of (8.9), we have

1

2λ
∥y⊥ −Y (1)⊥ β̄(1)∥

2

`2
≤ C σ2

σ/Val(Step 1) = CVal(Step 1)σ ≤ C
√
d1,

where the last inequality follows from the upper bound in Lemma 8.2 and the upper bound on σ.
Plugging these two into (8.22), we conclude that ∥β̂(1)∥`1 ≤ C

√
d1 which gives

∥h∥`1 ≤ ∥β̂(1)∥
`1
+ ∥β̄(1)∥

`1
≤ C

√
d1. (8.23)

8.4.3 Proof of Lemma 8.10

We make use of the following definition which to the extent of our knowledge first appears explicitly
in [21]. However, it is implicit in all the calculations in [10,13].

Definition 8.11 (RIP ratio) The d ×N matrix A satisfies the upper and lower RIP bounds of
order s ≥ 1 if there exist αLs , α

U
s > 0 such that

αLs ∥x∥`2 ≤ ∥Ax∥`2 ≤ α
U
s ∥x∥`2 ,

holds for all x ∈ RN with ∥x∥`0 ≤ s. We call the smallest ratio Γs(A) = αUs /αLs the RIP ratio.

To control the Euclidean norm of h, we decompose it into h = PN (h)+PN ⊥(h) where PN and

PN ⊥ denote projection onto the null space and row space of Y
(1)
∥ . Also, note that by definition

y∥ −Y (1)∥ β̂(1) = Y (1)∥ h = Y (1)∥ PN ⊥(h).

The idea is now to bound the Euclidean norm of the vectors in the intersection of the null space
of a matrix and the `1 ball in terms of the RIP ratio of that matrix. This can be viewed as an
extension of celebrated results by Garnaev, Gluskin and by Kashin [22, 24]. The proof is slightly
postponed.
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Lemma 8.12 (Relationship between circumradius and RIP ratio) Let 1 ≤ s ≤ N and N ≥
2s, A ∈ Rd×N . Then for any x in the null space,

∥x∥`2 ≤
√

1 + Γ2
2s

s
∥x∥`1 .

It is simple to see that the RIP ratio of Y
(1)
∥ is bounded with high probability provided s ≤√

d1/LN1/d1 . Therefore, applying the above lemma we have

∥PN (h)∥`2
∥PN (h)∥`1

≤ C
√

log(N1/d1)
d1

,

holding with probability at least 1 − 4e−γ1d1 . Thus with high probability

∥h∥2
`2

= ∥PN (h)∥2
`2
+ ∥PN ⊥(h)∥2

`2
,

≤ (C1

√
log(N1/d1)

d1
∥PN (h)∥`1 )

2

+ ∥PN ⊥(h)∥2
`2
.

The triangular inequality and the relationship (a + b)2 ≤ 2(a2 + b2) give

∥PN (h)∥`1 ≤ ∥h∥`1 + ∥PN ⊥(h)∥`1 ⇒ ∥PN (h)∥2
`1
≤ 2 ∥h∥2

`1
+ 2 ∥PN ⊥(h)∥2

`1
.

Hence,

∥h∥2
`2
≤ C log(N1/d1)

d1
[∥h∥2

`1
+ ∥PN ⊥(h)∥2

`1
] + 2 ∥PN ⊥(h)∥2

`2

and by Cauchy-Schwarz

∥h∥2
`2
≤ C log(N1/d1)

d1
[∥h∥2

`1
+N1 ∥PN ⊥(h)∥2

`2
].

By definition of the minimum singular value of Y
(1)
∥

T
, this gives

∥h∥2
`2
≤ C log(N1/d1)

d1
∥h∥2

`1
+C log(N1/d1)

d1

N1/d1

σmin(Y (1)∥
T
)

∥Y (1)∥ PN ⊥(h)∥
2

`2
.

Applying the lower bound on the minimum singular value (Lemma A.2) concludes the proof.

8.4.4 Proof of Lemma 8.12

This lemma is inspired by [14, 40]. The proof is essentially a consequence of the sorting strategy
introduced in [13]. Let h ≠ 0 and h ∈ Null(A). We order the coordinates of h in decreasing order
of magnitude. Let T1 denote the index of the s largest coordinates, T2 the second s largest and so
on. Applying RIP bounds gives

∥hT1 +hT2∥`2 ≤
1

αL2s
∥A(hT1 +hT2 −h)∥`2 =

1

αL2s
∥A(−∑

k≥3

hTk)∥
`2

≤ 1

αL2s
∑
k≥3

∥AhTk∥`2 .
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Thus

∥hT1 +hT2∥`2 ≤
αUs
αL2s
∑
k≥3

∥hTk∥`2 ≤
αU2s
αL2s
∑
k≥3

∥hTk∥`2 ≤ Γ2s∑
k≥3

∥hTk∥`2 .

Notice that

∥hTk+1∥`2 ≤
√
s max
i∈Tk+1

∣hi∣ ≤
√
smin
i∈Tk

∣hi∣ ≤
∥hTk∥`1√

s
.

Using T = T1 ∪ T2 and T c (the complement of T ), the last two inequalities imply

∥hT ∥`2 ≤
Γ2s√
s
∥hT c∥`1 ≤

Γ2s√
s
∥hT c1 ∥`1 .

Hence,

∥hT c∥`2 ≤ ∑
k≥3

∥hTk∥`2 ≤ ∑
k≥3

∥hTk∥`1√
s

≤ 1√
s
∥hT c1 ∥`1 .

Combining the last two inequalities yields

∥h∥2
`2
= ∥hT c∥2

`2
+ ∥hT ∥2

`2
≤ (1 + Γ2

2s)
s

∥hT c1 ∥
2

`1
≤ (1 + Γ2

2s)
s

∥h∥2
`1
.

A Standard inequalities in probability

This section collects standard inequalities that shall be used throughout. The first concerns tails
of chi-square random variables: a chi-square χ2

n with n degrees of freedom obeys

P(χ2
n ≥ (1 + ε)n} ≤ exp(−(1 − log 2)

2
nε2). (A.1)

The second concerns the size of the dot product between a fixed vector and Gaussian random
verctors.

Lemma A.1 Suppose A in R
d×N has iid N (0,1) entries and let z ∈ Rd a unit-norm vector. Then

∥ATz∥
`∞

≤ 2
√

logN

with probability at least 1 − 2
N . (This also applies if z is a random vector independent from A.)

Lemma A.2 (Sub-Gaussian rows [46]) Let A be an N × d matrix (N ≥ d) whose rows are
independent sub-Gaussian isotropic random vectors in R

d. Then for every t ≥ 0,

σmin(A) ≥
√
N −C

√
d − t

with probability at least 1 − e−ct2. Here, σmin is the minimum singular value of A and C = CK ,
c = cK > 0 depend only on the sub-Gaussian norm K = maxi ∥Ai∥Ψ2 of the rows (see [46]).

Lemma A.3 With probability at least 1 − e−d1/2,

σmin(Y (1)∥ ) ≥
√

(1 + σ2
d1

n
)(

√
N1

d1
− 2).

36



Proof This is a trivial consequence of Lemma A.2 above with t =
√
d1.

Lemma A.4 If σ is as in Section 1.2, all the columns in Y
(1)
∥ and y∥ have Euclidean norms in

[3/4,5/4] with probability at least 1 − N−(2d1−1)
1 . (For a single column, the probability is at least

equal to 1 −N−2d1
1 .)

Proof A column of Y
(1)
∥ or y∥ is of the form a = x + z∥ where x is uniform on the unit sphere of

S1 and z ∼ N (0, (σ2/n)In). We have

∥x∥`2 − ∥z∥∥`2 ≤ ∥a∥`2 ≤ ∥x∥`2 + ∥z∥∥`2 .

The result follows from ∥x∥`2 = 1 and ∥z∥∥`2 ≤ 1
4 , which holds with high probability. The latter is a

consequence of (A.1) since ∥z∥∥2
`2

(properly normalized) is a chi-square with d1 degrees of freedom.

B Geometric Lemmas

Consider the linear program

x⋆ ∈ arg min
x

∥x∥`1 subject to y =Ax, (B.1)

and its dual

ν⋆ ∈ arg max
ν

⟨y,ν⟩ subject to ∥ATν∥
`∞

≤ 1. (B.2)

Lemma B.1 Any dual feasible point obeys

∥ν∥`2 ≤
1

r(P(A)) .

Proof Put r = r(P(A)) for short. By definition, there exists x with ∥x∥`1 ≤ 1 such that Ax = rν.
Now,

r∥ν∥`2 = ⟨Ax,ν⟩ = ⟨x,ATν⟩ ≤ ∥x∥`1 ∥ATν∥`∞ ≤ 1.

Strong duality ∥x⋆∥`1 = ⟨y,ν⋆⟩ ≤ ∥y∥`2∥ν⋆∥`2 also gives:

Lemma B.2 Any optimal solution x⋆ to (B.1) obeys

∥x⋆∥`1 ≤
∥y∥`2

r(P(A)) .

Lemma B.3 Assume ρ1 = N1/d1 ≥ ρ⋆. Then

r(P(Y (1)∥ )) ≥ 3

16

√
log(N1/d1)

d1
,

with probability at least 1 − 1

N
2d1−1
1

− e−
√
N1d1.
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Proof Suppose A ∈ Rd×N has columns chosen uniformly at random from the unit sphere of Rd

with ρ = N/d ≥ ρ0. Then [41, Lemma 7.4]

P{r(P(A)) < 1

4

√
log(N/d)

d
} ≤ e−

√
Nd.

The claim in the lemma follows from the lower bound on the Euclidean norm of the columns of
Y
(1)
∥ (Lemma A.4) together with the fact that they have uniform orientation.

Corollary B.4 With high probability as above, any dual feasible point to (8.12) obeys

∥ν∥2
`2 ≤

256

9

d1

log(N1/d1)
.

C Sharpening Lemma 8.3 Asymptotically

Here, we assume that the ratio ρ1 = N1/d1 is fixed and N1 → ∞. In this asympotic setting, it is
possible to sharpen Lemma 8.3. Our arguments are less formal than in the rest of the paper.

Let x0 ∈ RN be an unknown vector, and imagine we observe

y =Ax0 + z,

where A is a d ×N matrix with i.i.d. N (0,1/d) entries, and z ∼ N (0, σ2Id). Let x̂ be the solution
to

min
1

2
∥y −Ax∥2

`2
+ λ ∥x∥`1 .

Then setting δ = d/N , the main result in [5, 6] states that almost surely,

lim
N→∞

1

N
∥x̂ −x0∥2

`2
= E{[η(X0 + τ∗Z;ατ∗) −X0]

2} = δ(τ2
∗ − σ2),

where Z ∼ N (0,1) and the random variable X0 has the empirical distribution of the entries of x0.
In addition, Z and X0 are independent. We refer to [5,6] for a precise statement. Above, α and τ∗
are solutions to

λ = ατ∗ [1 −
1

δ
E{η′(X0 + τ∗Z;ατ∗)}] (C.1)

τ2
∗ = σ2 + 1

δ
E[η(X0 + τ∗Z;ατ∗) −X0]2. (C.2)

Here, η(x, θ) is applying a soft-thresholding rule elementwise. For a scalar t, this rule is of the form

η(t, θ) = sgn(t)max(∣t∣ − θ,0).

We apply this in the setting of Lemma 8.3 with x0 = 0, X0 = 0. Here, A = UT
1 Y

(1)
∥ and with

abuse of notation y ∶= UT
1 y∥. In the asymptotic regime the vector y and the columns of A are

both random Gaussian vectors with variance of each entry equal to 1/d1 + 1/n. Since the LASSO
solution is invariant by rescaling of the columns and we are interested in bounding its norm, we

38



assume without loss of generality that y and A have N (0,1/d) entries N (0,1/d), i.e. the variance
of the noise z above is 1/d. With this, the above result simplifies to

lim
N→∞

1

N
∥x̂∥2

`2
= E{[η(τ∗Z;ατ∗)]

2} = δ(τ2
∗ − σ2), σ2 = 1/d.

To find α and τ∗, we solve

λ = ατ∗ [1 −
1

δ
E{η′(τ∗Z;ατ∗)}] , τ2

∗ = σ2 + 1

δ
E[η(τ∗Z;ατ∗)]2.

Now notice that

E{η′(τ∗Z;ατ∗)} = 2P{Z ≥ α}, E[η(τ∗Z;ατ∗)]2 = τ2
∗E[η(Z;α)]2.

The equations then become

λ = ατ∗ [1 −
2

δ
P{Z ≥ α}] , τ2

∗ =
σ2

1 − 1
δ E[η(Z;α)]2

.

Eliminating τ∗ and solving for α yields

λ

√
(1 − 1

δ
E[η(Z;α)]2) = ασ [1 − 2

δ
P{Z ≥ α}] .

This one-dimensional nonlinear equation can be solved with high accuracy. Plugging in the solution
in the expression for τ∗ bounds the `2 norm of the solution.

Now we explain how these relationships can be used to show ∥x̂∥`2 ≤ 1 for ρ ≥ ρ⋆ as λ→ 0. The
argument for any λ > 0 follows along similar steps, which we avoid here. As λ tends to zero we
must have

0 = 1 − 2

δ
P{Z ≥ α}⇒ P{Z ≥ α} = δ

2
⇒ α =

√
2erfc−1(δ)

where erfc−1 is the inverse of erfc(x) = 2√
π ∫

∞
x e−t

2
dt. With this, we obtain

∥x̂∥2
`2
= Nδ(τ2

∗ − σ2) = Nδσ2 E[η(Z;α)]2

δ − E[η(Z;α)]2
= E[η(Z;α)]2

δ − E[η(Z;α)]2
.

Some algebraic manipulations give

E[η(Z;α)]2 = (α2 + 1)erfc(α/
√

2) − α
√

2

π
e−α

2/2 = (α2 + 1)δ − α
√

2

π
e−α

2/2,

where α =
√

2erfc−1(δ). For the bound to be less than 1 it suffices to have E[η(Z;α)]2 ≤ δ/2. After
simplification, this is equivalent to

δ = erfc(α/
√

2) ≤
√

2

π

α

α2 + 1/2 e
−α2/2. (C.3)

The two functions on both sides of the above inequality are shown in Figure 12. As can be seen,
for δ ≤ 0.35476 we have the desired inequality. This is equivalent to N1/d1 = ρ1 ≥ ρ⋆ = 2.8188.
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Figure 12: Left-hand side (blue) and right-hand side (red) of (C.3). The two curves
intersect at (α∗, δ∗) = (0.9254,0.35476).
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